IERG6120: Homework 2

Due: Sept. 25, 2024 in class

Convex Functions

- 1. A function ||x|| for $x \in \mathbb{R}^n$ is said to be a norm if it satisfies the following properties
 - (i) $||x|| \ge 0$ for all $x \in \mathbf{R}^n$.
 - (ii) ||x|| = 0 if and only if x = 0.
 - (iii) $||\alpha x|| = |\alpha| ||x||$ for any real scalar α , where $|\alpha|$ denote the absolute value of α .
 - (iv) (Triangle Inequality) $||x + y|| \le ||x|| + ||y||$.

Show that any norm is a convex function.

- 2. Let f(x) be a function of $\mathbf{R} \to \mathbf{R}$ (i.e., it is a function of real numbers). Show that f(x) is convex if and only if dom f is convex and $f(y) \geq f(x) + f'(x)(y x)$ for all $x, y \in \text{dom } f$. (Please follow and complete the proof steps described in class.)
- 3. Are these sets convex? (*Hint*: Write the set in a form $\{x|f(x) \leq 0\}$ where f(x) is a convex function.)
 - (a) Let λ be the arrival rate to an M/M/1 queueing system with service rate μ , and let d be a delay threshold. The set of $\lambda < \mu$ such that the expected delay E[D] is less than a given value d. What if d is also a variable, i.e., the set of (λ, d) , with $\lambda < \mu$, such that the expected delay in the M/M/1 queueing system is less than d. (Note: The expected delay E[D] of an M/M/1 queue with service rate μ and arrival rate λ is given by $E[D] = 1/(\mu \lambda)$. For this problem, you can assume that μ is fixed. Alos, we assume $\lambda < \mu$, otherwise the delay expression will be negative.)
 - (b) Let P_0 denote the transmission power of a given user. Let P_i , i = 1, ..., I be the interference power of other users. Assume that the transmission rate of user 0 follows the Shannon capacity. The set of vectors $[P_0, P_1, ..., P_I]$ such that the transmission rate of user 0 is greater than a value r. What if r is also a variable and is a component of the vector to be considered. (Note: the Shannon capacity C of a channel with transmission power P, interference power I, and noise power I is given by I by I

- For this problem, you can assume that W and N are fixed. The interference power I corresponds to the total transmission power of users other than user 0. For this problem, please do NOT use the high (or low) SINR approximation.)
- (c) Let x and y denote the length and width, respectively, of a rectangle contained in a circle with radius r. The set of such (x, y) for a given r, and the set of such (x, y, r).
- 4. Problem 3.5, 3.16 (part a/c/e), and 3.21 (part a) of Boyd and Vandenberghe. (You don't need to worry about the quasi-convex and quasi-concave part of the problems.)