| Lec18-new                                                                   |
|-----------------------------------------------------------------------------|
| Sunday, February 26, 2023 10:00 AM                                          |
|                                                                             |
| I will travel next week. Haoqian (our TA) will give the lectures next week. |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |
|                                                                             |

## Complementary slackness

Sunday, February 15, 2009 8:56 AM

- We have seen some important properties of the pair of primal Solutions X\* & dual solutions (X\*, X\*)

- If duality gap is zero, then

(1)  $f:(x^*) \leq 0$ ,  $h(x^*) = 0$ (2)  $\lambda^* \geq 0$ (3)  $x^*$  minimizes  $L(x, \lambda^*, \nu^*)$  over x

Below the 4th injurtant property.

Statement: Let  $\chi^{+}$ ,  $\nu^{+}$  be the optimal solution to the dual  $\chi$   $\chi^{+}$  be the optimal solution to the primal,  $\chi^{+}$  the duality gap is zero, then  $\chi^{+} f_{i}(\chi^{+}) = 0 \quad \forall i$ Turther,  $\chi^{+}$  minimize  $\chi^{+}$   $\chi^{+}$ .

- If  $\lambda_i^* > 0$ , then  $f_i(x^*) = 0$ 

If  $f:(x^*)<0$ , then  $\lambda_i^*=0$ 

- It the Lagrange multiplier is non-zero, then the constraint must be birdig/tight.

Proof. A (sume  $g(x^*, \nu^*) = f_o(x^*)$ ,

Proof: A (sume 
$$g(\lambda^*, \nu^*) = f_0(\alpha^*)$$
,

Since
$$g(\lambda^*, \nu^*) \leq L(\alpha^*, \lambda^*, \nu^*)$$

$$= f_0(\alpha^*) + \Xi \lambda_i^* f_i(\alpha^*) + \Xi \nu_i^* h_i(\alpha^*)$$

$$=) \quad 0 \leq \Xi \lambda_i^* f_i(\alpha^*)$$

$$=) \quad \lambda_i^* f_i(\alpha^*) = 0 \quad \forall i$$

Truther,  $g(\lambda^*, \nu^*) = L(\alpha^*, \lambda^*, \nu^*) = f_0(\alpha^*)$ .

## Important Remarks:

- No convexity is assumed.

- This holds when we pair any primal solution X\* with any dual solution X\*!

These properties are useful when we want to find the primal solution after we found the dual solution.

- It the primal variable that minimus  $L(x, \lambda^*, \nu^*)$  is unique.  $\rightarrow$  Great!
- If NOT, we know as a fact that  $DC^*$  minimizes  $L(x, \lambda^*, \nu^*)$ 
  - But, does it mean that any  $\bar{x}$ that minimizes  $L(x, \lambda^*, \nu^*)$  is

that minimizes L (x, x\*, v\*) is optimal? - The answer is NO! - First, such an x man violete the primal constraints. - Se cond even if X satisfies the primal constraints, we only have  $+(\overline{x}) + \overline{z} \lambda_i^* + (\overline{x}) + \overline{z} \nu_i^* \lambda_i(\overline{x})$  $= + \cdot (x^*) + = \lambda^* + (x^*) + = \nu^* + h \cdot (x)$ = + 0  $\times$   $\times$ - But little may be <0  $\Rightarrow f, (\bar{x}) \geq f, (x^{\star})$ - However, if in addition we know that  $\overline{x}$  also satisfies the CS Condition, i.e.,  $\lambda^* + (\overline{x}) = 0 \quad \forall i$ 

Then  $f_o(\bar{x}) = f_o(x^*)$ .

- In summary, find X that satisfies the primed constraints and the

the primal constraints and the cs - condition.

That X must be optimal!

- if \lambda\_i^\* >0, the corresponding constraint must be binding/tight.

=) helps to solve X.

## KKT condition

Sunday, February 15, 2009

8:59 AM

KKT (Karnsh-Kuhn-Truker) Conditions

A pair of primal-dual prints (x\*, x\*, v\*) are said to satisfy the KKT condition if

-  $f:(x^*) \in O$ ,  $h:(x^*)=D$  (satisfy the constraints)

- ) † 20 (valid Lagrange multiplier)

- \lambda t; (xx\*) = 0 \tag{1} (complementary sladeness)

-  $x^*$  minimizes  $f_0(x) + \overline{z}_1 \lambda_i^* f_i(x) + \overline{z}_2 \nu_i^* h_i(x)$ over all x. (min Lagrangian)

Note: If the functions are differentiable & convex, then the last condition is equivalent to

 $\nabla f_{o}(x^{t}) + \sum_{i} \lambda_{i}^{*} \nabla f_{i}(x^{t}) + \sum_{i} \nu_{i}^{*} \nabla h_{i}(x^{t}) = 0 \quad (*)$ 

KKT andition - Zero duchty gap.

primal-dual optimaliz

1) If the dudity gap is zero, then any

pair of primal & dual optimal prints must satisfy the KKT condition.

KKT E primal & dual ontine primal & dual optimal

- No convexity is assumed.

- follows from the complementary sladeness condition.

2) If a pair of primal D dual points satisfy
the KKT condition, then they must be optimal
be there is zero duality gap.

KKT = geno dudity-gap

primal-dual aptimal

We always have, for any feasible x & \ 20:  $g(\lambda, \nu) \leq L(x, \lambda, \nu) \leq f_0(x)$ 

If the KKT andition holds, then

 $g(\lambda^*, \nu^*) = L(x^*, \lambda^*, \nu^*) = f_0(x^*)$ 

Hence, the duality gap is zero & x\* and (x\*, v\*) are the primal & dual optimal points, respectively.

- Convexity is needed only for the first-order

Condition (x). (Otherwise (x) may not imply that xx minimizes the Lagrangian).

- (3) If the Slater condition holds, and the primal problem is convex, then the dual optimal solution always exist, and the duality gap is zero.
  - Thence, the KKT condition provides a necessary & sufficient condition for optimality with constraints.

Connex + Slater



KKT primal-dud optimal

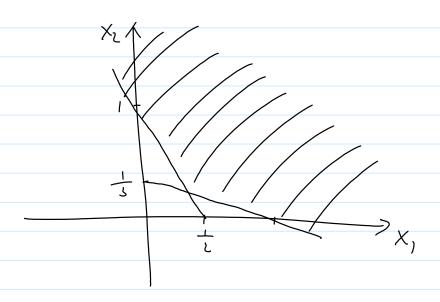
- Further, the 4th condition in KKT is simplified to a gradient condition.
  - For non-convex problems, however, this simplified form is necessary but not sufficient.

## Example: KKT

Tuesday, February 22, 2011 8:06 PM

We have studied the dual of this problem:

min 
$$2\zeta_1^2 + 9 2\zeta_2^2$$
Sub to  $2\chi_1 + \chi_2 > 1$ 
 $\chi_1 + 3\chi_2 > 1$ 
 $\lambda_2$ 



Alternatively, we can directly use the KKT condition:

Start from (1)

The Lagrangian is

$$L(x_1, x_2, \lambda_1, \lambda_2) = x_1^2 + 9x_2^2 + \lambda_1 (1 - 2x_1 - x_2)$$

$$+ \lambda_2 (1 - x_1 - 3x_2)$$

$$= x_1^2 - (2\lambda_1 + \lambda_2) \times_{1} + 9x_2^2 - (\lambda_1 + 3\lambda_2) \times_{2}$$

$$+ \lambda_1 + \lambda_2$$
Minimze the Lagrangian over  $x_1 + x_2$ .

$$\frac{\partial L}{\partial x_1} = 2x_1 - (2\lambda_1 + \lambda_2) = 0$$

$$\frac{\partial L}{\partial x_2} = (5x_2 - (\lambda_1 + 3\lambda_2) = 0$$

$$\Rightarrow x_1 = \frac{2\lambda_1 + \lambda_2}{2}, \quad x_2 = \frac{\lambda_1 + 3\lambda_2}{18}$$
Then consider several cases based on (3k Solve  $x^4, x_1^4, x_2^4$ )
$$- \text{And check if the resulting solutions } x^4k (x_1^4, x_2^4)$$
meet both primal  $x_1^4$  dual constraints

Then consider several cases based on (3k Solve x\*, x\*, v\*

- And check if the resulting solutions x\*k (x\*, v\*)

meet both primal k dual constraints

(ase 1: \lambda\_1 > 0, \lambda\_2 > 0

\rightarrow 2X\_1 + X\_2 = |

\lambda\_1 + 3X\_2 = |

( se 3: