- easy to compute projection

KKT conditions are important because the resulting interimation on the optimal solution after has very clear engineering interpretations.

We will discuss a few examples

- The Lagrange multiplier can be interpreted as the price of the constraints
- For separable problems, When the price are set right, each "wer" can minimize the susproblem (from the Lagrangian) independently.

Utility max

Sunday, February 15, 2009 12:32 PM

Utility maximization of a Single resource

$$\max_{X; \geq 0} \frac{n}{\sum_{i=1}^{n} U_i(x_i)}$$

Swb to
$$\sum_{i=1}^{n} X_i \leq R$$

- Introduce a lagrange multiplier & for the constraint

$$L(\vec{x}, \lambda) = -\frac{n}{1-1} U_i(x_i) + \lambda \left(\frac{n}{2} X_i - R\right)$$

$$= - \sum_{i=1}^{N} \left(u_i(x_i) - \lambda x_i \right) - \lambda R$$

- To minimize the Lagrangian over \vec{x} , each x, should be chosen to

$$\max_{X,\geq 0} U_i(x_i) - \lambda \chi_i$$
 (*)

- Let X; (x) denote the maximizer of (x)

\(\tau \) can be viewed as the price of
the resource.

Each wer choose demand X; (1) that maximizes the net-ntility.

- (What is the optimal price?
- (A) Tither $\lambda = 0$ or $\Sigma X_i(\lambda) = R$ (from complementary slackness)

If $\lambda = 0$, & ΣX ; (o) < R, it means that the overall demand for the resonance is low.

If $\lambda > 0$, then $\Sigma X: (\lambda) = R$, demand = Supply,

(20)

Projection in the dual

Wednesday, March 04, 2009 11:37 AM

- In general, the projection operation can be difficult to carry out if the constraint set is in a complex form.

- For the dual problem, the constraint set is always a quadrant

=> projection becomes trivial.

- Also, the gradient (or subgradient) has a simple form.

Primal Problem:

min
$$f_0(x)$$

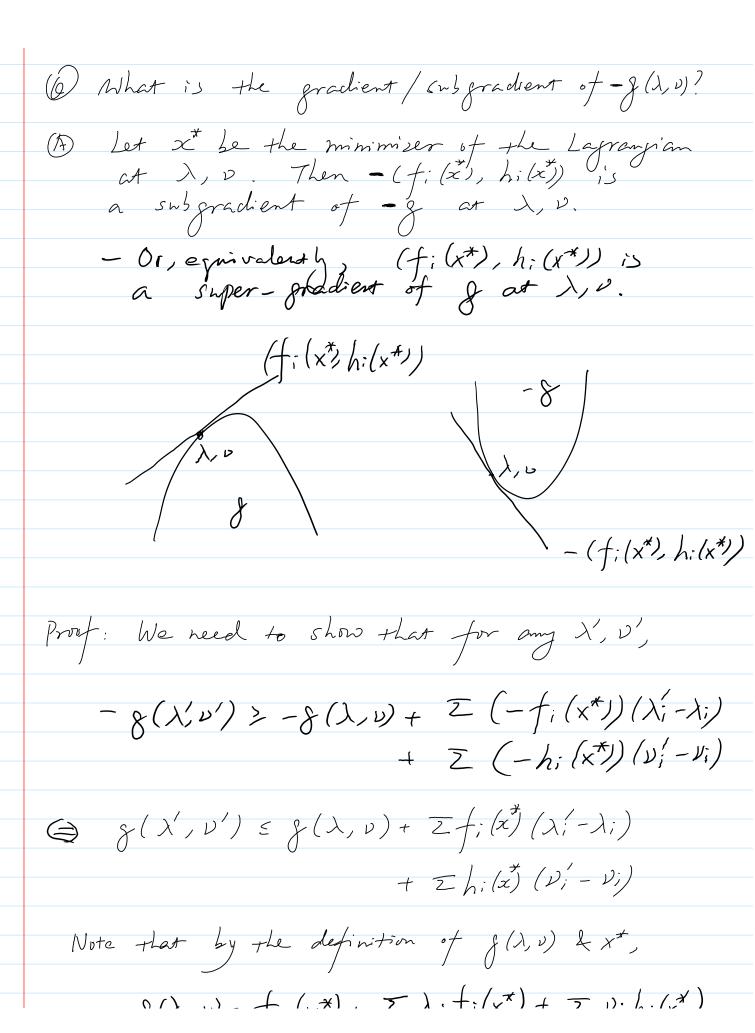
sub to $f_1(x) \leq 0$ λ
 $h_1(x) = 0$ D

Lagran gian

 $L(x,\lambda,\nu) = f(x) + Z\lambda; f(x) + Z\nu; h(x)$ $g(\lambda,\nu) = \min_{x} L(x,\lambda,\nu)$

- $g(\lambda, \nu)$ is concave, so let us look at the subgradient of $-g(\lambda, \nu)$

(6) What is the eraclient / (mb gradient of - g (d, v)?



$$g(\lambda, \nu) = f_o(x^*) + \sum_i f_i(x^*) + \sum_i \nu_i h_i(x^*)$$

$$RHS = \int_{0}^{\infty} (x^{*}) + \sum_{i} \lambda_{i}^{i} f_{i}(x^{*}) + \sum_{i} \gamma_{i}^{i} h_{i}(x^{*}).$$
Hence the result follows.

#

As a result, the gradient projection algorithm for the dual is of the following simple form

$$\lambda_i(t+i) = [\lambda_i(t) + y f_i(x(t+i))]^t$$

$$y_i(t+i) = y_i(t) + y_h(x(t+i))$$

- gradient accent "rather than descent".

Utility maximization of a single resource

Sunday, March 08, 2009 3:56 F

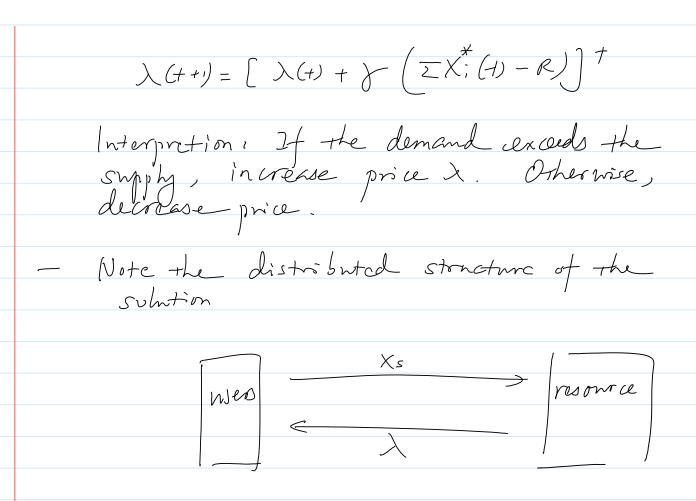
max
$$\sum_{i=1}^{N} U_i(x_i)$$
 $X_i > 0$

$$L(\vec{x}, \lambda) = -\frac{n}{\sum_{i=1}^{2} U_i(x_i) + \lambda(\Sigma x_i - R)}$$

$$= -\frac{\chi}{1-1} \left[U_i(x_i) - \lambda x_i \right] - \lambda R$$

$$\frac{\partial L}{\partial x_i} = u'_i(x_i) - \lambda = 0$$

In other words, each user chroses X: that maximize the net utility.



Water filling again

Wednesday, March 04, 2009

11:47 AM

$$L(\vec{p}, \lambda) = -\frac{m}{k=1} \mathcal{F}_{k} \left[g\left(1 + \frac{\mathcal{G}_{k} \mathcal{P}_{k}}{N} \right) + \lambda \left(\frac{M}{k=1} \mathcal{F}_{k} \mathcal{P}_{k} - \mathcal{P}_{o} \right) \right]$$

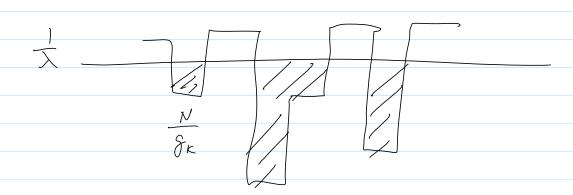
$$= -\frac{m}{2} \mathcal{F}_{k} \left[lg\left(1 + \frac{\mathcal{G}_{k} \mathcal{P}_{k}}{N} \right) - \lambda \mathcal{P}_{k} \right] - \lambda \mathcal{P}_{o}$$

- To minimize
$$L(\vec{p}, \lambda)$$
 over \vec{p} , either $\frac{\partial L}{\partial \vec{p}_k} = 0$ or $\frac{\partial L}{\partial \vec{p}_k} > 0$

$$\frac{\partial L}{\partial \vec{p}_k} = - \hat{\gamma}_k \frac{\int_{N}^{K}}{1 + \frac{g_k \vec{p}_k}{N}} + \lambda \hat{\gamma}_k = 0$$

$$\Rightarrow \frac{3\kappa}{N} = \lambda \left(1 + \frac{3\kappa P_K}{N}\right)$$

$$\Rightarrow p_{\kappa}^{*} = \frac{1}{\lambda} - \frac{N}{8\kappa} \quad \text{if } \frac{1}{\lambda} - \frac{N}{8\kappa} \geq 0$$



- (6) What is the optimal λ ?
- (A) From complementary slackness.

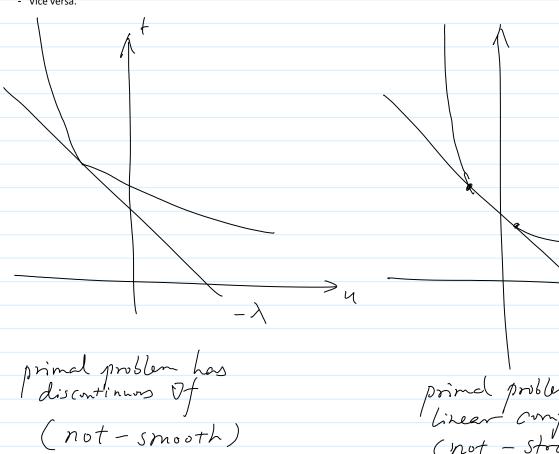
either $\lambda = 0$ or $\frac{2}{\kappa} \hat{v}_{\kappa} \hat{l}_{\kappa} = \hat{l}_{0}$

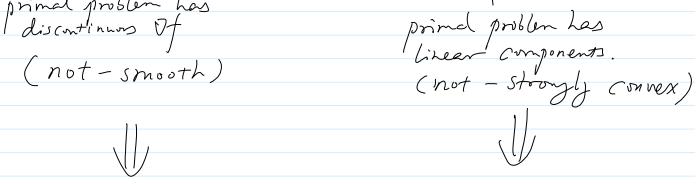
It is trivial to exclude $\lambda=0$ (since $h(z+\infty)$)

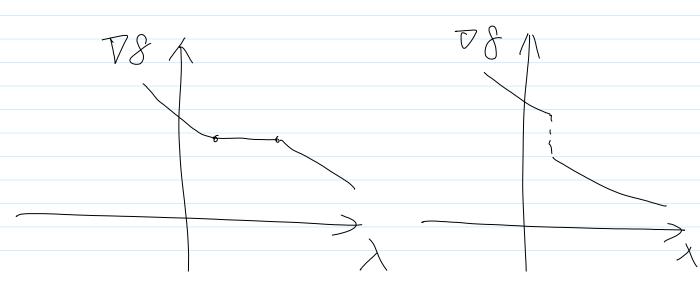
- The gradient-descent algorithm for the dual $\lambda (t+1) = \left(\lambda(t) + \lambda \right) = \left(\lambda(t) + \lambda(t) \lambda(t) \lambda(t) \right)$
- Interpretation: If power is too high, drop the water-level.
- Note the distributed structure of the solution.

What is the condition on the primal problem that corresponds to the smoothness condition on the dual?

- If the primal problem is strongly convex, then the dual satisfies a smoothness condition.
- Vice versa







Dud juroblem has non-strongly correx DS Dud jinsten has non-smooth of