IERG6120: Homework 1

Due: Sept. 13, 2023 in class

Convex Sets

1. Define the affine hull of a set C as the smallest affine set containing C. You are asked to show that the affine hull of a set C is given by

$$
\operatorname{aff} C=\left\{\theta_{1} x_{1}+\theta_{2} x_{2}+\ldots+\theta_{k} x_{k} \mid x_{1}, x_{2}, \ldots, x_{k} \in C, \theta_{1}+\theta_{2}+\ldots+\theta_{k}=1\right\} .
$$

Please prove it by following the two steps below: Let A denote the set on the right-hand-side. Note that A obvious contains C.
(i) Show that A is an affine set.
(ii) Suppose that there is another affine set B that contains C. Show that $A \subset B$.
2. Let $C \subset \mathrm{R}^{3}$ be the set that contains three points $(1,0,0),(0,2,0)$ and $(0,0,3)$. Write down the affine hull and convex hull of C. Please provide the description of these sets in two ways: one that uses θ 's and one that does not use θ 's (i.e., based on geometry).
3. Show that any intersection of convex sets is still a convex set.
4. Problem 2.11 and 2.12 (parts a/c/e/g) on page 61 of Boyd and Vandenberghe.

Convex Functions

1. A function $\|x\|$ for $x \in \mathbf{R}^{n}$ is said to be a norm if it satisfies the following properties
(i) $\|x\| \geq 0$ for all $x \in \mathbf{R}^{n}$.
(ii) $\|x\|=0$ if and only if $x=0$.
(iii) $\|\alpha x\|=|\alpha| \| x| |$ for any real scalar α, where $|\alpha|$ denote the absolute value of α.
(iv) (Triangle Inequality) $\|x+y\| \leq\|x\|+\|y\|$.

Show that any norm is a convex function.

