Lec23-mwf Monday, March 09, 2009	5:38 PM

Deriving AIMD window-based control

Wednesday, March 11, 2009 3:07 PM

- Approximate the differential equation by a difference equation

$$\frac{x_s(t+\delta)-x_s(t)}{\delta} = K_s\left(x_s-\beta x_s\cdot z_s\right)$$

- Recall that

$$X_{S}(4) = \frac{W_{S}(4)}{ds} \times \frac{W_{T}}{RTT}$$

Les Ns (t, t+8) denote the # of nacks (or time-outs) received by wers in the interval (t, t+8).

- Hence $\frac{Ws(t+\delta)-W_S(t)}{\delta ds} = K_S[Y_S - \beta \frac{W_s(t)N_S(t, t+\delta)}{\delta ds}]$

$$\Rightarrow$$
 Ws(+8) - Ws(+) = Ks[8s8ds - \(\text{Ws(+)} \) Ns(+, ++8)]

- let As (+,++8) denote the # of acks received

by wers in the time-interval
$$(t, t+\delta)$$
.

$$Xs(t) = \frac{Ws(t)}{ds} \approx \frac{As(t, t+\delta)}{\delta}$$

- Using
$$\delta = \frac{A_s(t, t+\delta)}{X_s(t)} = \frac{A_s(t, t+\delta)}{W_s(t)} \cdot ds$$

$$=) W_s(t+\delta) - W_s(t) = K_s\left(\frac{Y_s ds}{W_s(t)} A_s(t, t+\delta)\right)$$

$$- \beta W_s(t) N_s(t, t+\delta)$$

(30)

- Approximate the differential equation by a difference equation

$$\frac{x_s(t+\delta)-x_s(t)}{\delta} = K_s[r_s-\beta\cdot 7_s]$$

- Recall that

$$X_{S}(4) = \frac{W_{S}(4)}{ds} \times RTT$$

Les Ns (t, t+8) denote the # of nacks (or time-outs) received by wers in the interval (t, t+8).

- Hence

$$\frac{Ws(t+\delta)-Ws(t)}{\delta ds}=Ks[Ss-\beta] \frac{Ns(t,t+\delta)}{\delta}$$

$$\Rightarrow$$
 Ws(++8) - Ws(+) = Ks[8s8ds - Bds Ns(+, ++8)]

Let As (+,++8) denote the # of acks received

by wers in the time-interval
$$(t, t+\delta)$$
.

$$Xs(t) \approx \frac{As(t, t+\delta)}{\delta}$$

- Using
$$\delta = \frac{A_s(t, t+\delta)}{X_s(t)} = \frac{A_s(t, t+\delta)}{W_s(t)}$$
. ds
=) $W_s(t+\delta) - W_s(t) = K_s\left(\frac{Y_s ds}{W_s(t)} A_s(t, t+\delta)\right)$
- $\int d_s N_s(t, t+\delta)$

Packet loss rate

Wednesday, March 11, 2009

- One consequence of this interpretation is that we can derive an equation that relates the TCP throughput with the packet loss rate.

- Recall the differential egnation

 $\dot{x}_{i} = k_{s}(\lambda J_{s} - \beta x_{s}^{\alpha} \cdot z_{s})$

- Using the parameters corresponding to AZMD:

d=1, $ks ds = d\bar{s}$, $ts \beta = 0.5$,

 $\Rightarrow \dot{X}_{s} = \left(\frac{1}{ds} - 0.5X_{s} \cdot z_{s}\right)$

At agnilibrium, X=0, we then have

12 - 0.5 Xs - Xs - Ps = 0

where Is is the packet-loss probability experienced by wers. We then have

 $Xs = \frac{1}{ds \sqrt{\frac{Ps}{2}}}$

Interpretation:
OTCP throughput is inversely proportional to RTT
-long flow suffer
DTCP throughput is inversely proportional to the square root of Ps
Both have been observed empirically.
40

- Denalty function approach dues not produce exact so bution to the original problem.

 packet drops with occur at equilibrium
- Dulen briffer sire is large, delay will increases
 - TCP will always doine the buffer full.

Later we will investigate other approaches:

- duality, primal-dual
- AOM: RED, REM, AVQ.

D 1:4	approach t			
II)I I A II TW	annroach i	'A CANG	SCTION	CONTROL
Duanty	abbioacii	.U CULIE	LJUII	COLLLIO

Thursday, March 19, 2009 4:45 PM

- We now want to develop other solutions to the conjection control problem

max = Us(xs) = HSXS ER, YC (7) MJ E XS E MJ

- Note that this formulation inapprates a number of objectives - high utilization
 - low congestion
 - tairness
- We want our new solution to also rotain the distributed nature of TCP
 - source only needs a congestion signal from the links that it passes through (e.g. packet los)
 no information of 6ther weeks whility
 - link only needs the aggregate rate
 - no information of each individual user.

 no per-flow information.

Now let us see if dudity helps.

Associate a Lagrangian multiplier & for each book. The Lagrangian is given by

 $L(\vec{x}, \vec{r}) = -\frac{1}{5}U_{s}(x_{s}) + \frac{1}{5}P_{s}[\frac{1}{5}H_{s}^{\dagger}x_{s} - R_{s}]$ $= -\frac{1}{5}[U_{s}(x_{s}) - x_{s} \frac{1}{5}P_{s}H_{s}^{\dagger}] - \frac{1}{5}P_{s}R_{s}$

Sejarable.

The dual objective function is given by

$$g(\vec{z}) = \min_{\vec{x}} L(\vec{x}, \vec{\zeta})$$

= - \frac{1}{5} \max \left[M_s(x_1) - \times \frac{7}{6} \text{R}_1 \text{H}' \right] - \frac{7}{6} \text{R}_1 \text{R}_1

Hence, each user should maximize

$$U_s(x_s) - x_s - \overline{\xi} \, \hat{\gamma}_i \, H_s^l$$

$$X_{S}^{*} = \left[\left(\left(\frac{\Sigma}{2} \hat{q}_{i} H_{S}^{\dagger} \right) \right) \right]_{m_{s}, M_{S}}^{\dagger}$$

Frother)

In order to maximize &

To Summanze;

- The dual variable & can be viewed as the "price" of capacity at link L
- Source algorithm: Knowing the price of all links passed by the user, each user computes Xs(t) that maximus the net willy Us(Xs) Xs \(\frac{7}{2}\)Pills
- Link algorithm: Each link update & to balance supply & demand.

Optimality of dual congestion controller - skip

Wednesday, March 25, 2009 9:36 AM

Theorem: Assume that

On the interval (ms, Ms), the utility function Us is increasing, strictly concave, and twice continuously differentiable

@ For fewibility, assume 3Hm < RL VL

10 The convertine of Us() is bounded away from zero on (ms, Ms), i.e.

- N'(Xs) ? = for all Xs E (ms, Ms).

If the stepsize δ satisfies $0 < \delta < \frac{2}{2 \sqrt{L} \delta}$.

where $Z = \max_{S} Z_{S}$, $Z = \max_{S} Z_{S} H_{S}$ is the length of the longest-path wed by any wer, and $S = \max_{S} Z_{S} H_{S}'$ is the # of wers sharing the most-congested link, then starting from any $Z_{S}(0)$, the sequence $(X(1), Z_{S}(1))$ converges, and the limit is primal-dual optimal.

Notc: Assume perfect feedback of &1.

Proof: Show that the dual objective function satisfies a Lipschitz andition. (see hand out window-inverse.pdf).

Note that $\frac{3}{37i}$ $g = \frac{2}{2}$ His $X_3^* - R_L$. Let $\frac{7}{37}$, $\frac{7}{52}$ be two price vectors and let $X_S(\frac{7}{37})$ & $X_S(\frac{7}{32})$ be the corresponding rate control decisions (that maximizes net - utilit), 2f g satisfies a Lips Unitz condition, i.e.

 $\|\nabla g(\vec{x}) - \nabla g(\vec{x})\| \leq \beta \|\vec{x} - \vec{x}\|$ which implies

 $-\left(08(\vec{q}')-08(\vec{q}')\right)\cdot(\vec{q}'-\vec{q}'^2)$ $=\frac{1}{3}\left[108(\vec{q}')-08(\vec{q}'^2)\right]^{1/2}$

The latter is equivalent to.

$$= \left[\left(\sum_{s} H_{s} X_{s} \left(\vec{s}, \right) - R_{l} \right) - \left(\sum_{s} H_{s} X_{s} \left(\vec{s}^{2} \right) - R_{l} \right) \right]$$

$$\times \left(\sum_{s} \left(- \sum_{s} \hat{l} \right) \right)$$

See hand out for the detailed proof to show that $\beta = 25 T$

Nat
Refs:
 S. H. Low and D. E. Lapsley, "Optimization Flow Control-I: Basic Algorithm and Convergence," IEEE/ACM Transactions on Networking, vol. 7, no. 6, pp. 861-874, December 1999.
 S. Low, "A Duality Model of TCP and Queue Management Algorithms," IEEE/ACM Trans. on Networking, 11(4):525-536, August 2003
Pasted from https://engineering.purdue.edu/ece647/reading.html
rasted from < ntdps://engineering.purdue.edu/eceo+//reading.html
/.>
(1b)