Lec14-new

Monday, February 28, 2011 5:01 PM

Geometric convergence

Monday, February 6, 2023 11:34 AM

Jee Bubeck P278 - Sébastien Bubeck, "Convex Optimization: Algorithms and Complexity, in Foundations and Trends in Machine Learning, Vol. 8, No. 3-4 (2015) - With smoothness, we can ensure convergence, $||x(t+1)-x^*||^2$ $\leq ||x(t)-x^{+}||^{2} - (\frac{2r}{L}-r^{2}) ||0f(x(t))||^{2}$ Adding strong annexity enables is to prome
geometric descent. $||\nabla f(x)-\nabla f(y)||_{L}\geq \varepsilon \left\langle |x-y|\right\rangle _{L}$ Intritively, this ensures that when
 $x(t)$ is far away from x^* , the
improvement of $||x(1+1)-x^*||_2$ is
directly related to $||x(t)-x^*||_2$. $\|x(t+1)-x^*\|^2 \leq \left(1-\left(\frac{2\gamma}{l}-r^*\right)\alpha\right) \left(\|x(t)-x^*\|^2\right)^2 \quad (\neq)$ - The result below is stronger (i.e., faster descent). Skip - Lemma: Let f be a L-smooth & x-strongly
connex function on R" Then for all x, y ER", $(\nabla f(x) - \nabla f(y))^T (x-y) \ge \frac{\alpha L}{\alpha + L} ||x-y||^2 + \frac{1}{\alpha + L} ||\nabla f(x) - \nabla f(y)||^2$

Proof: Since f is α -strongly-convex, we can $\psi(x) = f(x) - \frac{\alpha}{2}$ ||x|| is still convex. Further, we can show that 4/x) is (L-a) - smooth. Thus wir the
earlier lemma for smooth functions, we Lave \int $Q\varphi(x)$ - $\partial \varphi(y)\int^T(x-y)$ $\geq \frac{1}{L-x}$ \int $Q\varphi(x)$ - \int \int \int \int $\frac{L}{L-x}$ $(\partial f(x) - \partial f(y))^{\top}(x-y) - \alpha (x-y)^{\top}(x-y)$ \Leftrightarrow \geq $\frac{1}{1-\alpha}$ $||(\nabla f(x)-\nabla f(y)) - \alpha(x-y)||^2$ $=$ $\frac{1}{1-x}$ $\|0f(x)-0f(y)\|^{2}+\frac{\alpha^{2}}{1-x}$ $\|x-y\|^{2}$ $-\frac{2\alpha}{1-\alpha}$ ($0f(x)-0f(y)^{7}(x-y)$) $\Longleftrightarrow \frac{L+\alpha}{L-\alpha}\left[\left.\sigma f(x)-\sigma f(y)\right. \right]^T\left(x-y\right)$ $\geq -\frac{1}{1-x}$ $||\nabla f(x)-\nabla f(y)||^2$ $+\frac{LQ}{1-d}||x-y||^2$ The rout of the lemma then follows. $\#$ Theurem: Let f be a L-smooth & L-strongly
convex function on Rⁿ. Then. by setting gradient descent satiofies
 $||x(t) - x^{\ast}||^{2} \leq (1 - \frac{2\delta dL}{dt}) ||x(0) - x^{\ast}||^{2}$

Proof: Starting with the norm approach again. Let x^* be one optimal substitution, i.e., $0f(x^*)=0$ $||x(x+y)-x^*||^2$ = $|| \chi(t) - \chi^{\neq}||^2 + 2\left(\chi(t+1) - \chi(t)\right)^{T} \left(\chi(t) - \chi^{\neq}\right)$ $+$ /2 (++1) - \times (+1)/2 Note that $(x(t+1)-x(t))$ $(x(t)-x^*)$ = - $\gamma(\nabla f(x(t)) - \frac{\gamma}{\gamma(x^{\nu})}) (x(t) - x^{\nu})$ $S = \frac{\gamma \alpha L}{\alpha + L} ||x(t) - x^{*}||^{2} = \frac{\gamma}{\alpha + L} ||y_{t}^{2}(x) - y_{t}^{2}(x^{*})||^{2}$ Honce, $||X(t+1)-X^{\star}||^{2}$ $\leq (1 - \frac{2ddL}{dtL}) ||x(t) - x^*||^2 + (8 - \frac{2d}{dtL}) ||0f(x) - 0f(x^*)||^2$ $(so$ if $\delta < \frac{2}{\alpha + c})$ $\leq (1 - \frac{2\gamma dL}{dtL}) ||x(t) - x^{*}||^{L}$ The result of the Theorem then follows. # $Not:$ For a foster convergence speed, would want $1 - \frac{2 \gamma \alpha L}{\alpha + 1}$ to be unabler, or of to be larger.

 \Rightarrow set $\delta = \frac{2}{\alpha + L}$ Compare with $(*)$ at $s = \frac{2}{\alpha + C}$ $1 - \sigma(\frac{2}{l} - \sigma) \propto$ $= 1 - \frac{2 \gamma \alpha^{2}}{L(\alpha + L)}$ - When I is small, this is much dover to 1. u_{s^2}
 u_{s^2}
 u_{s^2} + (x) - + (x⁺) = $\frac{1}{2}$ 11 x - x⁺ 11² ne have $f(x(t)) - f(x^*) \leq \frac{L}{2} \left(1 - \frac{2\gamma \alpha L}{\alpha + L}\right)^t \|x(0) - x^*\|$ - This is would referred to as "linear convergence" - in contrast to "guadratic convergence" for
second-order (e.g. Newton's) algorithms.

Scaled gradient descent algorithm

Saturday, February 21, 2009 5:50 PM

- Standard gradient dgwithm $x(+1) = x(+) - \delta^{-1}x(x)$ If of (x) is Lipschitz & $\sigma < \frac{2}{L}$, then the $\mathbb{Z}^{\mathbb{Q}^{(x)}}$ χ^4 Λ $\nabla f(x)$ - Scaled gradient algorithm $x(t+1) = x(t) - \int A \cdot v f(x)$ where I is a positive-definite matrix y $vf(x)$
 \Rightarrow 1 $vf(x)$

Some choice of I can make the - For example, $\Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_m \end{bmatrix}$ - each processor chooses different step-size. - Regardless the use of 1, the scaled gradient
algorithm will converge under a similar γ \leftarrow $\frac{2}{L}$ λ max - where λ max is the largest eigenvalue of Λ , ".e. x^7 Λx \leq λ max $\left|\left|x\right|\right|$ \sim \sim \sim μ \sim Skuch of Proof; - choose a different norm. $(x(t+1) - x^{\ast}) \mathcal{L}^{\prime}(x(t+1) - x^{\ast})$ $= (x(t)-x^{\star}) \int_0^1 (x(t)-x^{\star})$ $+ \sum (x(t+1) - x(t)) \big) -^{-1} (x(t) - x^{*})$ $+ \left(\chi(t+1) - \chi(t)\right) \text{e}^{-t}\left(\chi(t+1) - \chi(t)\right)$ Note that $(x(t+1)-x(t))$ $\int_{-1}^{-1} (x(t)-x^{*}) dx$ $=$ - γ $0f(x(t))$ $(x(t)-x^{*})$

= $-\frac{\partial}{\partial x}[\frac{\partial f(x(t)) - \partial f(x^{*})]}{x(t)-x^{*}}]$
 $\leq -\frac{\partial}{\partial x}[\frac{\partial f(x(t))}{\partial x^{*}}]^{2}$ Work out the rest in hw. (x)

Constrained optimization

Saturday, February 21, 2009 6:06 PM

- Consider the problem $\frac{m!n}{s^2}$ +(x)
 $\frac{m!}{s}$ + x = X Optimality condition $f'(z; y-x)>0$ for all $y \in x$ If f is differentiable, then $(Yf(x))^T(y-x) > 0$ for all $y \in x$. - Horvever, the normal gradient projection does
not work any more because the new x(++1) Three silutions

Three solutions O Penalty function method: chouse $f(x)$ such that $f(x)=0$ if $x\in \mathbb{X}$ $f(x) > 0$ if $x \notin \mathbb{X}$ - We can now minimize $f(x) + \beta f(x)$ Let the solution be $x^*(\beta)$ - As st+v, the pendty becomes larger &
larger, the substion $x^*(\beta)$ will approach x^{*} (the oniginal constrained problem). - We will discuss the engineering implication of
this opproach when we discuss TCP.
as an example. 5 Intenion point method (Barrier Method). - Chouse $g(x)$ such that $g(x) \rightarrow +\infty$ as
 x approaches the boundary of \overline{X} from

 $Example: Z = \{x > 0\}$, $\{x\} = -\{y\}$ $\overline{x} = \{x \in a\}$ $\overline{x} = \{y(a-x)$ - We then minimize $f(x) + \beta \delta(x)$. - Due to the barrier g(x), the optimal
Solution $x^*(\rho)$ must be in the interior of - As Bbu, $x^{\#}(p) \Rightarrow x^{\#}(f)$ (the original In both the penalony-function method or
the Intenior-point method, the problem
is converted to a unconstrained problem.
Hence, we can use gradient algorithm to - However, it may be difficult to ensure the 3 Projection method. $\left(\overline{\mathcal{O}}\right)$

Projection

Saturday, February 21, 2009 6:19 PM

 $1 - \frac{1}{2}$ The projection of x onto the convex and closed
set & is the point of in X that is closest to $[x]$ ⁺ = argmin $||3-x||_2$
 $36x$ $x^2 + 2x + 1 = 12$ $Example:$
 $0 \times = 8 (a:5)$ $[x]^{+} = \begin{cases} (x_i)^{+} \\ 0 \end{cases}$ Where $(X;J^+=\{A;\ X_i\leq A_i\})$
 $\begin{cases} b_i; & X_i\geq b_i \ X_i & o/w \end{cases}$ $0/\omega$ 1 Projection to a Polyhedra Boyd 9390

 $\min |102-x_0||_2^2$ $545 + 4x5$ - A gradratic program. Substitut :
- On a hijperplane $a^7x=5$ $P_c(x_0) = x_0 + (b - A^7x_0) - A / \eta a v_0^2$ - On a half-space a^7x5b $P_c(X_0) =$ $\begin{cases} 1 & \text{if } a \neq b \neq b \\ x_0 & t \end{cases}$ $A^T x_0 \leq b$
 $\begin{cases} 1 & \text{if } a \neq b \\ x_0 & t \end{cases}$ 1 Can we derive these by optimatify conditions? 3 $\frac{1}{x}$ seneral
 $\frac{x}{x} = \frac{1}{x} \times \frac{1}{x}$ $f: (x) \le 0$, $h: (x) = 0$ $(x)^{\frac{1}{2}} = 2 \frac{1}{3} \frac{1}{3} \left| \frac{1}{3} - x \right|_{2}$ S_{wy} to $f:(3)$ ≤ 0
 $h:(8) = 0$
 $- Not \neq trivial operator'. (Reason + we
dual algorithm.)$ Projection Theorem (Bertsckas & Tsitsikhis P211)

(a) For every $x \in R^n$, there exists a unique $\frac{f \in X}{f}$
that minimizes $||f-x||_2$ over all $f \in X$, and U) Given some XGRⁿ, a vector JGX is
equal to [x]⁺ if I only if $(y-3)'(x-3) \le 0$ for all $y \in X$ $\frac{1}{2}\sqrt{1-\frac{1}{2}\sqrt{1$ (c) The mapping $f(x) = (x)^+$ is continuous and $||Cx^{\dagger}-[y^{\dagger}||_{2} \le ||x-y||_{2}$ for all $x,y\in R$ P_{root} . 6 Can intersect \overline{X} with a closed & bounded set

 min $||3-x||^2$ over $X'(closed, bounded)$ = exists a minimum print [x] - It is unique become $113-241^2$ is strictly
convex. \circledS Consider min $(3) = 113 - x11^2$ $SW5 + 3 + 3 + 3$ $\nabla\xi(\zeta) = 2(1-x)$ - By optimality condition 8 optimal \Leftrightarrow 2 (3-x)^T (y-z) 20 for all yEX $\Leftrightarrow (y-y)^{7}(x-y)\in D$ \bigodot From part (b) $\left(\begin{array}{cc} \Gamma y \end{array}\right)^+ - \left[\begin{array}{c} x \end{array}\right]^+ \left(\begin{array}{cc} x - \left[\begin{array}{c} x \end{array}\right]^+ \end{array}\right) \in \mathcal{D}$

Similarly $(Lx)^{+} - (21)^{+})^{\top} (y - xy^{+}) \leq 0$ $\Rightarrow (xy)^+ - (x)^+)^T (xy^+ - (x)^+ - (y-x)) \in \circ$ $||(\omega)^{\dagger} - (x)^{\dagger}||^{2} \in (xy)^{\dagger} - (x)^{\dagger})(y-x)$ $\leq || (y^+ - (x)^+ || ||y-x||)$ The result then follows. (25)