Lec11-new

Thursday, February 03, 2011 9:47 AM

- We have seen that, once we formulate a convex
optimization problem, we can write down
precise conditions (both sufficient and necessary)
for its optimal solution - Later on we will further study effective algorithm - However, often the challenge in research is to - Below, we will use the resource sharing problem
as an example, and gain some experience in
formulating convex optimization problems in

lec11-mwf-new Page 1

Rate allocation of the Internet: multiple resources

Saturday, January 31, 2009 5:21 PM

Single-Park: $-R^{l}:$ the capacity of link l - I(s: the rate allocated to wer s - Us(xs): the which to wer s. - CHSJ: ronting matrix $H_s^l = 1$ if wer s uses link ($\sum_{s} H_{s}^{1}X_{s}$: total amount of traffic on link! 6 Hvs to allocate the vates? max IUS (XS) swb to \overline{S} Hs $xs \in R^1$ for all 1. - A convex problem if $M_s(\cdot)$ is concave - Physical meaning: Conjection Control - High - throughput
- Avoid - congestion
- <u>Fairnes</u> (related to utility

lec11-mwf-new Page 2

- Fairnes (related to utility - Wait mit duditz for the optimality Ref: J. M. & J. Walrand, Fair end-to-end
Windows - based Conjestion Control, 2777/ACM
Transactions on Networking, Vol. 8.
No. 5, pp 556-567, Oct 2000.

Multipath congestion control

Saturday, January 31, 2009 5:34 PM

- Trinthy rowting & confestion control. - Let each near has $\theta(s)$ parts $H_3 = 1$ if path j of wer s wes link (- Let $SCsj$ be the data rate of user s on $\sum_{s} H_{s}^{l}$, $K_{s} \leq R_{l}$ (* - Constraint becomes
for all ($m \alpha x$ $\overline{\xi}$ $M_{J}(\overline{\xi}x_{J})$ $\begin{picture}(20,10) \put(0,0){\vector(1,0){100}} \put(15,0){\vector(1,0){100}} \$ Still a convex problem What if routes are not given before-hand?

Routing

Sunday, January 25, 2009 11:45 AM

 \searrow S usens - Zuh user s=1,2, --,5 sends a
flow from node fs to ds. at the
vate of Xs - L : set of Limber - each link (i) from mode i to node j - capacity of link (i,j) is Cij (1) How to ronte the flows? Basic Node-Balance Equation - Let \overline{r} ; denote the amount of capacity

on link (i) j) that is allocated to
flows $\frac{1}{s}$ Then any feasible flow (ronting) is
equivalent to (r_{ij}^s) that satisfies
the following node balance equation: For any node i: total out joint $\frac{1}{\sum_{j:(i,j)\in L}V_{ij}^{S_{j}}+1}$ $X_{S}\perp$ \downarrow $i=d_{S}$ $(\nparallel \nmid)$ $X_s 1_i:=f_s$
 \uparrow total incoming
 $f/$ ow at nucle i. $=\sum_{j:(j,i)\in L}r_{j,i}$ Capacity Constraints $(\frac{1}{x})$ $\frac{1}{s}$ $\frac{s}{y}$ \leq $\left(\frac{1}{y}\right)$ (2) link capacity on each)

or $\frac{1}{s}(r_j^3+r_j^3)\leq C_j=\zeta_j$ (If a whole bi-direction capacity is
defined) Objectives (a) Massimige notifst $max \frac{Z}{S}$ Us(xs) sub + (x) & (xx) Other possibilities: <u>skip skip</u> Co Jnot feasibility min 0 $5w5t0$ $(x*)$ and $(x*)$ O Maximize future throughput (in proportion - Find the langest X such that the
rate of each flow can be $m \omega \propto$ $S_{\nu}S_{\nu}S_{\nu}S_{\nu} = \alpha \lambda_{\nu} S_{\nu} S_{\nu}$ (x) and $(x \star)$

- When there is only one commodity, it
reduces to the mox-flow problem. 1 Minimize congestion at fixed Xs=1 - Define a conjestion measure for each - Minimize the total anyestion level - homework: formulate connex problems Ref: Ch5. Bertsekas & Tsitsikhis
Parallel & Distributed Computation:
Numerical Methods. $\left(\frac{1}{2}\right)$

Cross-layer

Saturday, January 31, 2009 5:37 PM

So far, all these examples easily lead - The capacity of each link in
assumed to be fixed We will see that this changes quickly
when the allow the link rate to be - This in common in vireless networks
- The link rate will depend on - Transmission power We may still formulate these control decisions \rightarrow " $(nos-layer\; controls)^{9}$ - rate - condrel -> Transport layer
- romting -> network layer
- link dscheduling -> MAK layer
- Power contr(0 -> Physical layer (1) Why do we want to consider multiple

Layers to gether? - In Wireline networks, often the protocols
are classified into layers. - Layering is a form of hierarchical - The higher layer wes the service provided
by the lower layer. But it dues not
heed to know the inner working of the power layer $A_{\uparrow\uparrow\uparrow}$ beck-Application Presentation Presentation Session Session Transport τ ransport \leftarrow Congletion Network \longleftrightarrow Netwoll Rowting Data Link MAC Data Link \longleftarrow P hysical \longleftrightarrow P hysical - Benefits of Modulanity. - easy to understand - However, for wireless networks, examples have
been found where such a lagering architecture

lec11-mwf-new Page 12

can limit performance. Branple. - Typically, ronting is designed to minimize $\begin{picture}(180,10) \put(100,10){\line(1,0){100}} \put(100,10){\line(1,0){100}} \put(100,10){\line(1,0){100}} \put(100,10){\line(1,0){100}} \put(100,10){\line(1,0){100}} \put(100,10){\line(1,0){100}} \put(100,10){\line(1,0){100}} \put(100,10){\line(1,0){100}} \put(100,10){\line(1,0){100}} \put(100,10){\line(1,0){10$ - Tend to use "long" Links. - In nireless networks, long transmission hink => pour end-to-end performance. - It would be better if the rowting protocol
takes into account the physical-layer - Pitfalls of Cross-layer Design $-$ (π s of modularity - fragile solution that is hard to change. - Would be tright desirable it we can

- Need durality/decomposition.

Cross-layer formulation

Sunday, February 01, 2009 12:25 PM

In an optimization approach, it is not difficult
to incorporate controls at multiple layers into a - Physical layer:
- power control, water-filling
- MAC: $MAC:$ - schednling Network Layer? - mutti-parti ronting
- mutti-parti ronting
- Transport layer
- utility maximization
- revenue maximization So we have various combinations. Key consideration is
- Convexity - distributed / decomposed solution. One way of protting all together max \overline{Z} Us (Xs) - whity/conjection control snb to $Xs = \frac{2}{3}Xs$; - ronting/load-balancing. Trate of wers on parh;

lec11-mwf-new Page 15

Trate of wers on partij $Hs_j^{\dagger} = |j|$ parti of
Wers Wes
link L $\begin{array}{ll} r_{L} & \leq \frac{k}{2} & \text{ker}_{L}^{k} & \text{if } k \\ \text{(with } & \leq \frac{k-1}{2} & \text{if } k = 1 \end{array}$ - k channel states - each may use a $P_{ik}:$ (given) prob of - power control
codaptive coding/ $r_{i}^{k} \leq \hat{\delta}_{i}^{k}(\vec{p^{k}})$ state k Faite-poiner
function poiner assignment Other formulations - replace Hf, by nude-balance eque
- use nore than one schedules per channel-state
- The set of schedules can be very large. Ref: Lin, Shruff & Srikant, "A Tutorial on Cross-Layer Optimization in Wireless
Networks 2662 Journal on Selected Areas in Comm, Special Issue on "Non-linear Optimization of Comm Systems," $200b$

- In general, not a convex problem. - The function gk(.) may not be concave - For exagle, re may use Shannon's $\gamma_{L}^{k}(\overrightarrow{p^{k}})=W(y)(1+\frac{\overrightarrow{p_{L}}\cdot\overrightarrow{\delta_{U}}}{\sum\limits_{h\neq L}\overrightarrow{p_{L}}\cdot\overrightarrow{\delta_{hl}}+N_{l}})$ - Havever, the constraint $\Gamma_L^C \in \mathcal{S}_C^K(\vec{p}_k)$ - What can use do? Convert to an equivalent convex problem - Find special cases that are convex - Approximate by a connex problem.