Lec₂₆

Friday, October 27, 2023 10:45 AM

Randomness

Wednesday, March 25, 2009 9:39 AM

- Until our discussion so far, the parameters of
a convex optimization problem are assumed to - We only need to optimize the (unknown) control
vanables - Further, in our iterative algunithms, the
value of the control variables in the previous
iteration is also assumed to be known precisely. - In reality, however, randomness in the system
model & in observation may prevent no from
knowing the precise value. Randminess can exist due to the practical - ey. In dual congestion controller
each wer chooses the rate by solving this
problem $x_{s}(t) = \frac{2\pi}{3}m\approx U_{s}(x_{s}) - x_{s} \sum_{l} H_{s}^{l} \hat{\gamma}_{l}(t)$ - we have assumed that source s will know

- In practice, in order to avoid additional
control messages, the source may need to
learn the value of 9,61) though packet drops (REM). - the link drops/narks packet with probability γ_{v} , γ_{v} γ_{n} $Y_i = 1$ if parket i is dropped/marked by any
link
then $P(Y_i = 1) = 1 - e^{-\frac{1}{2}H_s^1\varphi_i}$ $\Rightarrow \frac{\frac{h}{i-1}y_i}{n} \Rightarrow 1-e^{-\frac{\pi}{i}H_1^1\hat{r}_1} \approx n \rightarrow t\infty$ - However, the source connot wast for
n + 10. The control will be too
slow. - For any finite n, the source can only
get an estimate of \mathcal{U} (with Randomness could also occur due so the ez. The Natur-filling problem. $\frac{m}{\lambda}$ max $\frac{m}{\lambda}$ of $\frac{1}{\lambda}$ (1+ $\frac{\delta k}{\lambda}$)

 $y_1, ..., y_m$ $\sum_{k=1}^{m} \gamma_{k} p_{k} \leq p_{b}$ where \mathcal{G}_k = Probability that the channel gain is \mathcal{G}_k . - In this problem fromwlation, we have assumed - In reality, the channel distorstwim agained
needs to be estimated through taking random = error/noise in the system model. - In principle, we may revolve the randomness in the Randon as notif (Solve the)
Observation as notif of interest as total primieration padet drops price - Similarly, we can estimate the from measurements - The problem with this approach is that we
need n + the for the estimate to be accurate
(r nvise-free), and then we need t + the
for the optimization algorithm to converge to

the optimal solution. - However, in practice it may be unreasonable to
assume long estimation time. - There may be non-stationary changes in the
system which dues not allow us to use e.g. the channel distribution may change. - The system may react very slowly. e.j. in dual composion controller, the
convert price is med only once in each
iteration. What is the point of 10 If the estimation phase must be short, or
perhaps need to be completely eliminated,
can we still design an efficient algorithm? $\fbox{Pamdmness} \rightarrow + \rightarrow + \infty \qquad \qquad \fbox{Sylution}.$

Estimating the mean

Wednesday, March 25, 2009 10:15 AM

- Let no motivate the proposed algorishm strongh
the simplest estimation problem of estimating
the mean of a sequence of sind roundom
variables.
 $\mu = \epsilon(\mathbf{x})$ - Note that this is equivalent to solving the $\begin{array}{c}\n\overline{m} = E[(\overline{X} - \mu)^2]\n\end{array}$ - Let
 $f(\mu) = E[(Z-\mu)^{2}] = EX^{2} - 2\mu EX + \mu^{2}$ Let us consider an iterative algorithm for $f'(M) = -2 \bar{C} \bar{X} + 2 M$ $\mu (t+1) = \mu (t) - \gamma + ((\mu(t))$ = μ (+) -2 or (μ (+) - $\tau(x)$) We know that $\mu(\mu) \rightarrow \mu = E(\underline{x})$ as $\pm \rightarrow \pm \infty$ - of course, in reality we do not use the above

lec26-new Page 6

iterative algorishm to estimate M. - Instead, we use $M(h) = \frac{1}{n} \sum_{i=1}^{n} X_i$ When \overline{x} ; 's are i.i.d, $\mu(n) \rightarrow \mu$ as $n \rightarrow +\infty$ - Now let us look at this procedure as an $\mu(h+1) = \frac{1}{n+1} \sum_{i=1}^{n+1} X_i$ $= \frac{1}{n+1} \cdot \left(n \cdot \mu(n) + \mathbb{X}_{n+1} \right)$ = $\mu(n)$ - $\frac{1}{n+1} [\mu(n) - \underline{x}_{n+1}]$ $\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\right) ^{2}$ Let us compare it with $\mu (1+i) = \mu (1) - 2\sqrt{ \mu (1) - E(x)}$ (1) Ne replace the unknown $G(x)$ by the (5) We replace the constant stepsize by a But then such an iterative algorithm will - It turns out that the stopsise does not need

to be n+1. \boldsymbol{v} $\mu(h^{+1}) = \mu(h) - An \left(\mu(h) - \overline{X}_{n+1}\right)$ will also work provided that $\{a_n\}$
satisfies certain conditions. $\left(\begin{matrix}p\end{matrix}\right)$

Stochastic approximation

Wednesday, March 25, 2009 10:26 AM

- This ideas form the basics of Stochastic
approximation algorithms - Suppose that we want to minimize a function We may use an iterative algorithm $X_{n+1} = X_n - \delta \nabla f(X_n)$ then Xn converges to a local minimum of - Consider non the case where $\nabla f(x_n)$ is
compted by noise. We then use the $X_{n+1} = X_n - A_n [Uf(X_n) + W_n]$ mv^2 Under switchle conditions on an few - E[Wn] c+M E[Wn] = D, Wn i. i.d
(mb:ased) $\frac{f^{\infty}}{1}$ and f^{∞} $\frac{f^{\infty}}{2}$ and f^{∞}

 $h > 1$ then $x_n \to a$ local minimum of f . (Sune of these conditions can be further - Why it should work? - when an is small, the value of x
will remain approximately the same over - The stochastic approximation algorithm is - Convergence is more likely rulen the stepsize - More on the condition later. (15)

Water-filling

Wednesday, March 25, 2009 10:31 AM

Let is now return to the water filling example
and see how we can use the idea of
stochastic approximation to develop a solution that
combines estimation and optimizetion in a single
step. $\frac{1}{\sqrt{2}}$ $5 + 2$ - Recall the problem $\frac{m}{k^{2}}$ fr $\frac{1}{y}$ (1+ $\frac{3k}{N}$) m en $\frac{m}{m}$ $\frac{P}{2}$ $\frac{P}{2}$ $\frac{P}{2}$ $\frac{P}{2}$ $\frac{P}{2}$ $\frac{P}{2}$ $\frac{P}{2}$ SWb to perfect information) - The algorithm (assuming $\frac{1}{(\sum \rho_{k}(t)z)} \frac{1}{\lambda(t)} - \frac{N}{\delta t} \qquad \qquad \frac{1}{\lambda(t)} - \frac{N}{\delta k} \ge 0$ - Since at each time-slot, there is only one
possible realizetion of &, we only heed
the value of Pic (+) for the index k such
that $S(t) = S_1e$. - Hence this equation can be simplified to $P(f)=\begin{cases}\n\frac{1}{\lambda(f)}-\frac{1}{\lambda(f)}&\text{if } \frac{1}{\lambda(f)}-\frac{1}{\lambda(f)}=0 \\
0&\text{if } \frac{1}{\lambda(f)}=0\n\end{cases}$

lec26-new Page 11

 $1 - 1 = 0$ (5) λ (++v) = $\left[\lambda(1) + \gamma\left(\sum_{k=1}^{14} p_k(1) \hat{r}_{k} - \hat{r}_{b}\right)\right]^{T}$ - Note that it requires knowledge of the - Instead, let us replace the gradient by
an unbiased estimate
-> λ (++1)= [λ (+) + A+ ($\frac{2}{k^2-1}$ $P_{16}(+1)$ $\frac{1}{2}$ γ γ (+)= γ_{k}) - P_{0})] = $[\lambda (4) + \alpha_{+} (\rho (4) - \rho_{0})]^{+}$ 1 thrs does it work? (B) when $E(P(1)) = \sum_{k=1}^{M} P_{k}(1) P_{k} > P_{0}$
even though each iteration may p in the
normy direction, over bigger vindows, the $\Rightarrow \rho (+) \psi$ Benefitz - No need + estimate the channel drotn'butions

- only need to measure current channel - If the channel distribution changes, the - Online/adaptive substition. - Ube non-dimisting stypsize. (25)

Rate control - skip

Wednesday, March 25, 2009 2:19 PM

- Recall in the dual contailler, each wen $X_{s}(t) = \frac{argmax}{N_{s}(x_{s}) - x_{s}} \frac{1}{t} H_{s}^{1} \gamma_{l}$ (x) - It can be implemented by a gradient - as unt $x_{s} = M_{s}(x_{s}) - \sum_{l} H_{l}^{l} \mathcal{P}_{l}$ - It we only have noise observations of \hat{r}_l . For example, in REM, let $Y_n = 1$ it packet n
is marked.
 $P Y_n = 1 S = 1 - e^{-\frac{T}{l}H_0^l\hat{Y}_l} \times \frac{T}{l}H_0^l\hat{Y}_l$ Hence, we can replace the iteration by $X_{S}(n+jz)X_{S}(n) + a_{n}[V_{S}(x_{S}(n)) - Y_{n}]$ Note: Such Kinds of "hill-chinbing" algorithm
tend to be more robnot to error that the
me-time update like (x). $\circled{3}$

Proof of convergence

Wednesday, March 25, 2009 2:23 PM

Theorem: Let $f(x)$ be a convex and differentiable
function and θ is the minimum point of f. $\overline{X}_{n+1} = \overline{X}_{n} - a_{n} (\nabla f(\overline{X}_{n}) + W_{n})$ and $W_n = H_n + V_n$ γ \uparrow biased unbiased
noise noise Where $An \in (0, 1)$, $An \in 0$, $\frac{1}{2}An = r \infty$, and $\begin{array}{lll} 0&0f&\text{is bounded}\\ \text{\Leftrightarrow}&\forall k: \text{inf}\;f<0f(x),\;x.\;0\;\text{is}\;f\in\mathit{||x-0||}\leq\mathit{c} \text{is odd} \end{array}$ (strong convexity) $\bigotimes_{h\geq 1}\frac{t^{\infty}}{2}\quad \text{An}\quad \overline{G}\left\|\left\|f_{n}\right\|<+\infty\right.\quad \left.\frac{t^{\infty}}{2}\quad \text{An}\quad \overline{G}\left\|\left\|f_{n}\right\|\right\}<+\infty\right.$ (biased noise eventually die out) $Q \in [V_n \mid \underline{x}_1, H_1, V_1, \cdots, \underline{x}_{n-1}, H_{n-1}, V_{n-1}] = 0$ $\frac{1}{\sum_{n=1}^{N} a_n^2} \frac{1}{\sum_{n=1}^{N} |y_n|}^2 \frac{1}{\sum_{n=1}^{N} |y_n|^2} \leq 1$ (unbiased noise has bounded second noments)

Then $X_n \rightarrow \theta$ almost swelp. Note: The additional conditions (5) & (4) hold it
Hn = 0 & Vn is i.i.d with bounded Skerch of proof: - For simplicity, consider only the case where - Goal is to separate out the envoy term
due to noise and show that
it is small compared to the gradient
desunt. Since $X_{n+1} = X_n - a_n (U_f(\mathcal{Z}_n) + V_n)$ $||x_{n+1} - x^{*}||^{2} = ||x_{n} - x^{*}||^{2} + a_{n}^{2} ||\nabla f(x_{n})||^{2} + a_{n}^{2} ||x_{n}||^{2}$ $-2a_{n}\sqrt{2\pi(x_{n})}$, $\overline{X}_{n}-x^{*}$ $-2a_{n} \leq \underline{x}_{n} - \underline{y}^{*} \cdot V_{n}$ $720^{2} < 0 f(x_{n})$, V_{n}) Taking expectation conditioned on In

 $E[||\mathcal{Z}_{n+1}-x^{\star}||^{2}|\mathcal{Z}_{n}]$ $\leq ||\overline{X}_{n}-x^{*}||^{2}-2A_{n}\sqrt{2\pi x^{*}}$
A descent + $(|a_n| | \nabla f(x_n)|| + |a_n| | |v_n| |^2$ Taking another expectation $\mathcal{E}(||X_{n+1}-x^*||^2) \leq E(||X_{n}-x^*||^2) - 2a_n \mathcal{E}(\mathbb{V}/|X_n, x^*) + a_n \mathcal{E}||\mathbb{V}/|X_n| + a_n \mathcal{E}||\mathbb{V}/|X_n|$ Recall that ζ Of (\mathcal{F}_{n}) , $\chi_{n-x^{+}} > 20$ T mather, since \overline{Z} an² < + × , $||\overline{Uf}(\overline{Z}_{n})||$ is
founded $Z A_{r} E [1| \nabla f (x_{n})|]^{2} < +\infty$ Tinally Eain E(11 Vn1) < + x
Hence, using a tulescoping argument, we
what have a tulescoping argument, we E[1|8n-x^{*}11] converges to a limit Since $(\nabla f(x), \overline{x}_n-x^*)\geq 0$ & $\sum a_n = +\infty$, we
must have

 $\langle \nabla f(x_n), \overline{X}_{n-x^*} \rangle \rightarrow 0$ \curvearrowleft \curvearrowright \curvearrowright This will eventually leads to $\tilde{x}_n \rightarrow \tilde{x}^*$. (See handont Stochastic Approx. pdf.) In summary. - Need I am c+b so that the noise can - Step size must be small! - Need Zan = +vs so that the iteration will - Stopsie connot be too small! (t)