Lec₂₂

Saturday, March 4, 2023 10:59 AM

Bring handout

Mid-term Exam:

- Midterm: 11/7 Thursday 8am: available on Blackboard 1.
	- a. Due next day at 12:00pm.
	- b. Take 2-4 hours
- 2. Take home. No discussion with others. Can consult book or paper.
- 3. Coverage up to lectures 1-24.
	- a. Convex sets
	- b. Convex functions
	- c. Convex programs and optimal solutions
	- d. Duality, KKT conditions, duality gap.
	- e. Optimization algorithms, convergence.
	- f. Some application: background info will be provided
- 4. Sample exam on the web.
- 5. Review notes and homework problems!
- IP is best effort
- TCP provides reliability on top of IP Window-based control •
- increases throughput but also congestion
- TCP window adjustment:
	- Congestion avoidance
		- Three goals
		- Desirable features

Congestion control

Sunday, March 08, 2009 4:00 PM

So four me have discussed - furnishing of optimization problems into - Optimality conditions $-$ Duality - Optimization algunsting with practical Next, we are going to use congestion control & 749
as practical examples of how to lise convex optimization - which will introduce additional issues - delayed feedbade - noise/randonnes

TCP

Sunday, March 08, 2009 4:22 PM

- The TCP/IP protocol stack TCP μPP $\frac{2p}{1145}$ \Box a \diagdown $\sqrt{2}$ $\overbrace{\Box}$ PHY $0/0 \longrightarrow 0$ - Key summary: ○ IP is best effort ○ TCP provides reliability on top of IP ○ Window-based control increases throughput but also congestion TCP window adjustment: ○ ■ Congestion avoidance **Three goals** ■ Desirable features - If provides best-effort packet delivery service
over heterogeneous networks - each computer has an 2P address - each data packet contains both the
conra IP addr & the destination IP addr. - routes will route 2P packets from the

 $rac{1}{\sqrt{3\pi |det(d) |det(q)}}$ - Best effort: - packet may be lost, duplicated,
form (rops or out-of-sequenced. - no guarantee. skip UDP : just add a port number in the packet
header - (port + addr) identifies the specific application
on a specific computer - no improvement in service quality. - TCP: provides not only a port number for each
application, but also a connection-oriented,
reliable, in-order packet delivery service over connection-oriented and in-order: both
end-prints maintain the "state" of -open/close: an OS call binds (soc 2P)

'STC prrt) + (dest 24, dest prrt) - Sequence number: - source maintains sep # for the next - receiver maintains sep # for the next - The two sync the sep # at the
beginning when the connection is
opened. - reliable: - The sep # advances only after the packet - If the packet is not acked within a
Hme-ont speriad (on the order of a
round-trip-time RTT), the source will destination Source p kt $se\overline{x}$ (4) $\frac{1}{2}$ $\frac{x+1}{1}$

lec22-new Page 5

 μ f^{kt} , set = x + 1 - While this is reliable, it is too slow - 1 packet every round-trip-time (RTT)

Windows

Wednesday, October 25, 2023 4:36 PM

- To increase throughput, the source can send
multiple packets into the network before waiting - Window: the # of ontstanding packets that the
source can send before waiting for an
acknowledgement Somme dest $windm = 4$ $PkT:$ seg = 2C $P kT : 5e f = X+y$ $P127:5e_{f} = x+f$ - Clearly, the rate that packets are sent into

the return increases with the window-sie - If the window-size is too small, the - 2f the window-size is to large, the In reality, when intermediate routers can
not accommodate these packets, the
packets are doopped, which leads to time-out
A retransmission of the packet at the $SovrC$ - It not controlled properly, the retransomission
may further agreemented the congestion,
which then leads to the so-called "Conjestion collapse." effective 1 Throught onset of anyestion Congestion collapse: no one is able to
send any weful packets, packets
keep being doopped & retransmitted.

 (67) estion Jacket loss tatransmissin

TCP window control

Wednesday, March 11, 2009 2:38 PM

(1) How does TCP control the mindow sizes - How control: the receiver will advantise a
Twindow-size that corresponds to the # of
ontstanding padcets that it can accommodate. Skip (This is due to a finite receiver buffer and
that the application may not pick up packets
for enough.) - flow control puts an upper sound on the - Congestion control: our main frans Two phases: skip 1 "Slow start", which is not slow - Med when starting a connection.
- Increase window by 1 at each ack
- Dowsles the vindow size each RTT.

 $Wz/$ $N=2$ $w=4$ - "Slow start" stops when the window
size exceeds the slow start throughold,
or when packets are time out/lost. 2["] Congestion avoidance": Our focus - On each new ack, crund increased by Ering - After one RTT, cound increased by 1 - On each time-out, cound cut in half - Known as AZMD (Additive Increase/Multiplicative

- Believed to actrieve three goals: - + fully utilise the available bandwidth,
- + prevent the orset of conjection
- + be fair + different flows. - Some highly desirable features of TCP - Only need to be deployed at the end-points - Very little support from routers (just drop
packets when conferted). - The abune basic principles of TCP was published
in Van Jacobson's 1988 paper after the - They forms the basis of TCP + day. - Many researchers have tried to understand the - Easier if there is only one link $-$ Unibration - Conjestion avoidance

- However, the case of multiple links is
hard to track. - Until Kelly's 1998 Japar, which view
Conjestion Control as the solution of

Formulation

Wednesday, March 11, 2009 2:51 PM

- Kelly proposed to formulate congestion control as
the following oftimization problem, and view max $\frac{1}{s}$ u_s (x_s) $sinh h = \sum_{s} H_s^{\dagger} x_s \leq \kappa^{\dagger}$ - Note that all three objectives are incorporated - High whihization: with increasing Us() Conjection avoidance - Fairness: by choosing the whility function e_{3} : - Uu (x_{3}) = lyx_{3} \Rightarrow $\frac{x}{s}$ $\frac{x-s}{s}$ \leq \circ proportional frit

- $U_{3}(x_{3}) = -\frac{x_{3}^{1-x}}{1-x}, x>0$ 10 Is 74 solving such a problem? (@ If yes, what whility function is TCP Ce Are there other ways to divelop protocols that (1) Can we work with more complex settings , e.g. References: O "End-to-end Congestion Control Schemes: Utility
Functions, Random Losses and ECN Martes, S. Kunniyur and R. Srikant,
IEEE/ACM Transactions on Networking, $Vol.$ 11 , $N0.5$, 0 ctober 2003 F.P. Kelly - A.K. Manlloo, and D.K.H. Tan,
"Rate control for Communication Networks; \circledcirc Shadow prices proportional fairness and
Stability", Journal of Operation Research
Society, Vol. 49, No. 3, pp 237-252, March 1998. $\begin{pmatrix} 0 \end{pmatrix}$

Primal solution: penalty approach

Wednesday, March 11, 2009 2:57 PM

- Consider the following problem: $max_{[x_{s}]} \sum_{S} N_{S}(x_{s}) - \beta \cdot \sum_{l} \int_{0}^{\sum_{i} H_{s}^{l}x_{s}} \eta_{l}(R_{l},x)dx$ where the function $P_L(R,x)$ is chosen to penalize $\{1(R,x)=\begin{cases} 0 & X\leq R \\ 0 & X>R \end{cases}$ e_{δ} \qquad β $(\ell, x) = \frac{(x - R)^{+}}{x}$ - We will later interpret PC as the
packet dropping prot. at link 1, when
the packet incoming rate in x. - This new problem can be viewed as a
penalty function approach to solve the - Let $f(\vec{x})$ denote the objective function minus
pendany.

- The gradient is given by $\frac{df}{dx} = M_s(x_s) - \beta - \frac{1}{l}H_s^l f_l(R_l, \frac{1}{l}H_s^l x_s)$ - Tach wer can employ the following gradient-
as unt iteration. $x_{s} = k_{s} [N_{s}(x_{s}) - \beta \cdot \sum_{l} H_{l}^{l} P_{l}(R_{l}, \sum_{l} H_{l}^{l}x_{l})]$ Example: D If $W_s(x_s) = \frac{1}{s} \cdot \frac{1}{s}x_s$, then skip $x_{s} = k_{s} \left[\frac{r_{s}}{x_{s}} - \beta \cdot \frac{1}{L} H_{s}^{1} P_{l} (R_{l} - \frac{1}{L} H_{s}^{1} X_{l}) \right]$ $\frac{dr}{x_{0}} = \frac{r}{k_{s}} \left(\delta s - \beta x_{s} \cdot \sum_{l} H_{l}^{l} P_{l} (R_{l}, \sum_{l} H_{l}^{l} x_{l}) \right)$ - Recall that PL is the packet dropping prob. at
Link 1 - Then, Etts PL is approximately the packet dropp's - Let $8s = Xs = [H_s^1 P_L (R_L, \frac{1}{7}H_3 X_s)]$
are lost. Then

lec22-new Page 17

are lost. (Len $x_{3} = K_{3} (r_{3} - \beta + z_{s})$ $- A1AD$ $2f \text{u}_s(x_s) = -\frac{\delta s}{x_s^{\alpha}}$ $x_{s} = k_{s} \left(\frac{\alpha v_{s}}{x_{s}^{\alpha+1}} - \beta \right)$ $\left(\frac{2}{k_{s}^{\alpha+1}} - \beta \right)$ - Recall that PL is the packet dropping prob. at - Then, I Hs PL is approximately the packet dropp's - Let $\overline{\delta s} = \overline{X_s} \overline{I} H_s^1 P_L (R_L, \overline{I_t} H_s^1 X_s)$
which represents the rate of packets that $x_{s} = K_{s}(\alpha s - \beta \cdot x_{s}^{\alpha} \cdot z_{s}))$ If L=1, the latter represents A2MD $\begin{pmatrix} 5 \end{pmatrix}$