Lec13-new

Saturday, February 21, 2009 8:58 PM

Optimization algorithms

Sunday, February 15, 2009 5:46 PM

- We have now discussed - convex problems
- optimatif conditions - Sometimes we can explicitly solve for the $e\cdot \xi$. min $||Ax-b||^2$ $\Rightarrow A^{T}A \times = A^{T}B$
 $\qquad \qquad \times \times = (A^{T}A)^{-1}A^{T}B$ - At other times a closed-form sobition may - We may then use numerical algunithms. Numerical Algorithms - A numerical algorithm stants from some
initial estimate x_0 , and iteratively
generate reevestimates by $x_k = T(x_{k-1})$ $k=1,2,...$ - Hopefully, as $k \rightarrow +\infty$, $X_k \rightarrow x^*$ the optimal

 $S\circ 'l\omega '\nrightarrow \infty .$

10 When will such a sequence converge to the (A) often by showing that the quality of \mathcal{U}_k
improves in each iteration (a) The distance between the and at improves $||x_{k}-x^{*}|| = \alpha ||x_{k-1}-x^{*}||$ $\begin{array}{llll}\n\mathbb{C} & \|\mathbb{X}_{k}-\mathbb{X}^{\star}\| \leq & \|\mathbb{X}_{k-1}-\mathbb{X}^{\star}\|-\beta & \text{if } \beta >0 \\
\end{array}$ (5) The function value improves in each $-1.5 (x_k) \leq 1.6 (x_{k-1}) - 1.50$. A trivial example Skip - How to compute $\overline{J_2}$ using only +, -, x, / $- x = 72 \Leftrightarrow x^2 - 1 = 1$
 $\Leftrightarrow x = \frac{1}{x+1} + 1$ - The iteration,
 $x_{k} = \frac{1}{x_{k-1}+1}$ - For any two spoints

 $\frac{1}{x_{k} \times x_{k+1}}$ - For any two points
X, y, Let
Tx = $\frac{1}{x+1} + 1$
Ty = $\frac{1}{y+1} + 1$ $T x - T y = \frac{1}{x+1} - \frac{1}{y+1}$ $=$ $-\frac{x-y}{(x+y)(y+y)}$ $||Tx-Ty|| \leq \frac{||x-y||}{4}$ assuming that $x,y \geq 1$. (\star) - Note that $\frac{1}{2}$ is a fixed joint of the - Hence, the distance $||x_k-\overline{x}||$ is cut by 4
in each iteration \Rightarrow $X_k \rightarrow T_k$.

The inequality (*) describes a "contraction"

onappig": - The distance between TX & Ty is less
than that of x & J $||Tx-Ty|| \le C ||x-y||$, $0 \le C \le 1$ - When CCI (the contraction mappig is
Strict, we immediately have O There is a unique fixed point x⁺
With TX^{*} = x^{*} " wometricalls" + x^{*}

lec13-new Page 4

 \circledS $X_{k+1} = \frac{1}{x_k}$ converges "geometrically" + x^* . However, not all iterative algorithms converge. $x = 6$ $\Rightarrow x = \frac{1}{x-1} - 1$ \Rightarrow \propto $X_k X_{k+1}$ 2 $(\overline{(\overline{v})})$

Unconstrained optimization

Sunday, February 15, 2009 6:04 PM

 $-$ min $f(x)$ of is convex - Optimatity condition - 24 + is differentiable $\nabla f(x^*) = 0$
- If f is not differentiable $f'(x; x-x^*) > 0$ $\forall x$ i.e, the directional derivative is
positive in all directions. - Assume that $f(i)$ is differentiable. - Consider the iteration of the type $x(t+1) = x(t) - \int \nabla f(x(t)) \stackrel{\triangle}{=} T(x(t))$ gradient - Note that x^* is a fixed print of the

 $-2f \times (f) = x^*$, then $X(f+1) = x^*$. $70 +$ The smaller of $slvpe$ the smaller the update. $\Rightarrow_{\underline{\chi}}$ X_{k+1} X_k $\widetilde{\chi}^*$ $x_k \rightarrow x^*$ if σ is small. $\bigwedge \mathcal{U}$ $\begin{picture}(120,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line($ \overrightarrow{z} χ + $\overline{\chi_{\kappa}}$ $\chi_{\lbrack \mathcal{L}\mathfrak{t}\rbrack}$ May not converse if J is too large. v_f \Rightarrow $\frac{1}{2}$ $\overline{\overline{X}}_k$

 X_{k} \mathcal{Z} May be more difficult when of is
not "smooth" - when I has sharp corners. 20

Conditions related to convergence

Monday, February 16, 2009 $8:24 \text{ PM}$

- How can we study the convergence of the gradient - We will usually encounter two types of conditions
on the graduat $0f(x)$ 1 Smoothness - Of (x) does not abrupty change as x change $|| \nabla f(x) - \nabla f(y)||_{2} \leq |f(x-y)|_{2}$ $Of(x)$ $+(x)$ smooth $0+(x)$ $+(x)$ n un-smooth

- For non-smooth func, even riten you are clready
in a reightorhood of x^{*}, it rould be
difficult for the gradient algorith to currenge - Intend, sonoothees implies convergence,
provided that the stepsize is sufficiently small. (2) Strony convexity - Of(x) increases juickly as x lies away from x $\frac{1-\frac{1}{2}}{1-\frac{1}{2}}$ $||0f(x)-0f(y)||_2 \ge \alpha ||x-g||_2$ $\mathcal{O} \nmid \mathcal{A} \rightarrow \mathcal{A}$ $strongly$ Connex $+(x)$ 1 of (x) linear $\begin{tabular}{|c|c|c|c|c|} \hline \quad \quad & \quad \quad & \quad \quad & \quad \quad \\ \hline \quad \quad & \quad \quad & \quad \quad \\ \hline \quad \quad & \quad \quad & \quad \quad \\ \hline \quad \quad & \quad \quad & \quad \quad \\ \hline \quad \quad & \quad \quad & \quad \quad \\ \hline \end{tabular}$ $\frac{n \cdot n}{s + \frac{1}{s}}$ Curvex - If the function is not strongly convex, then
starting from X(s) that is far away from it,

He improvement of the gradient algunition will - Intead, strong-convexit & smoothness
Combined implies je<u>wmetric descent</u> $||\chi(+\tau)-x^+||_{2} \leq |1+x(+1-x^+||_{2})$ $\frac{1}{\pi}$ - This is wondby referred to as
"linear convergence" in the optimization - In contrast to "puadratic curvergence" Skip Two proof techniques: no proof techniques:
1) Show decrease of $f(x(t))$: less powerful results. $2 \int \sqrt{100}$ decrease of $||x(t)-x^{*}||$

First approach: Decrease of f - skip

Monday, February 16, 2009 8:24 PM

First Approach: Lemma: Assume that function f is continuously
differentiable & there exists a constant ($|| \nabla f(x) - \nabla f(y)||_2 \leq C ||x - y||_2$ Smoothness Then $f(x) \in f(x) + \nabla f(x)^T (y-x) + \frac{1}{2} ||y-x||_2^2$ Note: The Lipshitz condition bounds how
smooth $\sqrt{t(\cdot)}$ is, $8(+)=$ $+(x+1(y-x))$ $Prrf:$
 $f(x) = f(x + (y-x))$
 $= f(x)$ $\int_{0}^{1} f(x)dx = \int_{0}^{1} (x + f(y-x)) \cdot (y-x) dx$ = $+(x)+(-\frac{1}{2}x)(x+1)(x+1)(x-x))^{T}$. (19-x) $d\tau$ = $+(x) + 0 f(x)^7 \cdot (y-x)$ $+ \int_{0}^{1} \left[D \int (x+t(y-x)) - D \int (x) \int (y-x) dx \right]$ \leq $\frac{1}{2}(x) + \frac{1}{2}(x)^{T}(y-x)$ $+$ \int_{0}^{1} \int_{0}^{1} + $\left| \int_{0}^{1}$ -x $\left| \right|^{2}$ dt = $+(x) + 0f(x)^T(y-x) + \frac{C}{2}||y-x||^2$. Theorem: (Bertsekas & Tsitsiklis p203) Assume that function f is continuously differentiable
& there exists a constant L outh that

 $|| \circ f(x) - \circ f(y) ||_2 \leq ||x-y||_2 \qquad \forall x,y$ Suppose f is smuded from selve by f^* . Assume further that $0 < t < \frac{2}{C}$. If the $x(+1) = x(1) - y_0f(x(1))$
has a limit point x^+ , then $0/(x^*) = 0$ Start mith the basic Taylor-series expansion: $+(x(1+1))$ \approx $+(x(1)) + \nabla f(x(1)) \cdot (x(1+1) - x(1))$ = $+(x(+) + \nabla+(x(+))^T \cdot [-\nabla\sigma+(x(+))]$ $rac{1}{5}$ - However, there may be other higher -order
terms, which may create problems when $\sigma f(x4)$
is already small - The smoothers condition controls these higher-order terns. $1000f:$ Use the above Lemma. Let $x = x(4)$,
 $y = x(4) - y(0) = x(4) = x(4)$ \Rightarrow $+(x(t+v) \leq x)(x) - 0$ $+$ $\frac{1}{2}$ γ $\frac{1}{2}$ $\$ Since $\zeta < \frac{2}{L}$, we have $\zeta - \frac{L}{2}r^{2} > 0$. Therefore, f (x(+)) is non-increasing. But it
has a lower sound f (x*). Hence, the More precisely, Summing (#) over t, we have

 $+^*$ \leq $\int (x(t+1))$ \leq $\int (x(0))$ $\sum_{k=0}$ $(y-\frac{L}{2}y^{k})$ $||\nabla f(x(k))||^{2}$ $\frac{t}{\sqrt{2}}$ $||\nabla f(x(k))||^2 < f(x(k)) - f^*$, $\forall t$ $\Rightarrow \nabla f(x(1)) \rightarrow 0 \quad \text{as} \quad t \rightarrow +\infty$ Since x^2 is a limit point of $x(t)$, and
 \overline{y} is continuous, we must have $\nabla f(x^*) = 0$ (4) \int_{v}^{x} \int_{x}^{x} \int_{x}^{x} \int_{x}^{x} \int_{x}^{x} \int_{x}^{x} \int_{x}^{x} \int_{x}^{x} \int_{x}^{x}

Second approach: Decrease of norm

Monday, February 16, 2009 8:39 PM

Lemma: 24 + is convex, then $(0+(x) - 0+(y))^{\top}(x-y) \ge 0$ $4)$ Note: This holds even if of (.) is a sub-gradient.
A mapping of (.) that satisfy (+) is called a - For 1-dim, $(f'(x) - f'(y))(x-y) \ge 0$
 $\Rightarrow f'(x) = f'(y)$ when $x > 0$ (monotomicity) Proof: From first-order condition of convexity; $-(y)$ 2 $+(x) + 0$ $+(x)$ $(y-x)$ $f(x) \ge f(x) + \nabla f(x) (x-y)$ Summing them, $\Rightarrow \left[\nabla f(y) - \nabla f(x) \right]^T (y - x) \ge 0$ $\#$ - Later on, we will apply this to $y = x(1)$ $x = x^*$ \Rightarrow $\nabla f(x(4)) \cdot (x(4)-x^*)$ 20

lec13-new Page 15

 $\Rightarrow \nabla f(x(\mu)^T. (x(\mu) - x^*)^20\n- \nabla f(x(\mu))^T (x^* - x(\mu))^20$ $(x^{(1)})$
 $(x^{(2)})$
 $(x^{(3)})$
 $(x^{(4)})$
 $(x^{(4)})$
 $(x^{(4)})$
 $(x^{(4)})$
 $(x^{(4)})$ If the derivative is Lipschitz-continuous, then
a stoorger version can be shown. Lemma: Let f be a convex & differentiable $||\nabla f(x) - \nabla f(y)||_{L} \leq L ||x \cdot y||_{L}$ $\forall x,y \in R^{n}$ Then $(yf(x)-\nabla f(x))^{\tau}(x-y) \geq \frac{1}{L} ||\nabla f(x)-\nabla f(x)||_{2}^{\tau}$ $\forall x,y\in R^n \quad (*)$ Note: It a mapping $\mathcal{F}(x)$ that satisfies $(\star \star)$, the We will prive this Lemma Later.

Theorem: Assume that $(0+(x)-\nabla f(x))^T(x-y) > \frac{1}{L}\|\nabla f(x)-\nabla f(y)\|_2^L$ Further, assume that $0 < j < \frac{2}{5}$ and there exists
at least one point x^* with $\nabla f(x^*) = 0$. Then the sequence of x(+) generated by $x(t+1) = x(t) - y + (x(t))$
Converges, and the limit x_0 satisfies $0 + (x_0) = 0$. $|forf:$ Let x^* de me optimal substitution, se , $Of(x^*)=0$.
 $||x(t+1)-x^*||^2$ = $||x(t)-x^{*}||^{2}+2(x(t+)-x(t))^{T}(x(t)-x^{*})$
+ $||x(t+)-x(t)||^{2}$ Note that $-(\chi (t+)-\chi (t))^{T}\left(\chi (t)-\chi ^{+}\right)$ = - $\gamma(\nabla f(x(t)) - \sigma f(x^{\tau})) (x(t) - x^{\tau})$ $\leq -\frac{8}{1}||0+(x(1))||^{2}$ $-1)x(t+1)-x^{*}1|^{2}$

 $\leq ||x(t)-x^{*}||^{2} - \frac{20}{L} ||0f(x(t))||^{2} + \delta^{2} ||0f(x(t))||^{2}$ = $||x(t)-x^{\perp}||^{2} - (\frac{2f}{L} - f^{2}) ||0f(x(t))||^{2}$ $2f$ $T<\frac{2}{L}$, then $\alpha \cong \frac{2f}{L}$ of >0 Simming over t $||x(t+1)-x^{\star}||^{2} \leq ||x(t)-x^{\star}||^{2} - \alpha \sum_{S=\sigma}^{+} ||y+(x(s))||^{2}$ (2) Why dues $x(t)$ converge? A (Key technique) Assume that a $x(t_h) \rightarrow x_b$, as $h \rightarrow w$
where $t_h \rightarrow w$ as $h \rightarrow +\infty$. We must then have $\nabla f(x_0) = 0$ due to
the continuity of $\partial f(x)$. Now, replace x^* by x_{\circ} $\lim_{n \to +\infty} ||x(t)-x_{c}||^{2} \leq \lim_{h \to +\infty} ||x(t_{h})-x_{c}||^{2} = 0$

 $\Rightarrow x(y \Rightarrow x_{0} \text{ as } t \Rightarrow t \& x$ $\widehat{(\theta)}$

Proof of strong monotonicity lemma - skip

Saturday, February 21, 2009 5:38 PM

- Assume that of is Lipschitz $||0f(x) - 0f(x)|| \le L||x-y||$ We want to show that $\left(\mathbb{Q}f(x)-\mathbb{Q}f(y)\right)^{T}(x-y) \geq \frac{1}{L}\|\mathbb{Q}f(x)-\mathbb{Q}f(y)\|^{2}.$ - Note that by the growth Lemma (see the earlier section "First approach: Decrease of f") $f(x) = f(y) + \frac{1}{y}(x-y) + \frac{1}{y}(x-y)^2$ for any convex function and of is Lipschitz. We will show that $f(x)$ 2 $f(y) + 0f(y)(x-y) + \frac{1}{2}$ 11 $0f(x)-0f(y)y$ $Fix y$. Let $\hat{f}(x) = f(x) - f(y) - \nabla f(y)^T(x-y)$ We have
 $f(x) = 0$ $\bigcirc f(x) = \circ f(x) - \circ f(y)$ $U(f(x)) = 0$ Hence, It is the minimum point of $f(\cdot)$. - Let $\mathcal{F} = \mathcal{X} - \frac{1}{L} \mathfrak{D} f(\mathbf{x})$, $\mathcal{U} \sinh(\mathbf{x})$ on $\overline{f}(.)$
have

 $0 \leq \frac{1}{f}(x) \leq \frac{1}{f}(x) + \sqrt{2f}(x) \cdot \left(-\frac{1}{L} \cdot \nabla \frac{1}{f}(x)\right)$ $+\frac{L}{2}\cdot\frac{1}{2}\cdot\|\nabla\overline{f}(x)\|^{2}$ - Using the definition of $f(x)$, we have $f(x) - f(x) = 0f(x)^T(x-y) - \frac{1}{2L}||0f(x)-0f(y)||^2 \ge 0$ Interchange the role of x and y, we can similarly $+(0) - f(x) - 0 + (x)^{T}(y-x) - \frac{1}{2C}||0+(x) - 0+(x)||^{2} \ge 0$ Combine these two inequalities, we have $\left(\sigma_{f}(y)-\sigma_{f}(x)\right)^{T}(y-x) \geq \frac{1}{L}||\nabla_{f}(y)-\sigma_{f}(x)||^{2}.$