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Abstract

The sum-product algorithm (SPA) is a popular algorithm for efficiently approximating the marginals and the partition function of a

factor graph. Some key results for this algorithm were established by Yedidia et al., who proved that, roughly speaking, fixed points of

the SPA correspond to stationary points of the Bethe free energy function. However, some of their results were only for factor graphs

where the local functions take on strictly positive values. They also conjectured that similar results hold for factor graphs where the

local functions take on non-negative values. In this paper we make progress toward resolving this conjecture. In particular, we present

examples where the results of Yedidia et al. generalize and examples where their results do not generalize. Finally, we present a general

framework for analyzing fixed-points of the SPA based on a suitable dualization of the Bethe free energy function.

I. INTRODUCTION

In this paper, we consider standard factor graphs (S-FGs), which are factor graphs [1]–[3] where all local functions take on non-

negatives values. S-FGs are used in a wide variety of disciplines, including communications (see, e.g., [4]), statistical mechanics (see,

e.g., [5]), and coding theory (see, e.g., [6]). Inference problems involving probabilistic models in these areas are often formulated

as computing the marginal probabilities of some subsets of the variables in some S-FG and/or computing the partition function of

some S-FG.

The sum-product algorithm (SPA), also known as loopy belief propagation (LBP), is a practical and powerful way to approximately

compute the marginals and the partition function of an S-FG. In the case of cycle-free S-FGs, the SPA provides the exact marginals

and partition function. In the case of S-FG with cycles, the SPA often gives surprisingly good approximations of the marginals and

the partition function. This is part of the reason why SPA decoding of low-density parity-check (LDPC) codes appears in the 5G

telecommunications standard. Nevertheless, there are also S-FGs where the SPA provides a poor approximation of the marginals or

the SPA even fails to converge [7], [8].

The seminal paper [9] by Yedidia et al. related the SPA fixed points to the Bethe free energy function, which is a function of

beliefs. In particular, they proved the following statements.

1) Every interior stationary point of the associated Bethe free energy function corresponds to an SPA fixed point [9, Th. 2].
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2) For S-FGs with positive-valued local functions only, every stationary point of the associated Bethe free energy function

corresponds to an SPA fixed point [9, Th. 3].

In a follow-up work, Heskes [8] presented the following results.

1) The stable fixed points of the SPA are minima of the Bethe free energy function [8, Section 4].

2) The minimization problem of the Bethe free energy function can be transformed into a minimax optimization problem [8,

Section 4].

3) The fixed point of the algorithm in [8, Algorithm 2] corresponds to a local optimal solution to the transformed minimax

problem.

In general, there is significant evidence that the SPA is well behaved also for S-FGs where not all local functions take on only

strictly positive values. In particular, the papers [10] (on S-FGs whose partition function equals the permanent of a non-negative

matrix) and [11] (on (2, k)-regular LDPC codes) established that the SPA finds the global minimum of the Bethe free energy function,

even if that global minimum happens to be on the boundary of the Bethe free energy function domain.

There are various other results in the literature about fixed points of the SPA and the minimum of the Bethe free energy. For

example, in [12] the authors tried to find all fixed points using the numerical polynomial-homotopy-continuation (NPHC) method,

and in [13], the authors analyzed the SPA on patch potential models and obtained interesting insights about the SPA’s properties.

The authors in [14], [15] studied the progress towards the minimum of the Bethe free energy function by introducing a pseudo-dual

function of the Bethe free energy function.

A. Outline of Results

In this paper we investigate whether the global minimum of the Bethe free energy function of an S-FG corresponds to an SPA

fixed point. Here are the main results of this paper.

1) We present the primal and dual formulations of the Bethe partition function, which are optimization problems whose optimal

values are equal. The primal formulation based on [9] is related to the minimization of the Bethe free energy function. The

primal formulation has the following properties.

a) In this minimization problem, the feasible set of the beliefs, is a convex and compact set, which means that the locations

of the optimal value are attainable in this set.

b) The Bethe free energy function is a function of the beliefs associated with the function nodes and the edges in the

considered S-FG.

c) The Bethe free energy function is neither convex nor concave for general S-FG. (For some special S-FGs, e.g., a single-

cycle S-FG [16, Corollary 2], the associated Bethe free energy functions are convex.)

The dual formulation is based on [8], which is a maximin optimization problem where the minimization is taken over a part

of the variables and the maximization is taken over the remaining variables. This optimization problem has the following

properties.

a) The feasible set for the variables that are related to the minimization, is the set of real numbers, i.e., an open set, and the

locations of the optimal value are allowed to be outside the feasible set, i.e, some of the variables go to infinity when

they achieve the optimal value.

b) The feasible set of the variables related to the maximization, is a compact set.

c) This maximin optimization problem contains the variables that are associated only with the edges in the considered S-FG.
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d) The associated objective function is convex with respect to (w.r.t.) to the variables that are related to the minimization.

(For some special S-FGs, e.g., a single-cycle S-FG [16], the objective functions are concave w.r.t. the variables that are

related to the maximization.)

2) To solve the above-mentioned maximin optimization problem that is related to the dual formulation, we propose two algorithms

in Algorithms 1 and 2, where Algorithm 1 is based on [8, Algorithm 2], and Algorithm 2 is equivalent to the SPA. We make

a comparison between these two algorithms.

a) Algorithm 1 is a double-loop algorithm while Algorithm 2 is simpler and contains a single loop only.

b) Algorithms 1 and 2 have the same set of fixed points. However, they have different sets of stable fixed points. For some

special S-FGs, Algorithm 1 converges to the location of the optimal value of the maximin optimization problem, while

Algorithm 2, i.e., the SPA, fails to converge. For details, see [8, Figure 2].

c) Both Algorithms 1 and 2 try to find the stationary points of the objective function in the maximin optimization problem.

d) In particular, the inner loop of Algorithm 1 attempts to find the stationary point of the objective function w.r.t. the variables

in the minimization problem. Because the objective function is convex w.r.t. these variables as previously mentioned, the

inner loop also finds the locations of the optimal value of the minimization problem in the maximin optimization problem.

3) In order to appreciate the main results for the general S-FG, we first analyze the behavior of the SPA on some simple and

interesting S-FGs in Figs. 3, 5, and 6. In particular, for the S-FG in Fig. 3, we cannot evaluate the beliefs at the SPA fixed

point. For Figs 5 and 6, we show that the locations of the optimal values of the primal and dual formulations of the Bethe

partition function are related to the SPA fixed points.

4) For general S-FG, we show that there exists a sequence of messages such that the beliefs defined based on the messages

converge to the locations of the global minimum of the Bethe free energy function. Also the messages converge to one of the

SPA fixed points of a modified S-FG that has the same minimum of the Bethe free function as the original S-FG.

We also make a comparison between the dualization in [9], [14], [15] and the dualization in [8], which is also the dualization

considered in this paper.

1) The dualization proposed in [9], [14], [15] works for the S-FG such that at least one of the locations of the associated Bethe

free energy function’s global minimum is in the interior of the feasible set defined in the primal formulation.

2) The dualization proposed in [8] works for any S-FG.

3) The structure of the objective function in the dual formulation proposed in [8] is similar to the structure of the pseudo partition

function evaluated at an SPA fixed point, which indicates that there is a relationship between the SPA fixed point and the

locations of the optimal value for the dual formulation.

In the following, we will use, without essential loss of generality, normal factor graphs (NFGs), i.e., factor graphs where variables

are associated with edges [2], [3].

The rest of this paper is structured as follows. Section II reviews the basics of S-FGs and the associated SPA. Section III presents the

primal and the dual formulations of the Bethe partition function. Sections IV, V, and V study the primal and the dual formulations of

Bethe partition function as well as the behavior the associated SPA for S-FGs in Figs. 3, 5, and 6, respectively. Section VII considers

general S-FGs and relates the locations of the global minimum of the Bethe free energy function to an SPA fixed point.

B. Basic Notations and Definitions

The sets R, R≥0, and R>0 are defined to be the field of real numbers, the set of nonnegative real numbers, and the set of positive

real numbers. If not mentioned otherwise, all variable alphabets are assumed to be finite. Square brackets are used in two different
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Fig. 1: NFG N in Example 1.

ways. Namely, for any L ∈ Z>0, the function [L] is defined to be the set [L] ≜ {1, . . . , L} with cardinality L and for any statement

S, by the Iverson’s convention, the function [S] is defined to be [S] ≜ 1 if S is true and [S] ≜ 0 otherwise.

II. THE STANDARD NORMAL FACTOR GRAPH (S-NFG)

Factor graph is a convenient way to depict the factorization of a multivariate function [1]. Also many operations, e.g., taking the

summations and multiplications for multivariate functions can be visualized by factor graphs. In this paper, we will use, without

essential loss of generality, standard normal factor graphs (S-NFGs), i.e., S-FGs where variables are associated with edges [2], [3].

The key aspects of an S-NFG are best explained with the help of an example.

Example 1. Let us consider the function

g(x1, . . . , x5) ≜ f1(x1, x2, x3) · f2(x1, x4) · f3(x2, x5) · f4(x3, x4, x5).

In particular, the function g, the so-called global function, is the product of the so-called local functions f1, . . . , f4. The factorization

of g can be visualized via the S-NFG N in Fig. 1, where N consists of five (full) edges with associated variables x1, . . . , x5, and

four function nodes f1, . . . , f4.

In general, edge e is incident on function node f if and only if xe is a argument of the associated local function f .

An edge that connects to two function nodes is called a full edge, whereas an edge that is connected to only one function node

is called a half edge. For simplicity, we consider S-NFGs with only full edges, due to the fact that S-NFGs with half edges can be

turned into the considered S-NFGs by adding dummy 1-valued function nodes to the half edges without changing any marginal or

the partition function.

Definition 2. An S-NFG N(F(N), E(N),X (N)) consists of the following objects:

1) The graph (F(N), E(N)) with vertex set F(N) and edge set E(N), where F(N) is also known as the set of function nodes.

(Every edge e ∈ E(N) will be assumed to be a full edge connecting two function nodes.) Suppose that the numbers of function

nodes and edges are F and E. The order of elements in the function node set and edge set is fixed

F(N) = {f1, f2, . . . , fF }, E(N) =
[
E
]
.

2) The alphabet X (N) ≜
∏

e∈E(N) Xe, where Xe is the alphabet of the variable xe associated with edge e ∈ E .

In the following, if there is no ambiguity, we simply use F , E , and X for F(N), E(N), and X (N), respectively.

Definition 3. Given N(F , E ,X ), we make the following definitions:

1) For every function node f ∈ F , the set ∂f is defined to be the set of edges incident on f .



5

2) For every edge e = (fi, fj) ∈ E such that i < j,1 the pair (fi, fj) is defined to be the pair of function nodes that are connected

to edge e.

3) An assignment x ≜ (xe)e∈E ∈ X is called a configuration of the S-NFG. For each f ∈ F , a configuration x ∈ X induces the

vector xf ≜ (xe)e∈∂f .

4) In general, for every f ∈ F , the local function associated with f is, with some slight abuse of notation, also called f .2 Here,

the local function f can be an arbitrary mapping from
∏

e∈∂f Xe to R≥0.

5) For every f ∈ F , we define the alphabet Xf to be Xf ≜
{
xf ∈

∏
e∈∂f Xe

∣∣ f(xf ) ̸= 0
}
.

6) The global function g is defined to be the mapping g : X → R≥0, x 7→
∏

f∈F f(xf ).

7) The partition function is defined to be Z(N) ≜
∑

x∈X g(x).3 Clearly, the partition function satisfies Z(N) ∈ R≥0.

8) If Z(N) > 0, the probability mass function (PMF) induced on N is defined to be the function

p(x) ≜
g(x)

Z(N)
.

9) Let I be a subset of E(N) and let Ic ≜ E(N) \ I be its complement. The marginal pI(xI) is defined to be

pI(xI) ≜
∑
xIc

p(x), xI ∈ X |I|
e ,

where

xI ≜ (xe)e∈I ∈
∏
e∈I

Xe, xIc ≜ (xe)e∈Ic ∈
∏
e∈Ic

Xe.

If I = {e}, then we have

p{e}(xe) ≜
∑

z: ze=xe

p(z).

For simplicity, when there is no ambiguity, we use the shorthands
∑

e,
∑

f ,
∑

xe
,
∑

xf
,
∑

zf
, {·}xe

, and (·)xe
for
∑

e∈E ,
∑

f∈F ,∑
xe∈Xe

,
∑

xf∈Xf
,
∑

zf∈Xf
, {·}xe∈Xe

and (·)xe∈Xe
. respectively.

In this paper, we make the following general assumption about S-NFGs.

Assumption 4. In this paper, for an S-NFG N we assume that

∃x ∈ X such that g(x) > 0,

which is equivalent to assuming that Z(N) > 0.

As mentioned in the introduction section, for an S-NFG N, the SPA often gives a surprisingly good approximation of the partition

function Z(N) and the marginal p{e} for edge e ∈ E(N). Here we present the SPA by providing the technical details only. For the

motivation behind the SPA, we refer to [1]–[3].

Definition 5. Given some S-NFG N. The SPA [1]–[3] is an iterative algorithm where the messages, which are functions associated

with edges, are sent along edges at each iteration. In particular, at each iteration, two messages are sent along each edge, one in

both directions.) The SPA consists of the following steps:

1) We consider the following setup.

1Note that for notational convenience, here we impose a direction on every edge (fi, fj), i.e., we consider i < j. This inequality is irrelevant for our results, i.e.,

the results in this paper also hold if we consider j > i for e.
2For some special S-NFGs, the associated local functions are different and we use notation different from f .
3In this paper, the partition function Z(N) of N is a scalar, i.e., it is not really a function. If N depends on some parameter (say, some temperature parameter),

then Z(N) is a function of that parameter.
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a) For each t ∈ Z≥0, we consider the following vector of messages and the associated normalization constant:

µ
(t)
e→f ≜

(
µ
(t)
e→f (xe)

)
xe

∈ R|Xe|
≥0 ,

C
(t)
e→fi

=
∑
zfj

fj(zfj ) ·
∏

e′∈∂fi\{e}

µ
(t)
e′→fj

(ze′,fj ) ∈ R≥0, e = (fi, fj) ∈ E ,

where C
(t)
e→fj

is defined similarly for each e = (fi, fj) ∈ E .

b) For t = 0, we randomly generate µ
(0)
e→f following the uniform distribution in (0, 1]|Xe| for all e ∈ ∂f , and f ∈ F .

2) We update the messages as follows until some termination criterion is met.4

a) For every t ∈ Z>0 and e = (fi, fj) ∈ E we first update the normalization constants C
(t−1)
e→fi

and C
(t−1)
e→fj

. Then we update

the messages according to

µ
(t)
e→fi

(xe) =
1

C
(t−1)
e→fi

·
∑

zfj
: ze=xe

fj(zfj ) ·
∏

e′∈∂fi\{e}

µ
(t−1)
e′→fj

(ze′,fj ). (1)

The collection of messages µ
(t)
e→fj

is updated similarly.

3) For every t ∈ Z>0, the collection of messages µ(t) ≜ {µ(t)
e→f (xe)}xe∈Xe, e∈∂f, f∈F is called a collection of SPA fixed-point

messages if it satisfies

µ
(t+1)
e→fi

(xe) = µ
(t)
e→fi

(xe), xe ∈ Xe, e ∈ ∂f, f ∈ F .

4) For every t ∈ Z>0 and f ∈ F , the normalization coefficient C(t)
f is given by

C
(t)
f ≜

∑
xf

f(xf ) ·
∏
e∈∂f

µ
(t)
e→f (xe) ∈ R≥0.

If C(t)
f > 0, then the belief obtained by the SPA message µ(t) for function node f is given by

β
(t)
f (xf ) ≜

1

C
(t)
f

· f(xf ) ·
∏
e∈∂f

µ
(t)
e→f (xe), xf ∈ Xf . (2)

For each e ∈ ∂f , the marginal β(t)
f,e is defined to be

β
(t)
f,e(xe) ≜

∑
zf : ze=xe

β
(t)
f (zf ), xe ∈ Xe.

5) For every t ∈ Z>0 and e = (fi, fj) ∈ E , the normalization coefficient C(t)
e is defined to be

C(t)
e ≜

∑
xe

µ
(t)
e→fi

(xe) · µ(t)
e→fj

(xe).

If C(t)
e > 0, the belief obtained by the SPA message µ(t) at edge e is defined to be

β(t)
e (xe) ≜

1

C
(t)
e

· µ(t)
e→fi

(xe) · µ(t)
e→fj

(xe), xe ∈ Xe. (3)

At an SPA fixed point, the beliefs β
(t)
f and β

(t)
e can be viewed as an approximation of the true marginals p∂f and p{e} induced

by the PMF p, respectively, as specified in Definition 3.

Proposition 6. Given a collection of SPA fixed-point messages µ(t), the beliefs β
(t)
f and β

(t)
e evaluated at the fixed point satisfy

β
(t)
fi,e

(xe) = β
(t)
fj ,e

(xe) = β(t)
e (xe), e = (fi, fj) ∈ E .

Proof. It can proven straightforwardly from the definition of the SPA in Definition 5. ■

4In general, the termination criterion is a combination of numerical convergence and an upper bound on the number of iterations.
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III. THE PRIMAL AND DUAL FORMULATIONS OF THE BETHE PARTITION FUNCTION

In this section, we present the primal and dual formulations of the Bethe partition function for an S-NFG N. The Bethe partition is

a function of the minimum of the Bethe free energy function, which can be viewed as an approximation of the partition function of

an S-NFG. The primal formulation is mainly based on [9, Section V], and the dual formulation is motivated by the main theoretical

results in Heskes’ paper [8]. In both these two formulations, some of the stationary points of the objective functions correspond to

the SPA fixed points.

1) In the primal formulation, the objective function, i.e., the Bethe free energy function, is neither convex nor concave in general,

and the feasible set is convex and formed by some linear constraints.

2) In the dual formulation, the objection function is concave when some of its arguments are fixed, and the feasible set for the

arguments has a simple structure. These properties enable us to gain insights for the associated locations of the optimal value

and obtain the main results in Section VII.

A. The Primal Formulation

In this subsection, we give the primal formulation of the Bethe partition function. We introduce the local marginal polytope (LMP)

for an S-NFG N first.

Definition 7. Given an S-NFG N(F , E ,X ), we define

β ≜
(
βE ,βF

)
, βE ≜ {βe}e∈E , βF ≜ {βf}f∈F ,

βe ≜
(
βe(xe)

)
xe∈Xe

∈ R|Xe|
≥0 , βf ≜

(
βf (xf )

)
xf∈Xf

∈ R|Xf |
≥0 .

Note that if ∂f = {e1, e2} for some edges e1 and e2 in E , we can define βf to be a matrix where the rows and columns are indexed

by variables xe1 and xe2 respectively. We define

Bf ≜

{
βf

∣∣∣∣∣ ∑
xf

βf (xf ) = 1; βf (xf ) ∈ R≥0, ∀xf ∈ Xf

}
, f ∈ F , (4)

B≥
e ≜

{
βe

∣∣∣∣∣ ∑
xe

βe(xe) = 1; βe(xe) ∈ R≥0, ∀xe ∈ Xe

}
, e ∈ E , (5)

B>
e ≜

{
βe

∣∣∣∣∣ ∑
xe

βe(xe) = 1; βe(xe) ∈ R>0, ∀xe ∈ Xe

}
, e ∈ E . (6)

Then the LMP is defined to be the set B(N)

B(N) ≜

β

∣∣∣∣∣∣∣∣∣
βe ∈ B≥

e , ∀e ∈ E ,

βf ∈ Bf , ∀f ∈ F ,

βe(ze) = βf,e(xe), ∀f ∈ F , e ∈ ∂f, ze ∈ Xe (local consistency constraints)

 , (7)

where β ∈ B(N) is called a belief or pseudo-marginal vector, and βf,e is the marginal of βf :

βf,e(xe) ≜
∑

zf : ze=xe

βf (zf ), xe ∈ Xe, e ∈ ∂f, f ∈ F . (8)

We define an another LMP for βF :

BF (N) ≜

βF

∣∣∣∣∣∣∣∣∣
βf ∈ Bf , ∀f ∈ F ,

βfi,e(xe) = βfj ,e(xe),

xe ∈ Xe, e = (fi, fj) ∈ E (local consistency constraints)

 . (9)

We make some remarks on the above definitions.
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• The only difference between B≥
e and B>

e is that in B≥
e , we consider βe(xe) ∈ R≥0 for all xe ∈ Xe, while in B>

e , we consider

βe(xe) ∈ R>0 for all xe ∈ Xe.

• The condition β =
(
βE ,βF

)
∈ B(N) implies βF ∈ BF (N).

• The sets Bf and B≥
e are sets of vectors representing probability mass functions over Xf and Xe, respectively.

Definition 8. [9] The Bethe free energy function w.r.t. N(F , E ,X ) is defined to be the mapping

FB,p,N : B(N) → R, β 7→
∑
f

UB,f (βf )−
∑
f

HB,f (βf ) +
∑
e

HB,e(βe), (10)

where

UB,f : Bf → R, βf 7→ −
∑
xf

βf (xf ) · log f(xf ),

HB,f : Bf → R, βf 7→ −
∑
xf

βf (xf ) · log βf (xf ),

HB,e : Be → R, βf 7→ −
∑
xe

βe(xe) · log βe(xe).

The letter p in FB,p,N means that it is related to the primal formulation of the Bethe partition function. We also define the function

F
(1)
B,p,N to be

F
(1)
B,p,N :

∏
f

Bf → R, βF 7→
∑
f

UB,f (βf )−
∑
f

HB,f (βf ) +
∑
e

HB,e

(
βfi,e + βfj ,e

2

)
. (11)

Proposition 9. If β ∈ B(N), we have βF ∈ BF (N) and FB,p,N(β) = F
(1)
B,p,N(βF ).

Proof. It can be proven straightforwardly following the definitions in Definition 8. ■

Theorem 10. The authors of [9] related the fixed points of the SPA for an S-NFG N to the stationary points of the Bethe free energy

function.

1) [9, Theorem 2] If the stationary point of the Bethe free energy function is in the interior of the LMP, i.e., β ∈ B(N) and

βf ∈ R|Xf |
>0 for all f ∈ F , then it corresponds to an SPA fixed points of N.

2) [9, Theorem 3] If the S-NFG N contains only positive-valued local functions, i.e., f(xf ) ∈ R>0 for all xf ∈
∏

e∈∂f Xe and

f ∈ F , then all local minima of the Bethe free energy function correspond to SPA fixed point of N.

When the S-NFG N is tree-structured, i.e, cycle-free, the minimum of the Bethe free energy function equals − log(Z(N)) and the

location of the optimal value

β ∈ argminβ∈B(N) FB,p,N(β),

satisfies

βf (xf ) = pf (xf ), xf ∈ Xf , f ∈ F ,

βe(xe) = pe(xe), xe ∈ Xe, e ∈ E ,

as proven in [9, Proposition 3] and [17, Theorem 4.2]. For general S-NFG N, the minimum of the Bethe free energy function can

be viewed as an approximation of − log(Z(N)), and the elements βf and βe in the associated the location of the optimal value can

be viewed as an approximation of the marginals pf and pe induced by the PMF p, respectively.

Definition 11. The Bethe approximation of the partition function of N, i.e., the Bethe partition function, is defined to be

Z∗
B,p,N ≜ exp

(
− min

β∈B(N)
FB,p,N(β)

)
= exp

(
− min

βF∈BF (N)
F

(1)
B,p,N(βF )

)
, (12)
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where Z∗
B,p,N is the optimal value of the primal formulation of the Bethe partition function. We also define

F ∗
B,p,N ≜ min

β∈B(N)
FB,p,N(β) = min

βF∈BF (N)
F

(1)
B,p,N(βF ). (13)

In this paper, we mainly focus on analyzing the function F
(1)
B,p,N instead of FB,p,N. When β ∈ B(N), i.e., βF ∈ BF (N), we have

FB,p,N(β) = FB,p,N(βF ). There are two advantages for analyzing F
(1)
B,p,N.

• From the definition of F
(1)
B,p,N in (11), the associated argument βF is in

∏
f Bf instead of BF (N), while the function FB,p,N

defined in (10) requires that the associated argument β is in B(N). As we will see in Section VII, a key step for obtaining the

main results is considering the function F
(1)
B,p,N with an argument b(m,n,k) that is allowed to be outside the set BF (N). (For

details, see (129).)

• We eliminate βe in F
(1)
B,p,N by considering (βfi,e + βfj ,e)/2 and the constraint βfi,e = βfj ,e instead.

B. Definition of the Dual Formulation

In this section, we present a dual formulation of the Bethe partition function, which provides a different perspective to understand

the Bethe partition function. In this paper, we show that the Bethe partition function is equivalent to a maximin problem. The main

idea of this transformation was presented in [8, Section 4]. We make a comparison between the results in [8, Section 4] and the

results in this paper as follows.

• In [8, Section 4], the saddle-point problem proposed by the author was not well defined, i.e, he used max and min in the

considered problem, which are indeed sup and inf , respectively. Also the author did not analyze the locations of the optimal

value for the saddle-point problem, i.e, the locations of the optimal value.

• In this paper, we introduce a well-defined maximin problem which is indeed a dual formulation of the Bethe partition function.

(For details, see Theorem 57).

The reason why we call the transformed optimization problem the dual formulation of the Bethe partition function is that this

transformation process consists of expressing parts of FB,p,N in terms of their conjugate dual and solving the Lagrangian dual

problem of the minimization problem in (13). For details, see the proof of Proposition 16.

Before presenting the dual formulation, we make some definitions.

Definition 12. We make the following definitions.

1) For every edge e = (fi, fj) ∈ E(N), we define the variables to be

λe ≜
(
λe(xe)

)
xe

∈ R|Xe|,

γe ≜
(
γe(xe)

)
xe

∈ B≥
e , (14)

λe,fi ≜ λe, λe,fj ≜ −λe, 1 ≤ i < j ≤ |F(N)|, (15)

where Be is defined in (5).

2) We define the collections of vectors λ and γ to be

λ ≜ {λe}e∈E , γ ≜ {γe}e∈E .

3) For every f ∈ F(N), we define the collections of vectors λ∂f and γ∂f to be

λ∂f ≜ (λe,f )e∈∂f , γ∂f ≜ (γe)e∈∂f .

Then we define the function Zf to be

Zf (γ∂f ,λ∂f ) ≜
∑
xf

f(xf ) ·
∏
e∈∂f

(
exp
(
λe,f (xe)

)
·
√
γe(xe)

)
, xf ∈ Xf , f ∈ F . (16)
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4) We define the functions FB,d,N and ZB,d,N to be

FB,d,N(γ,λ) ≜ − log

∏
f

Zf (γ∂f ,λ∂f )

 ∈ R ∪ {−∞,∞}, (17)

ZB,d,N(γ,λ) ≜
∏
f

Zf (γ∂f ,λ∂f ) ∈ R≥0 ∪ {∞}. (18)

Then we define Z∗
B,d,N to be the optimal value of a maximin problem:

Z∗
B,d,N ≜ sup

γ
inf
λ

ZB,d,N(γ,λ)

s.t. λe(xe) ∈ R, xe ∈ Xe, γe ∈ B>
e , e ∈ E ,

(19)

where B>
e is defined in (6). The reason why we use supγ instead of maxγ is that the function infλ ZB,d,N(γ,λ) maybe

discontinuous w.r.t. γ ∈
∏

e B>
e . Note that the letter d in Z∗

B,d,N means that it is the optimal value of the dual formulation

of the Bethe partition function, which will be proven in Proposition 16. We also define F ∗
B,d,N to be the optimal value of a

minimax problem:

F ∗
B,d,N ≜ inf

γ
sup
λ

FB,d,N(γ,λ)

s.t. λe(xe) ∈ R, xe ∈ Xe, γe ∈ B>
e , e ∈ E .

(20)

5) We consider another optimization problem that is closely related to Z∗
B,d,N:

Zalt,∗
B,d,N ≜ sup

γ
inf
λ

ZB,d,N(γ,λ)

s.t. λe(xe) ∈ R, xe ∈ Xe, γe ∈ B≥
e , e ∈ E ,

(21)

where B≥
e is defined in (5). Similarly, we define F alt,∗

B,d,N to be

F alt,∗
B,d,N ≜ inf

γ
sup
λ

F alt
B,d,N(γ,λ)

s.t. λe(xe) ∈ R, xe ∈ Xe, γe ∈ B≥
e , e ∈ E ,

(22)

where

F alt
B,d,N(γ,λ) ≜ FB,d,N(γ,λ) = − log

∏
f

Zf (γ∂f ,λ∂f )

. (23)

The only difference between Zalt,∗
B,d,N and Z∗

B,d,N is that in Z∗
B,d,N, we consider the vector γe in B>

e for all e in E , while in

Zalt,∗
B,d,N, we consider the vector γe in B≥

e for all e in E . The difference between F alt,∗
B,d,N and F ∗

B,d,N is the same as the difference

between Zalt,∗
B,d,N and Z∗

B,d,N.

6) For each f ∈ F , we define the belief based on the variables λ∂f and γ∂f to be

bf (xf ) ≜
f(xf ) ·

∏
e∈∂f

(
exp
(
λe,f (xe)

)
·
√

γe(xe)
)

Zf

(
γ∂f ,λ∂f

) ∈ Bf , Zf

(
γ∂f ,λ∂f

)
> 0. (24)

Let If be a subset of ∂f and let Ic
f ≜ ∂f \ If be its complement. The marginal bf,If

(xIf
) is defined to be

bf,If
(xIf

) ≜
∑

xIc
f
∈XIc

f

bf (xf ),

where

XIf
≜
∏
e∈If

Xe, XIc
f
≜
∏
e∈Ic

f

Xe,

xIf
≜ (xe)e∈If

∈ XIf
, xIc

f
≜ (xe)e∈Ic

f
∈ XIc

f
.
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For example, the function bf,{e} is given by

bf,{e}(xe) =
∑

zf : ze=xe

bf (zf ), e ∈ ∂f, f ∈ F . (25)

In the remaining part of this paper, we use the shorthand bf,e for bf,{e} for simplicity.

Similarly, we can relate some of the stationary points of the objective function in the optimization problem (22) to the SPA fixed

points.

Proposition 13. The following two statements hold.

1) The optimization problem (22) is equivalent to the following optimization problem

F alt,∗
B,d,N = inf

γ
sup
λ

{
F alt
B,d,N(γ,λ) +

∑
e

log

(∑
xe

γe(xe)

)}

s.t. λe(xe) ∈ R, γe(xe) ∈ R≥0, xe ∈ Xe,
∑
xe

γe(xe) ∈ R>0, e ∈ E .
(26)

Note that compared with the optimization problem in (22), the constraints γe ∈ B≥
e for all e ∈ E , were changed into the

constraints γe(xe) ∈ R≥0.

2) If there are variables γ and λ such that

a) γe ∈ B>
e for all e ∈ E;

b) λ ∈ R|X |;

c) ∂
∂γe(xe)

F alt
B,d,N + 1 = 0 and ∂

∂λe(xe)
F alt
B,d,N = 0 for all xe ∈ Xe and e ∈ E , i.e., the collection of vectors (γ,λ) is at the

stationary point of the objective function in the optimization problem (26),

then γ and λ correspond to an SPA fixed point.

Proof. See Appendix A. ■

Let us discuss some properties of the scalars F ∗
B,d,N, F alt,∗

B,d,N, and the function F alt
B,d,N(γ,λ) as specified in Definition 12.

Theorem 14. [8], [16] The functions FB,d,N and F alt
B,d,N defined in (17) and (23), respectively, have the following properties.

1) [8, Section 4] For fixed γe ∈ B≥
e for all e ∈ E , both the functions FB,d,N and F alt

B,d,N are concave w.r.t. λ.

2) [16, Section 6.2] For fixed λ and {γe′}e′∈E\{e}, both the functions FB,d,N and F alt
B,d,N are convex w.r.t. γe.

Proof. See Appendix B. ■

Proposition 15. It holds that

F alt,∗
B,d,N ≤ F ∗

B,d,N, Zalt,∗
B,d,N ≥ Z∗

B,d,N.

Proof. As mentioned in Item 5 in Definition 12, the only difference between F ∗
B,d,N and F alt,∗

B,d,N is that

• in F ∗
B,d,N, we consider γe in B>

e for all e ∈ E ;

• in F alt,∗
B,d,N, we consider γe in B≥

e for all e ∈ E .

Then the proposition follows immediately from the fact that B>
e is a subset of B≥

e for all e ∈ E . Finally, comparing the definitions

of Z∗
B,d,N and Zalt,∗

B,d,N in (19) and (21), respectively, with the definitions of F ∗
B,d,N and F alt,∗

B,d,N in (20) and (22), respectively, proving

Zalt,∗
B,d,N ≥ Z∗

B,d,N is equivalent to proving F alt,∗
B,d,N ≤ F ∗

B,d,N.

■
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Now we show that the optimization problem in (19) with optimal value Z∗
B,d,N is a dual formulation of the Bethe partition Z∗

B,p,N

function defined in (12). Another dual formulation is the optimization problem in (21) with optimal value Zalt,∗
B,d,N, which will be

proven in Theorem 57.

Proposition 16. It holds that

Z∗
B,p,N = Z∗

B,d,N
, (27)

or, equivalently,

F ∗
B,p,N = F ∗

B,d,N.

It also holds that (
inf
λ

ZB,d,N(γ,λ)
)
∈ R>0, ∀γe(xe) ∈ R>0, xe ∈ Xe,

∑
xe

γe(xe) = 1, e ∈ E . (28)

Proof. We start by giving an outline of the proof for (27).

• Recall that the optimal value Z∗
B,p,N of the primal formulation, as defined in (12), is related to the minimum of FB,p,N, which

is defined in (10) and consists of the finite sum of the entropy functions in {HB,e}e. The function HB,e is a convex function

whose convex conjugate is a “log-sum-exp” function. We transform the function HB,e into a “log-sum-exp” function for each

e ∈ E in FB,p,N.

• After that, we minimize the transformed function w.r.t. βF only. Solving this minimization problem is equivalent to solving the

convex conjugate of another entropy function, and the resulting function is again a sum of “log-sum-exp” functions. After that,

we obtain the dual formulation of the Bethe partition function.

For details, see the proof in Appendix C. ■

In the following, for simplicity, when we talk about the primal formulation and the dual formulation, we mean the formulation of

the Bethe partition function and the dual formulation of the Bethe partition function, respectively.

We conclude this section by pointing out that the dualization that is used here is different from the approach in [9], [14], [15].

The differences are sketched in Fig. 2:

• Fig. 2(a) shows parts of an S-NFG of interest.

• Fig. 2(b) shows parts of an NFG whose global function is equal to the Bethe free energy function of the S-NFG in Fig. 2(a).

Note that here the global function is the finite sum of the local functions, not the product of the local functions.

• Dualizing the S-NFG in Fig. 2(b) according to [9], [14], [15] yields an NFG as in Fig. 2(d).

• The approach by Heskes [8] can be seen as first modifying Fig. 2(b) to obtain Fig. 2(c). Namely, the equal-contraint function

node in the middle of Fig. 2(b) is replaced by the, functionally equivalent, dashed box in Fig. 2(c). The NFG in Fig. 2(c) is

then dualized and yields the NFG in Fig. 2(e).

C. The Locations of the optimal value for the Dual Formulation

In this section, we study the location of optimal value of the optimization problem in (22). As we will see in Theorem 57, the

optimization problem in (22) is indeed the dual formulation of the Bethe partition function. There are two main goals in this paper.

1) We want to prove that F alt,∗
B,d,N = F ∗

B,d,N = F ∗
B,p,N. By Propositions 15 and 16, we have F alt,∗

B,d,N ≤ F ∗
B,d,N = F ∗

B,p,N. Therefore,

it remains to prove F alt,∗
B,d,N ≥ F ∗

B,d,N, which will be done in Theorem 57.

2) We want to show that there exists a sequence of messages defined based on the locations of the optimal value of the optimization

problem in (22) such that the message sequence converges to an SPA fixed point.
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fi
fj

xe

(a)

βfi
βfj

βfi,e
βfj,e

βe

Mi

=

Mj

FB,fi
FB,fjHB,e

(b)

βfi
βfj

βfi,e
βfj,e

γe

de

Mi
Me

δ

=

Mj

FB,fi
FB,fjHB,e

(c)

λ′
fi,e

λ′
fj,e

λ′
fi,e

+λ′
fj,e

M̂i

+

M̂j

F̂B,fi
F̂B,fjĤB,e

(d)

log
(√

γe
)
+λe log

(√
γe

)
−λe

log
(√

γe
)

λe

M̂i
M̂e

δ̂

M̂j

F̂B,fi
F̂B,fjĤB,e

(e)

Fig. 2: Different dualizations of the Bethe free energy function.

To achieve these two goals, we first define the sequences based on the locations of the optimal value of the optimization problem

in (22).

Definition 17. We make the following definitions.

1) Given γe in B≥
e for each e ∈ E , we define

F̂ alt
B,d,N(γ) ≜ sup

λ
F alt
B,d,N(γ,λ), (29)

where B≥
e is defined in (5).

2) We define {γ(m)}m∈Z>0
to be a sequence satisfying

a) for each e ∈ E and m ∈ Z>0, the element γ(m)
e is in B≥

e , where B≥
e is defined in (5).

b) the associated sequence {F̂ alt
B,d,N(γ

(m))}m converges to F alt,∗
B,d,N:

lim
m→∞

F̂ alt
B,d,N(γ

(m)) = F alt,∗
B,d,N. (30)

3) Given γ(m), we define the sequence
{
λ(n(m))

(
γ(m)

)}
n(m)∈Z>0

to be a sequence such that it converges to one of the locations

of the optimal value for the optimization problem in (29). There are two cases to be considered.

a) If there exists λ∗(γ(m)
)
∈ R|X | such that

F alt
B,d,N

(
N,γ(m),λ∗(γ(m)

))
= sup

λ
F alt
B,d,N(γ

(m),λ),

then we define

λ(n(m))
(
γ(m)

)
= λ∗(γ(m)

)
, n(m) ∈ Z>0.

b) If not, we define
{
λ(n(m))

(
γ(m)

)}
n(m)∈Z>0

to be a sequence satisfying

F alt
B,d,N

(
γ(m),λ(n(m))

(
γ(m)

))
≥ F alt

B,d,N(γ
(m),0), (31)
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lim
n(m)→∞

F alt
B,d,N

(
γ(m),λ(n(m))

(
γ(m)

))
= F̂ alt

B,d,N(γ
(m)). (32)

For simplicity, if there is no ambiguity, in the following we use λ(n) and n instead of λ(n(m))
(
γ(m)

)
and n(m), respectively.

4) For each n and m, we consider the following optimization problem

α∗ ∈ argmaxα∈R∪{−∞,+∞} F
alt
B,d,N(γ

(m), α · λ(n)). (33)

To define a sequence that converges to α∗, there are two cases to be considered.

a) If there exists an α∗ in R, we define the sequence {α(k(m,n))}k(m,n) to be

α(k(m,n)) ≜ α∗, k(m,n) ∈ Z>0. (34)

For example, if case 3a happens, then we have α∗ = 1 and α(k(m,n)) = 1 for all k(m,n) ∈ Z>0.

b) Otherwise, we define the sequence {α(k(m,n))}k(m,n) to be

α(k(m,n)) ≜

 2k(m,n) α∗ = +∞

−2k(m,n) α∗ = −∞
, k(m,n) ∈ Z>0,

where the integer k(m,n) satisfies

F alt
B,d,N(γ

(m), α(k(m,n)) · λ(n)) ≥ F alt
B,d,N(γ

(m),0), k(m,n) ∈ Z>0. (35)

For simplicity, if there is no ambiguity, in the following we use α(k) and k instead of α(k(m,n)) and k(m,n), respectively.

5) For each f ∈ F , we define the collection of variables x∂f,f to be

x∂f,f ≜ (xe,f )e∈∂f ∈ Xf . (36)

We also define a sequence of beliefs on function node f based on the sequences {γ(m)}m∈Z>0
, {λ(n)}n∈Z>0

, and {α(k)}k∈Z>0
.

The belief sequence on function node f is given by

b
(m,n,k)
f (xf ) ≜

f(xf ) ·
∏

e∈∂f

(
exp
(
α(k) · λ(n)

e,f (xe)
)
·
√

γ
(m)
e (xe)

)
Zf

(
γ
(m)
∂f , α(k) · λ(n)

∂f

) , xf ∈ Xf , Zf

(
γ
(m)
∂f , α(k) · λ(n)

∂f

)
> 0, (37)

where

α(k) · λ(n)
∂f =

(
α(k) · λ(n)

e,f (xe)
)
xe∈Xe, e∈∂f, f∈F

∈ R|X |,

Zf

(
γ
(m)
∂f , α(k) · λ(n)

∂f

)
=
∑
xf

f(xf ) ·
∏
e∈∂f

(
exp
(
α(k) · λ(n)

e,f (xe)
)
·
√
γ
(m)
e (xe)

)
.

Then we define the collections of variables b
(m,n,k)
f and b(m,n,k) to be

b
(m,n,k)
f ≜

(
b
(m,n,k)
f (xf )

)
xf∈Xf

,

b
(m,n,k)
F ≜

(
b
(m,n,k)
f

)
f∈F . (38)

6) Let If be a subset of ∂f and let Ic
f = ∂f \ If be its complement. We define the marginal

b
(m,n,k)
f,If

(xIf
) ≜

∑
xIc

f
∈XIc

f

b
(m,n,k)
f (xf ), xIf

∈ XIf
. (39)

7) For simplicity, if there is no ambiguity, we used the shorthands {·}m, {·}n, {·}k, and {·}n,k for {·}m∈Z>0 , {·}n(m)∈Z>0
,

{·}k(n(m),m)∈Z>0
, and {·}n(m),k(n(m),m)∈Z>0

, respectively. We define the following operators

lim
m,n,k→∞

≜ lim
m→∞

lim
n(m)→∞

lim
k(m,n)→∞

,
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lim
m,n→∞

≜ lim
m→∞

lim
n(m)→∞

,

lim
n,k→∞

≜ lim
n(m)→∞

lim
k(m,n)→∞

.

For fixed γ, as proven in Theorem 14, the function F alt
B,d,N1

(γ,λ) is concave w.r.t. λ. For each γ, we can solve F̂ alt
B,d,N(γ) as

defined in (29) by finding the stationary point of F alt
B,d,N2

(γ,λ), which satisfies

∂

∂λe(xe)
F alt
B,d,N = −bfi,e(xe) + bfj ,e(xe) = 0, xe ∈ Xe, e = (fi, fj) ∈ E , (40)

where bfi,e and bfj ,e are given in (25). If(
bfi,e(xe), bfj ,e(xe)

)
̸= (0, 0), xe ∈ Xe, e ∈ E ,

then the equation in (40) implies

exp
(
λe(xe)

)
=

√√√√√√√
Zfi(γ∂f ,λ∂f ) ·

∑
zfj

: ze=xe

fj(zfj ) ·
∏

e′∈∂fj\{e} exp
(
λe′,fj (ze′)

)
·
√

γe′(ze′)

Zfj (γ∂f ,λ∂f ) ·
∑

zfi
: ze=xe

fi(zfi) ·
∏

e′′∈∂fi\{e} exp(λe′′,fi(ze′′)) ·
√

γe′′(ze′′)
∈ R≥0 ∪ {∞}, (41)

xe ∈ Xe, e ∈ E ,

where Zf is defined in (16) for all f ∈ F . Note that λe(xe) does not appear on the righthand side of (41).

D. Algorithms for Solving the Dual Formulation

In this section, we present a double-loop algorithm in [8, Algorithm 2] for solving the minimax optimization problem in (22) by

rewriting the details based on our definitions in the previous sections. The main idea is unchanged.

Definition 18. [8, Algorithm 2] The details of the algorithm are given in Algorithm 1. The algorithm consists of two loops.

1) In the inner loop, we fix γ and find the stationary point of F alt
B,d,N1

(γ,λ) w.r.t. λ.

2) In the outer loop, we fix λ and find the stationary point of F alt
B,d,N1

(γ,λ) w.r.t. γ.

Then we consider the following setup.

1) Let t1, t2 ∈ Z≥0 be the iteration indices.

2) For each e = (fi, fj) ∈ E , we define

λ
(t1)
dl,e ≜

(
λ
(t1)
dl,e(xe)

)
xe

, γ
(t2)
dl,e ≜

(
γ
(t2)
dl,e (xe)

)
xe

, (42)

λ
(t1)
dl,e,fi

≜ λ
(t1)
dl,e, λ

(t1)
dl,e,fj

≜ −λ
(t1)
dl,e. (43)

We also define the message sequence based on the above-defined sequences to be the sequence {µ(t1,t2)
e→f }t1,t2 satisfying

µ
(t1,t2)
e→f (xe) ∝ exp

(
λ
(t1)
dl,e,f (xe)

)
·
√
γ
(t2)
dl,e (xe), xe ∈ Xe, (44)∑

xe

µ
(t1,t2)
e→f (xe) = 1, e ∈ E , f ∈ F . (45)

3) Then we define the following collections of variables:

λ
(t1)
dl ≜

(
λ
(t1)
dl,e

)
e∈E

, γ
(t2)
dl ≜

(
γ
(t2)
dl,e

)
e∈E

, µ(t1,t2) ≜
(
µ
(t1,t2)
e→f (xe)

)
xe∈Xe, e∈∂f, f∈F

.

4) Given λ
(t1)
dl and γ

(t1)
dl , for each f ∈ F , we define the normalization constant Z(t1,t2)

dl,f to be

Z
(t1,t2)
dl,f ≜

∑
xf

f(xf ) ·
∏
e∈∂f

µ
(t1,t2)
e→f (xe).
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If Z(t1,t2)
dl,f is positive-valued, the associated belief on function node f is

b
(t1,t2)
dl,f (xf ) ≜

1

Z
(t1,t2)
dl,f

· f(xf ) ·
∏
e∈∂f

µ
(t1,t2)
e→f (xe), xf ∈ Xf , f ∈ F .

The associated marginal is defined to be

b
(t1,t2)
dl,f,e (xe) ≜

∑
zf : ze=xe

b
(t1,t2)
dl,f,e (zf ), xe ∈ Xe, e ∈ ∂f.

Note the letters “dl” in the above defined variables stands for double loops. The main idea of the algorithm is given as follows. For

details, see Algorithm 1.

5) We randomly generate γ
(0)
dl,e following the uniform distribution in (0, 1]|Xe| for all e ∈ ∂f , and f ∈ F .

6) We randomly generate λ
(0)
dl following the uniform distribution in [−1, 1]|Xe| for all e ∈ ∂f , and f ∈ F .

7) Fixing the index of the outer loop t2 and the vector γ
(t2)
dl , we update λ

(t1)
dl in the inner loop until some termination criterion

is met.5

a) If both Z
(t1−1,t2−1)
dl,fj

and Z
(t1−1,t2−1)
dl,fi

are positive-valued, by the derivations in (40)–(41), to find the stationary point of

F alt,∗
B,d,N1

w.r.t. λ, we update variable λ
(t1)
dl,e such that

λ
(t1)
dl,e(xe) ∝

 λ
(t1−1)
dl,e (xe) if b(t1−1,t2−1)

dl,fi,e
(xe) = b

(t1−1,t2−1)
dl,fj ,e

(xe) = 0

1
2λ

(t1)
′

dl,e (xe) Otherwise
, xe ∈ Xe, e = (fi, fj) ∈ E , i < j, (46)

where

λ
(t1)

′

dl,e (xe) ≜ log

 ∑
zfj

: ze=xe

fj(zfj ) ·
∏

e′∈∂fj\{e}

µ
(t1−1,t2−1)
e′→fj

(ze′)

− log

 ∑
zfi

: ze=xe

fi(zfi) ·
∏

e′∈∂fi\{e}

µ
(t1−1,t2−1)
e′→fi

(ze′)


+ logZ

(t1−1,t2−1)
dl,fi

− logZ
(t1−1,t2−1)
dl,fj

.

b) When some termination criterion is met, we stop updating λ
(t1)
dl and switch to the outer loop.

8) For each t2 ∈ Z>0 and e = (fi, fj) ∈ E , we fix λ
(t1)
dl and update γ(t2) as follows.

a) If both Z
(t1,t2−1)
dl,fj

and Z
(t1,t2−1)
dl,fi

are positive-valued, we update γ
(t2)
dl,e (xe) such that

2

√
γ
(t2)
dl,e (xe) ∝

exp
(
λ
(t1)
dl,e,fi

(xe)
)

Z
(t1,t2−1)
dl,fi

·
∑

zfi
: ze=xe

fi(zfi) ·
∏

e′∈∂fi\{e}

µ
(t1,t2−1)
e′→fi

(ze′)

+
exp
(
λ
(t1)
dl,e,fj

(xe)
)

Z
(t1,t2−1)
dl,fj

·
∑

zfj
: ze=xe

fj(xfj ) ·
∏

e′∈∂fj\{e}

µ
(t1,t2−1)
e′→fi

(ze′), xe ∈ Xe, (47)

∑
e

γ
(t2)
dl,e (xe) = 1, e = (fi, fj) ∈ E . (48)

9) For each t2 ∈ Z>0, after updating γ
(t2)
dl , we switch back to the inner loop, i.e., to step 7, to update λ

(t1)
dl .

10) The outer loop, i.e., the update of γ(t2)
dl , is stopped when some termination criterion is met.

11) A collection of λ(t1)
dl and γ

(t2)
dl is a called a fixed point of Algorithm 1 if

λ
(t1)
dl = λ

(t1−1)
dl , γ

(t2)
dl = γ

(t2−1)
dl . (49)

Proposition 19. Each fixed point of Algorithm 1 with γe ∈ B>
e for all e ∈ E corresponds to a stationary point of F alt

B,d,N.

Proof. See Appendix D. ■

5In general, the termination criterion is a combination of numerical convergence and an upper bound on the number of iterations.
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Algorithm 1 The double-loop algorithm in Definition 18

Set t1 = t2 = 0.

Generate λ
(t1)
dl,e(xe) following the uniform distribution in [−1, 1] for all xe ∈ Xe and e ∈ E .

Generate γ
(t2)
dl (xe) following the uniform distribution in (0, 1] for all xe ∈ Xe and e ∈ E .

repeat

repeat

for ne = 1 to |E| do

Update λ
(t1)
dl,e(xe) according to (46).

Increase t1 by one.

end for

until Some termination criterion is met. (The end of inner loop)

for ne = 1 to |E| do

Update γ
(t2)
dl,e (xe) according to (47) and (48).

Increase t2 by one.

end for

until Some termination criterion is met. (The end of outer loop)

Algorithm 2 The alternative SPA

Set t1 = t2 = 0.

Generate λ
(t1)
dl,e(xe) following the uniform distribution in [−1, 1] for all xe ∈ Xe and e ∈ E .

Generate γ
(t2)
dl (xe) following the uniform distribution in (0, 1] for all xe ∈ Xe and e ∈ E .

repeat

for ne = 1 to |E| do

Update λ
(t1)
dl,e(xe) according to (46).

Update γ
(t2)
dl,e (xe) according to (50) and (51).

Increase t1 and t2 by one, respectively.

end for

until Some termination criterion is met.

Definition 20. We give the details of Algorithm 2 in the following. There are two main differences between Algorithm 2 and

Algorithm 1.

1) In Algorithm 2, we replace step 8a in Definition 18 by the following step.

• If both Z
(t1,t2−1)
dl,fj

and Z
(t1,t2−1)
dl,fi

are positive-valued, we update γ
(t2)
dl,e (xe) such that

√
γ
(t2)
dl,e (xe) ∝

exp
(
λ
(t1)
dl,e,fi

(xe)
)

Z
(t1,t2−1)
dl,fi

·

( ∑
zfi

: ze=xe

fi(zfi) ·
∏

e′∈∂fi\{e}

µ
(t1,t2−1)
e′→fi

(ze′)

)

·
exp
(
λ
(t1)
dl,e,fj

(xe)
)

Z
(t1,t2−1)
dl,fj

·

( ∑
zfj

: ze=xe

fj(xfj ) ·
∏

e′∈∂fj\{e}

µ
(t1,t2−1)
e′→fi

(ze′)

)1/2

, (50)

∑
e

exp
(
λ
(t1)
dl,e(xe)

)
·
√
γ
(t2)
dl,e (xe) = 1. (51)
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f2

f1

x1 x2

Fig. 3: S-NFG N1.

2) In Algorithm 2, we set t1 = t2 and we first update λ
(t1)
dl,e(xe) according to steps 7a an 7b in Definition 18 and then update

γ
(t2)
dl,e (xe) following the previous step. After updating λ

(t2)
dl,e(xe) and γ

(t2)
dl,e (xe) for all xe ∈ E , we increase both t1 and t2 by

one.

Proposition 21. Algorithm 2 is equivalent to the SPA in Definition 5. Each fixed point of Algorithm 2 with γe ∈ B>
e for all e ∈ E

satisfies (167) and (168), i.e., corresponds to a stationary point of F alt
B,d,N.

Proof. See Appendix E. ■

We conclude this section with some remarks.

1) Based on the definition of an S-NFG and its associated partition function and SPA in Section II, we have defined the Bethe

partition function, which can be viewed as an approximation of the partition of the S-NFG. In Theorem 10, we have recalled

the mains results of [9], which relate some of the SPA fixed points to some of the stationary point of the Bethe free energy

function.

2) We have derived one of the dual formulations of the Bethe partition function of the S-NFG, which is denoted by Z∗
B,d,N. We

have also defined the quantity Zalt,∗
B,d,N which provides an upper bound of the Bethe partition function. We want to show that

Z∗
B,d,N = Zalt,∗

B,d,N in the remaining part of this paper. We have defined the sequences based on the locations of optimal value

for the optimization problem in (21).

3) We have presented an algorithm for solving Zalt,∗
B,d,N, which contains two loops. We have shown that the SPA can be recovered

from this double-loop algorithm.

IV. THE ANALYSIS OF A SINGLE-CYCLE S-NFG EXAMPLE

In this section, in order to have a better understanding of our main results that will be presented in Section VII, we consider

a simple single-cycle S-NFG N1, as shown in Fig. 3. We want to relate one of the locations of the optimal value F ∗
B,p,N1

for the

optimization problem in (13) to an SPA fixed point for N1. We propose two ways to relate these two concepts.

1) [9, Argument of Conjecture 2] For N1 consisting of local functions f1 and f2, which equal zero for some x1 and x2, we

consider a modification of the local functions by adding an infinitesmal positive-valued term to each zero factor. In this modified

S-NFG, the location of the optimal value for the optimization problem in (13) corresponds to an SPA fixed point [9, Theorem

3]. In Item 1 of Theorem 27, we will show that when we let these infinitesmal positive-valued terms converge to zero, the SPA

fixed point for the modified S-NFG converges to an SPA fixed point for the original S-NFG N1 where some local functions’

values are zero. Besides that, in (69) and (70) in Proposition 27, we will prove that the belief on each edge obtained by the

SPA fixed point for the modified S-NFG converges to 1/2 ·
(
1, 1

)T
as the infinitesmal positive-valued terms go to zero.

2) Another way is that we consider the dual formulation of the optimization problem in (13), i.e., the optimization problem in (21)

with optimal value Zalt,∗
B,d,N1

. We let γ(m) and λ(n) be sequences such that the associated objective function ZB,d,N1
(γ(m),λ(n),
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as defined in (18), converges to Zalt,∗
B,d,N1

.6 Then in Theorem 40, we will prove that the collection of messages µ(m,n) converges

to an SPA fixed point of N1, where µ(m,n) is given by

µ(m,n) =
(
µ
(m,n)
e→f (xe)

)
xe∈Xe, e∈∂f, f∈F ,

µ
(m,n)
e→f (xe) ≜ exp

(
λ
(n)
e,f (xe)

)
·
√

γ
(m)
e (xe).

Also, in Theorem 36, we will prove that the set of beliefs b(m,n)
F defined in (38), which are functions of γ(m) and λ(n), satisfies

lim
n→∞

b
(m,n)
f1,e

(xe) = lim
n→∞

b
(m,n)
f2,e

(xe) = γ(m)
e (xe), xe ∈ Xe, m ∈ Z>0, γ(m)

e ∈ B>
e , e ∈ E , (52)

which shows that by varying γ(m), we can let the marginals of the beliefs on edges b
(m,n)
F converge to any point in

∏
e B>

e .

As we will see in Theorems 36 and 40, by the second method, we can show that any point in B(N1) with

bf1 = bf2 =

γ
(m)
1 (1) 0

0 γ
(m)
1 (2)

 , γ
(m)
1 ∈ B>

1 ,

corresponds an SPA fixed point of N1, which indicates that the second method is a promising method for generalizing our

results in this section to the general S-NFGs.

Let us provide some technical details of the S-NFG N1 first.

Definition 22. We make the following definitions for N1.

1) The dots in Fig. 3 are used for denoting the row indices of matrices f1 and f2 associated with function nodes f1 and f2,

respectively. To be more specific, the rows in the following matrices

f1 ≜
(
f1(x1, x2)

)
x1,x2

, f2 ≜
(
f2(x1, x2)

)
x1,x2

are indexed by x1 and the columns are indexed by x2. Because we want to discuss different f1 and f2 in N1, the details of

f1 and f2 will be given in the coming sections.

2) The set of edges is given by E = [2].

3) The variables x1 and x2 take value in the alphabet X1 = X2 = [2] = {1, 2}.

Based on the previous definitions, we further investigate the function F alt,∗
B,d,N1

and the associated sequences γ(m) and λ(n) for N1,

which are specified in Definition 17.

Remark 23. Let us provide specific properties of the dual function F alt,∗
B,d,N1

and the associated sequences γ(m) and λ(n) for N1.

1) For simplicity, we do not consider the sequence {α(k)}k in this example because it is unnecessary for obtaining the main

results in this section.

2) By the definition of γ(m) in (29), the collection of vectors γ(m) satisfies

γ
(m)
1 (1) + γ

(m)
1 (2) = 1, γ

(m)
2 (1) + γ

(m)
2 (2) = 1, m ∈ Z>0. (53)

3) By the definition of F alt
B,d,N1

(γ,λ) in (17) for N1, the function F alt
B,d,N1

(γ(m),λ(n)) equals

F alt
B,d,N1

(γ(m),λ(n))
(a)
= − logZf1

(
γ(m), λ(n)

)
− logZf2

(
γ(m), λ(n)

)
. (54)

6Although by Propositions 15 and 16, we only know that Zalt,∗
B,d,N1

≥ Z∗
B,d,N1

= Z∗
B,p,N1

, in Theorem 57 in Section VII, we will prove that Zalt,∗
B,d,N = Z∗

B,p,N,

which shows that the optimization problem in (21) is the dual formulation of the Bethe partition function.
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4) The functions b
(m,n)
f1

(x1, x2) and b
(m,n)
f2

(x1, x2) defined in (37) can be written as

b
(m,n)
f1

(x1, x2) = f1(x1, x2) ·
exp
(
λ
(n)
1 (x1) + λ

(n)
2 (x2)

)
·
√

γ
(m)
1 (x1) · γ(m)

2 (x2)

Zf1

(
γ(m), λ(n)

) , Zf1

(
γ(m), λ(n)

)
> 0, (55)

b
(m,n)
f2

(x1, x2) = f2(x1, x2) ·
exp
(
−λ

(n)
1 (x1)− λ

(n)
2 (x2)

)
·
√
γ
(m)
1 (x1) · γ(m)

2 (x2)

Zf2

(
γ(m), λ(n)

) , Zf2

(
γ(m), λ(n)

)
> 0. (56)

We also define the matrices b
(m,n)
f1

and b
(m,n)
f2

to be

b
(m,n)
fi

≜

b
(m,n)
fi

(1, 1) b
(m,n)
fi

(1, 2)

b
(m,n)
fi

(2, 1) b
(m,n)
fi

(1, 2)

 , i ∈ [2]. (57)

The collection of belief b(m,n)
F is defined to be

b
(m,n)
F ≜

(
b
(m,n)
f1

b
(m,n)
f2

)
.

5) The marginal b(m,n)
fi,e

given in (25) can be rewritten as

b
(m,n)
fi,1

(x1) =
∑
x2

b
(m,n)
fi

(x1, x2), b
(m,n)
fi,2

(x2) =
∑
x1

b
(m,n)
fi

(x1, x2), i ∈ [2]. (58)

For the S-NFG N1 given in Definition 22, we can obtain explicit expressions for the sequences {γ(m)} and {λ(n)}. Although

these expressions are not unique, analyzing the sequences with explicit expressions helps us to better understand the proof of the

main results for this single-cycle S-NFG and even for the general S-NFGs.

A. An Example Single-Cycle S-NFG with Positive-Valued Entries Only

In this subsection, we discuss N1 in Fig. 3 with positive-valued local functions only.

Example 24. For r ∈ R>0, we consider N1, where the local functions associated with function nodes f1 and f2 are given by f1,r

and f2,r:

f1,r =

f1,r(1, 1) f1,r(1, 2)

f1,r(2, 1) f1,r(2, 2)

 ≜

 1 1

δ1(r) 1

 , (59)

f2,r =

f2,r(1, 1) f2,r(1, 2)

f2,r(2, 1) f2,r(2, 2)

 ≜

 1 δ2(r)

δ3(r) 1

 , (60)

which means that

f1 = f1,r, f2 = f2,r.

Here, the functions δ1(r), δ2(r), and δ3(r) are arbitrary functions such that

δ1(r), δ2(r), δ3(r) ∈ R>0, r ∈ R>0, (61)

lim
r↓0

δi(r) = 0, i ∈ [3]. (62)

In this section, we let r go to zero and thus some of the entries in the local functions converge to zero. We want to study whether the

associated location of the optimal value for the primal formulation converges. Let us make some definitions for the above-considered

S-NFG N1.

Definition 25. The vector δ(r) is defined to be

δ(r) ≜
(
δ1(r) δ2(r) δ3(r)

)
. (63)
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The matrix GN1,r is defined to be

GN1,r ≜ f1,r · fT
2,r

=

 δ2(r) + 1 δ3(r) + 1

δ1(r) + δ2(r) δ1(r) · δ3(r) + 1

 ∈ R2×2
>0 . (64)

Let Λmax(r) be the eigenvalue of GN1,r with the largest magnitude and vL and vR be the associated left and right eigenvectors,

respectively. It follows from Perron-Frobenius theory that Λmax(r) is unique and nonnegative real-valued, and that vL and vR can

be chosen to have only positive entries. (See, e.g., [18, Section 8.3].) For convenience, we define c1(r) to be

c1(r) ≜
√(

δ1(r) · δ3(r)− δ2(r)
)2

+ 4
(
δ1(r) + δ2(r)

)
·
(
1 + δ3(r)

)
.

Proposition 26. The following properties hold for the S-NFG N1 considered in Definition 22 and Example 24.

1) [16, Corollary 2] Both the Bethe free energy function FB,p,N1 and its alternative F
(1)
B,p,N1

are convex w.r.t. β ∈ B(N1), where

FB,p,N1
and F

(1)
B,p,N1

for N1 are defined in (10) and (11), respectively, and the set B(N1) is defined in (7).

2) [9, Theorem 3] The location for the optimal value F ∗
B,p,N1

are given by the SPA fixed-point messages.

3) If |δi(r)| < 1 for all i ∈ [3], we have

c1(r) ≥ max
(
2δ2(r), 2δ1(r) · δ3(r)

)
. (65)

4) The SPA fixed-point messages µ
(t)
1→f1

and µ
(t)
1→f2

are proportional to vL and vR, respectively, i.e., µ(t)
1→f1

∝ vL and µ
(t)
1→f2

∝

vR.

5) The beliefs of function nodes evaluated at the SPA fixed point, as defined in (2), satisfy

βf1(x1, x2) ∝ vL(x1) · f1,r(x1, x2)

(∑
x′
1

·f2,r(x′
1, x2) · vR(x′

1)

)
, (66)

βf2(x1, x2) ∝

(∑
x′
1

vL(x
′
1) · f1,r(x′

1, x2)

)
· f2,r(x1, x2) · vR(x1). (67)

6) The associated Bethe partition function Z∗
B,p,N1

satisfies

Z∗
B,p,N1

= Z∗
B,d,N1

= Λmax(r) = FB,p,N1
(β) s.t. β ∈ B(N1), where βf1 satisfies (66) and βf2 satisfies (67). (68)

Proof. See Appendix F. ■

Then we analyze the properties of the beliefs at the SPA fixed point and the primal formulation as r ↓ 0.

Proposition 27. The following properties hold for the S-NFG N1 considered in Example 24.

1) The eigenvalue Λmax(r) for matrix GN1,r, as specified in Definition 25, satisfy

lim
r↓0

Λmax(r) = 1.

The associated eigenvectors, as specified in Definition 25, satisfy

lim
r↓0

vL(r) =
(
0 1

)T
, lim

r↓0
vR(r) =

(
1 0

)T
.

2) The SPA fixed-point messages µ(t) satisfy

lim
r↓0

µ
(t)
1→f1

=
(
0 1

)T
, lim

r↓0
µ
(t)
1→f2

=
(
1 0

)T
,

lim
r↓0

µ
(t)
2→f1

=
(
1 0

)T
, lim

r↓0
µ
(t)
2→f2

=
(
0 1

)T
.
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3) The beliefs evaluated at the SPA fixed point satisfy

lim
r↓0

βf1 =
1

2

1 0

0 1

 , (69)

lim
r↓0

βf2 =
1

2

1 0

0 1

 . (70)

Proof. See Appendix G. ■

For comparison, we also study the dual formulation.

Proposition 28. The following properties hold for the S-NFG N1 considered in Example 24.

1) If we set γ and λ to be the collections of the vectors satisfying

γe(xe) ∝
√

µ
(t)
e,f1

(xe) · µ(t)
e,f2

(xe), xe ∈ Xe, γe ∈ B>
e , e ∈ E , (71)

exp(λe(xe)) =

√√√√µ
(t)
e,f1

(xe)

µ
(t)
e,f2

(xe)
, xe ∈ Xe, e ∈ E , (72)

where the SPA fixed-point messages µ(t) are given in (174)–(177) in the proof of Proposition 27, then the above given (γ,λ)

are at the location of the optimal value for the dual formulation in (19). If we let r ↓ 0, the associated optimal location of the

optimal value satisfies

lim
r↓0

γe =
1

2

(
1 1

)T
, e ∈ E , (73)

lim
r↓0

(
exp(λ1(1)) exp(λ1(2))

)
=
(
0 ∞

)
, (74)

lim
r↓0

(
exp(λ2(1)) exp(λ2(2))

)
=
(
∞ 0

)
. (75)

2) The quantity Zalt,∗
B,d,N1

equals the Bethe partition function of

Zalt,∗
B,d,N1

= Z∗
B,d,N1

= Z∗
B,p,N1

= Λmax. (76)

Proof. See Appendix H. ■

We summarize the above results as follows.

1) Because all the local functions are positive-valued, in Proposition 26, we showed that the locations of the optimal values for

both primal and dual formulations correspond to an SPA fixed point.

2) Because N1 in Fig. 3 is a single-cycle S-NFG, the SPA is equivalent to applying the power method on the matrix associated

with N1, and the SPA fixed-point messages correspond to the eigenvectors of the matrices f1,r · fT
2,r and fT

1,r · f2,r.

3) In (69) and (70) in Proposition 28, we showed that the location of the optimal value for the primal formulation converge as

follows:

lim
r↓0

βf1,1(x1) = lim
r↓0

βf2,1(x1) = lim
r↓0

βf1,2(x1) = lim
r↓0

βf2,2(x1) =
1

2
, x1 ∈ Xe.

4) In Proposition 28, we showed that one of the locations of the optimal value for the dual formulation satisfies

lim
r↓0

γe =
1

2

(
1 1

)T
, e ∈ E . (77)
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B. An Example Single-Cycle S-NFG with Zero Entries

In this subsection, we consider N1 in Fig. 3 with the details specified in Example 29. The remaining details of N1 are given in

Definition 22. In this S-NFG, we consider local functions f
(1)
1,r and f2 for function nodes f1 and f2 such that limr↓0 f

(1)
1,r = f1. (For

details, see Example 29 below.) We want to see that whether the beliefs evaluated at the associated SPA fixed point still converge to

the limits in (69) and (70) as r goes to zero.

Example 29. In this section, we consider S-NFG N1, where the local functions for function nodes f1 and f2 are given by

f
(1)
1,r =

f
(1)
1,r (1, 1) f

(1)
1,r (1, 2)

f
(1)
1,r (2, 1) f

(1)
1,r (2, 2)

 ≜

1 + δ2(r) 1

δ1(r) 1

 , f2 =

f2(1, 1) f2(1, 2)

f2(2, 1) f2(2, 2)

 =

1 0

0 1

 ,

where δ1(r) and δ2(r) are defined in Example 24. Let Λ(1)
max(r) be the eigenvalue of the matrix f

(1)
1,r with the largest magnitude and

v
(1)
L and v

(1)
R be the associated left and right eigenvectors, respectively.

Proposition 26 still holds for the S-NFG N1 considered in Definition 22 and Example 29 (modulo the notational changes mentioned

in the following proposition).

Proposition 30. Proposition 26 still holds for the S-NFG N1 considered in Definition 22 and Example 29 after making the following

the notational changes.

1) The local functions f1,r and f2,r are replaced by f
(1)
1,r and f2, respectively.

2) The eigenvalue Λmax(r) is replaced by Λ
(1)
max(r).

3) The vectors vL and vR are replaced by v
(1)
L and v

(1)
R , respectively

Proof. The proof is similar to the proof of Proposition 26 and thus it is omitted here. ■

However, some of the properties in Proposition 27 do not hold for the S-NFG N1 considered in this section.

Proposition 31. The following properties hold for the S-NFG N1 considered in Definition 22 and Example 29.

1) Items 1 and 2 in Proposition 27 hold after making the the notational changes in Proposition 30.

2) If we set δ2(r) =
√
cδ · δ1(r) for some cδ ∈ R≥0, the beliefs evaluated at the associated SPA fixed point satisfy

lim
r↓0

βf1 =

 1
2 + fδ(cδ)

8+2fδ(cδ)
0

0 1
2 − fδ(cδ)

8+2fδ(cδ)

 , (78)

lim
r↓0

βf2 = lim
r↓0

βf1 , (79)

where fδ(cδ) ≜ cδ +
√
c2δ + 4cδ ∈ R>0. For any 1/2 ≤ αδ < 1, we can find a cδ ∈ R>0 such that

lim
r↓0

βf1 = lim
r↓0

βf2 =

αδ 0

0 1− αδ

 .

Proof. The proof is similar to the proof of Proposition 27 and thus it is omitted here. ■

Comparing Proposition 31 with Proposition 27, for the S-NFG considered in this paper, we can let the beliefs evaluated at the

SPA fixed point converge to different limits instead of the limits in (69) and (70) by suitably defining δ2(r) based on δ1(r).
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C. Another Example Single-Cycle S-NFG with Zero Entries

In this subsection, we consider N1 in Fig. 3 with the details specified in the upcoming Example 32. The remaining details of N1

are as in Definition 22. There are two main goals in the subsection.

1) The first goal is to compare the results obtained in this subsection with the results obtained in Section IV-A.

a) In Section IV-A, we considered a modified S-NFG such that all the local function are positive-valued, and we found the

locations of the optimal value for the primal and dual formulations. As proven in Propositions 26 and 28, these locations

correspond to an SPA fixed point. Then we some entries in the local functions converge to zero. The associated locations

and the SPA fixed-point messages converge. In particular, the SPA fixed point for the modified S-NFG converges to the

SPA fixed point of the original S-NFG with zero-valued local functions.

b) In this section, we directly consider the S-NFG with zero-valued local functions, and we will show that any collection of

vectors γ ∈
∏

e B>
e with γ1 = γ2 corresponds to the location of the optimal value F alt,∗

B,d,N1
of the optimization problem

in (22) as well as an SPA fixed point of the S-NFG N1. (For details, see Proposition 35 and Theorem 40.) It is different

from the results obtained in Section IV-A, where we only show that the γ in (77) corresponds to an SPA fixed point of

N1 considered in Example 32.

2) The second goal is to understand the main idea of the proof for the general S-NFG in Section VII by analyzing this simple

example. Note that the main results in this subsection are obtained by analyzing the location of the optimal value for the

optimization problem in (22), which is similar to the main idea in Section VII. In Definitions 33, we will specify the sequence

{λ(n)}n∈Z>0
and the vector γ(1) such that F alt

B,d,N1
(γ(1),λ(n)) converge to F alt,∗

B,d,N1
as n → ∞. Based on that, in Theorem 38, we

will show F alt,∗
B,d,N1

= F ∗
B,d,N1

= F ∗
B,p,N1

, and in Theorem 40, we will prove that the collection of messages µ(1,n) satisfying (91)

converges to SPA fixed-point messages. The idea of these Theorems’ proof is similar to the idea of the main results’ proof in

Section VII.

Example 32. The local functions for function node f1 and f2 are given by limr↓0 f1,r and limr↓0 f2,r

f1 = lim
r↓0

f1,r = lim
r↓0

 1 1

δ1(r) 1

 =

1 1

0 1

 , f2 = lim
r↓0

f2,r = lim
r↓0

 1 δ2(r)

δ3(r) 1

 =

1 0

0 1

 ,

where δ1(r), δ2(r), and δ3(r) are defined in Example 24. Note that the left and right eigenvectors of f1 are (0 1)T and (1 0)T,

respectively.

We define the sequences {γ(k)}k and {λ(n)}n in the following such that they correspond to the locations of the optimal value for

the dual formulation. (For details, see Proposition 35 in the following text.)

Definition 33. We make the following definitions for the sequences {γ(k)}k and {λ(n)}n.

1) We fix k = 1 and define γ(1) to be

γ(1)
e ∈ B>

e , e ∈ E = [2],

γ
(1)
1 (xe) = γ

(1)
2 (xe), xe ∈ Xe. (80)

2) We consider the following sequence of {λ(n)}n:

λ
(n)
1 (1) = −n, λ

(n)
1 (2) = 0, λ

(n)
2 (1) = n, λ

(n)
2 (2) = 0.

The definition of λ(n) in Definition 33 implies

exp
(
λ
(n)
1 (x1) + λ

(n)
2 (x1)

)
= 1, x1 ∈ [2], n ∈ Z>0,
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lim
n→∞

exp
(
λ
(n)
1 (1) + λ

(n)
2 (2)

)
= lim

n→∞
exp(−n) = 0.

Remark 34. We make the following remarks for the functions and the sequences relating to the S-NFG N1 specified in Definition 22

and Example 32.

1) The associated Bethe free energy function FB,p,N defined in (10) for N1 satisfies

FB,p,N1
(β) = 0, β ∈ B(N1), (81)

where B(N1) is defined in (7). The above expression implies

F ∗
B,p,N1

= 0. (82)

2) The function Zf1 defined in (16) equals

Zf1

(
γ, λ

)
=

∑
x1,x2∈{(1,1),(1,2),(2,2)}

exp
(
λ1,f1(x1) + λ2,f1(x2)

)
·
√
γ1(x1) · γ2(x2)

(a)
= exp

(
λ1(1) + λ2(1)

)
·
√

γ1(1) · γ2(1)

+ exp
(
λ1(1) + λ2(2)

)
·
√

γ1(1) · γ2(2)

+ exp
(
λ1(2) + λ2(2)

)
·
√

γ1(2) · γ2(2), (83)

where step (a) follows from the definition of λe,f in (15). Similarly, the function Zf2 defined in (84) equals

Zf2

(
γ, λ

)
= exp

(
−
(
λ1(1) + λ2(1)

))
·
√

γ1(1) · γ2(1)

+ exp
(
−
(
λ1(2) + λ2(2)

))
·
√
γ1(2) · γ2(2). (84)

3) By the definition of γ(1) in Definition 33, we have γ
(1)
e ∈ B>

e for all e ∈ E = [2]. Then the functions Zf1 and Zf2 satisfy

Zf1

(
γ(1), λ(n)

)
, Zf2

(
γ(1), λ(n)

)
∈ R>0, n ∈ Z>0, (85)

which implies b
(1,n)
f1

in (55) and b
(1,n)
f2

in (56) are well defined, i.e.,

∃(x1, x2) ∈ [2]× [2] s.t. b
(1,n)
f1

(x1, x2) ∈ R>0, n ∈ Z>0,

∃(x′
1, x

′
2) ∈ [2]× [2] s.t. b

(1,n)
f2

(x′
1, x

′
2) ∈ R>0, n ∈ Z>0.

We focus on the optimization problem defined in (22) first. We show that the considered sequence {λ(n)}n∈Z>0
converges to the

location of the optimal value F̂ alt
B,d,N1

and the sequences {λ(n)}n∈Z>0
and γ(1) converges to one of the locations of the optimal value

for the dual formulation.

Proposition 35. Consider the S-NFG N1 specified in Definition 22 and Example 32.

1) It holds that

lim
n→∞

F alt
B,d,N1

(γ,λ(n)) = F̂ alt
B,d,N1

(γ)

= −2 log
(√

γ1(1) · γ2(1) +
√

γ1(2) · γ2(2)
)
, γe ∈ B≥

e , e ∈ E , (86)

where B≥
e and F̂ alt

B,d,N1
are defined in (5) and (29), respectively.

2) It holds that

lim
n→∞

F alt
B,d,N1

(γ(1),λ(n)) = F̂ alt
B,d,N1

(γ(1)) = F ∗
B,d,N1

= F alt,∗
B,d,N1

= F ∗
B,p,N1

= 0, m ∈ Z>0. (87)

Recall that γ(1) and the sequence {λ(n)}n are specified in Definitions 33.
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Proof. See Appendix I. ■

Now we focus on the optimal value F ∗
B,p,N1

of the optimization problem in (13). We want to show that the beliefs associated with

the sequence as defined in (57) converge to the location of the optimal value for the primal formulation. The first step is to show

that the collection of beliefs converges to the LMP B(N1) as n → ∞.

Lemma 36. Consider the S-NFG N1 specified in Definition 22 and Example 32. The collection of the beliefs b(1,n)f1
and b

(1,n)
f2

defined

in (55) and (56) satisfies

lim
n→∞

b
(1,n)
fi

=

γ
(1)
1 (1) 0

0 γ
(1)
1 (2)

 , fi ∈ {f1, f2},

lim
n→∞

b
(1,n)
F ∈ B(N1). (88)

Proof. See Appendix J. ■

By setting

βf1 = b
(1,n)
f1

, βf2 = b
(1,n)
f2

,

where b
(1,n)
f1

and b
(1,n)
f2

are defined in (55) and (56), the objective function F
(1)
B,p,N1

for the primal formulation becomes

F
(1)
B,p,N1

(b
(1,n)
F ) = − logZf1

(
γ(1), λ(n)

)
− logZf2

(
γ(1), λ(n)

)
+
∑
x1,x2

b
(1,n)
f1

(x1, x2) · (λ(n)
1 (x1) + λ

(n)
2 (x2))

−
∑
x1,x2

b
(1,n)
f2

(x1, x2) · (λ(n)
1 (x1) + λ

(n)
2 (x2))

+
∑
e

∑
xe: γ

(1)
1 (xe)>0

b
(1,n)
f1,e

(xe) + b
(1,n)
f2,e

(xe)

2
· log

(
2γ

(1)
e (xe)

b
(1,n)
f1,e

(xe) + b
(1,n)
f2,e

(xe)

)
, (89)

where F
(1)
B,p,N1

is defined in (11).

Now we want to prove that the collection of beliefs b
(1,n)
F associated with the sequences {λ(n)}n∈Z>0

converges to the location of

the optimal value for the primal formulation, i.e, the sequence {b(1,n)F }n∈Z>0
converges and limn→∞ F

(1)
B,p,N1

(b
(1,n)
F ) = F alt,∗

B,d,N1
= 0.

By (87) and the expression of F alt
B,d,N1

in (54), we know that the first two terms in (89) converge to zero as n → ∞. It is sufficient

to prove that the remaining terms in (89) converge to zero as well.

Lemma 37. Considering the sequence λ(n) given in Definition 33, we obtain

lim
n→∞

(∑
x1,x2

b
(1,n)
f1

(x1, x2) ·
(
λ
(n)
1 (x1) + λ

(n)
2 (x2)

)
−
∑
x1,x2

b
(1,n)
f2

(x1, x2) ·
(
λ
(n)
1 (x1) + λ

(n)
2 (x2)

))
= 0.

Proof. See Appendix K. ■

Theorem 38. For the sequence λ(n) specified in Definition 33, it holds that

lim
n→∞

F
(1)
B,p,N1

(b
(1,n)
F ) = F alt,∗

B,d,N1
= F ∗

B,d,N1
= F ∗

B,p,N1
= 0, (90)

where b
(1,n)
f1

and b
(1,n)
f2

are given in (55) and (56), the function F
(1)
B,p,N1

is given in (11), the quantity F alt,∗
B,d,N1

is defined in (22), the

quantity F ∗
B,d,N1

is defined in (20), and the quantity F ∗
B,p,N1

is the minimum of the constrained Bethe partition function as defined

in (13).

Proof. See Appendix L. ■
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After relating the sequences γ(1) and {λ(n)}n to the locations of the optimal value for the primal and dual formulations, we want

to relate these sequences to an SPA fixed point for the considered S-NFG. We first define messages based on the sequences.

Definition 39. For each e = (f1, f2) ∈ [2], we define

µ
(1,n)
e→fi

(xe) ≜ exp
(
λ
(n)
e,fi

(xe)
)
·
√
γ
(1)
e (xe), xe ∈ Xe, i ∈ [2]. (91)

Z(1,n)
µe→fi

≜
∑

xe∈Xe

µ
(1,n)
e→fi

(xe), i ∈ [2], (92)

µ
(1,n)
e→f1,SPA

(xe) ≜
1

C
(1,n)
e→f1

·
b
(1,n)
f2,e

(xe)

µ
(1,n)
e→f2

(xe)
, µ

(1,n)
e→f2,SPA

(xe) ≜
1

C
(1,n)
e→f2

·
b
(1,n)
f1,e

(xe)

µ
(1,n)
e→f1

(xe)
, (93)

where C
(1,n)
e→f1

and C
(1,n)
e→f2

are normalization constants:

C
(1,n)
e→f1

≜
∑
xe

b
(1,n)
f2,e

(xe)

µ
(1,n)
e→f2

(xe)
, C

(1,n)
e→f2

≜
∑
xe

b
(1,n)
f1,e

(xe)

µ
(1,n)
e→f1

(xe)
, (94)

and the marginal bf,e for f ∈ {f1, f2} and e ∈ [2] is defined in (64).

Theorem 40. The following equation for SPA fixed-point messages holds:

lim
n→∞

µ
(1,n)
e→fi,SPA

(xe) = lim
n→∞

µ
(1,n)
e→fi

(xe)

Z
(1,n)
µe→fi

∈ R≥0, xe ∈ Xe, e = (f1, f2) ∈ [2], i ∈ [2], (95)

where the vector µ(1,n)
e→fi

is defined in (91), the constant Z(1,n)
µe→fi

is defined in (92), and messages µ(1,n)
e→f1,SPA

and µ
(m,n)
e→f2,SPA

are defined

in (93). It shows that the message sequence µ(1,n) ≜ {µ(1,n)
e→f }e∈∂f,f∈F converges to an SPA fixed point as n → ∞. In particular, it

holds that

lim
n→∞

(
µ
(1,n)
1→f1,SPA

(1) µ
(1,n)
1→f1,SPA

(2)
)T

=
(
0, 1

)T
, lim

n→∞

(
µ
(1,n)
2→f1,SPA

(1) µ
(1,n)
2→f1,SPA

(2)
)T

=
(
1, 0

)T
,

which, by Example 32, shows that the vectors (µ
(1,n)
1→f1,SPA

(xe))xe∈Xe
and (µ

(1,n)
2→f1,SPA

(xe))xe∈Xe
converge to the left and right

eigenvectors of the matrix f1 · fT
2 , respectively, where f1 and f2 are given in Example 32.

Proof. For the sequence λ(n) specified in Definition 33, it holds that

lim
n→∞

µ
(1,n)
1→f1

(1)

Z
(1,n)
µ1→f1

= lim
n→∞

exp(−n) ·
√
γ
(1)
1 (1)

exp(−n) ·
√

γ
(1)
1 (1) +

√
γ
(1)
1 (2)

= 0.

Similarly, we obtain

lim
n→∞

µ
(1,n)
1→f1

(2)

Z
(1,n)
µ1→f1

= 1, lim
n→∞

µ
(1,n)
2→f1

(1)

Z
(1,n)
µ2→f1

= 1, lim
n→∞

µ
(1,n)
2→f1

(2)

Z
(1,n)
µ2→f1

= 0,

lim
n→∞

µ
(1,n)
1→f2

(1)

Z
(1,n)
µ1→f2

= 1, lim
n→∞

µ
(1,n)
1→f2

(2)

Z
(1,n)
µ1→f2

= 0, lim
n→∞

µ
(1,n)
2→f2

(1)

Z
(1,n)
µ2→f2

= 0, lim
n→∞

µ
(1,n)
2→f2

(2)

Z
(1,n)
µ2→f2

= 1.

Also by the definitions of b(1,n)f1
and µ

(1,n)
e→f,SPA in (55) and (93), we have

lim
n→∞

(
µ
(1,n)
1→f1,SPA

(1) µ
(1,n)
1→f1,SPA

(2)
)
= lim

n→∞

(
µ
(1,n)
1→f2,SPA

(1) µ
(1,n)
1→f2,SPA

(2)
)
=
(
0, 1

)
,

lim
n→∞

(
µ
(1,n)
2→f1,SPA

(1) µ
(1,n)
2→f1,SPA

(2)
)
= lim

n→∞

(
µ
(1,n)
2→f2,SPA

(1) µ
(1,n)
2→f2,SPA

(2)
)
=
(
1, 0

)
.

The derivations of the above expressions are similar and thus they are omitted here. ■

Example 41. We present some numerical results w.r.t. F alt
B,d,N1

(γ,λ) and FB,p,N1
(γ,λ) for corroborating the theoretical results

obtained in this section.
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Fig. 4: The numerical results in Example 41.
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1) The shape of F alt
B,d,N1

(γ,λ) given in (54) for γe(xe) = 1/2 for all xe ∈ Xe and λe(2) = 0 for all e ∈ [2], is plotted in Fig. 4(a).

In this case, the function F alt
B,d,N1

(γ,λ) equals

F alt
B,d,N1

(γ,λ) = 2 log 2− log
(
1 + exp(λ1(1) + λ2(1)) + exp(λ1(1))

)
− log

(
1 + exp(λ1(1) + λ2(1))

)
.

We can see that the function F alt
B,d,N1

(γ,λ) is concave w.r.t. λ, which corroborates Item 1 in Theorem 14.

2) Fig. 4(b) plots F alt
B,d,N1

(γ,λ) w.r.t. λ1(1) under the same condition as the condition in Fig. 4(a) with an additional condition

λ2(1) = −λ1(1). In this case, the function F alt
B,d,N1

(γ,λ) equals

F alt
B,d,N1

(γ,λ) = log 2− log
(
2 + exp(λ1(1))

)
.

From the figure, we can see that the function is decreasing w.r.t. λ1(1), which corroborates the expression in (86) that

F alt
B,d,N1

(γ,λ) takes supremum when λ1(1) → −∞.

3) The shape of F̂ alt
B,d,N1

(γ) given in (86), is plotted in Fig. 4(c). By (86), the function F̂ alt
B,d,N1

(γ) equals

F̂ alt
B,d,N1

(γ) = −2 log
(√

γ1(1) · γ2(1) +
√(

1− γ1(1)
)
·
(
1− γ2(1)

))
.

We can see that the function F̂ alt
B,d,N1

(γ) is convex w.r.t. γ, which corroborates Item 2 in Theorem 14.

4) In particular, Fig. 4(d) plots F̂ alt
B,d,N1

(γ) w.r.t. γ1(1) when γ2(1) = 1/2. In this case, the function F̂ alt
B,d,N1

(γ) equals

F̂ alt
B,d,N1

(γ) = −2 log
(√1

2
γ1(1) +

√
1

2

(
1− γ1(1)

))
.

From the figure, we can see that the function takes minimum when γ1(1) = γ2(1) = 1/2, which corroborates the equalities

in (87) that F̂ alt
B,d,N1

(γ) takes minimum when γ1(1) = γ2(1).

5) The shape of the Bethe free energy function FB,p,N1(β) given in (81) is plotted in Fig. 4(e), which corroborates the expression

of FB,p,N1
in (81).

We also discuss the behavior of the double-loop algorithm applied in the considered S-NFG N1.

Proposition 42. Consider N1 specified in Definition 22 and Example 32. If we run the double-loop algorithm defined in Algorithm 1

for N1 and set

γ
(0)
dl ∈

∏
e∈E

B>
e ,

then we have

lim
t1→∞

(
exp
(
λ
(t1)
dl,1,f1

(1)
)
, exp

(
λ
(t1)
dl,1,f1

(2)
))

= lim
t1→∞

(
exp
(
λ
(t1)
dl,2,f2

(1)
)
, exp

(
λ
(t1)
dl,2,f2

(2)
))

=
(
0, 1

)
,

lim
t1→∞

(
exp
(
λ
(t1)
dl,1,f2

(1)
)
, exp

(
λ
(t1)
dl,1,f2

(2)
))

= lim
t1→∞

(
exp
(
λ
(t1)
dl,2,f1

(1)
)
, exp

(
λ
(t1)
dl,2,f1

(2)
))

=
(
1, 0

)
,

γ
(t2)
dl = γ

(0)
dl , t2 ∈ Z>0.

Proof. It can be proven straightforwardly. ■

V. THE ANALYSIS OF A DOUBLE-CYCLE S-NFG EXAMPLE

In this section, we consider an example double-cycle S-NFG N2 as shown in Fig. 5.

Remark 43. We make the following remarks for N2 as shown in Fig. 5.

1) The alphabet of the variables is given by Xe = [2] for all e ∈ E .
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2) The local functions satisfy

f1(x1, x2, x3) = f2(x1, x2, x3) = [x1 = x2 = x3], x1, x2, x3 ∈ [2].

3) The associated Bethe free energy function FB,p,N2
defined in (10) equals

FB,p,N2(β) = −HB,f (βf1)−HB,f (βf2) +
∑
e

HB,e(βe)
(a)
= −

∑
x1

βe(x1) · log βe(x1), β ∈ B(N2), e ∈ [3].

where B(N2) is defined in (7), and where step (a) follows from

HB,f (βf ) = −
∑

xf∈Xf

βf (xf ) · log βf (xf )

= −
∑

xf : f(xf )>0

βf (xf ) · log βf (xf )

= −
∑
xe

βf

(
xe, xe, xe

)
· log βf

(
xe, xe, xe

)
= −

∑
xe

βe(xe) · log βe(xe), β ∈ B(N2).

Note that FB,p,N2
(β) is a concave, not a convex, function of β. The above expression implies

min
β∈B(N2)

FB,p,N2
(β) = 0.

4) The S-NFG N2 has three SPA fixed points:

a) µe→f1 = µe→f2 =
(
1, 0

)T
, for all e ∈ E;

b) µe→f1 = µe→f2 =
(
0, 1

)T
, for all e ∈ E;

c) µe→f1 = µe→f2 = 1
2

(
1, 1

)T
, for all e ∈ E .

The first two fixed points correspond to the minima of FB,p,N2(β), β ∈ B(N1). The last fixed point corresponds to the maximum

of FB,p,N2(β), β ∈ B(N1).

5) The function Zf1 defined in (16) can be written as

Zf1

(
γ, λ

)
=
∑
x

[x1 = x2 = x3] · exp
(∑

e

λe,f1(xe)
)
·
√∏

e

γe(xe)

(a)
=
∑
x1

exp
(∑

e

λe(x1)
)
·
√∏

e

γe(x1),

where step (a) follows from the definition of λe,f in (15). Similarly, the function Zf2 can be written as

Zf2

(
γ, λ

)
=
∑
x1

exp
(
−
∑
e

λe(x1)
)
·
√∏

e

γe(x1). (96)

6) The vector λ ∈ argmaxλ∈R|X| F alt
B,d,N2

(γ,λ) satisfies∑
e

λe(x1) = 0, x1 ∈ [2],

which can be proven directly from Theorem 14, i.e., F alt
B,d,N2

(γ,λ) is convex w.r.t. λ and the necessary optimality conditions

in [19, Proposition 1.1.1]: if λ is at the location of the optimal value, then λ is at a stationary point of F alt
B,d,N2

(γ,λ).

7) By the previous property, we have

F̂ alt
B,d,N2

(γ) = −2 log

(∑
x1

√∏
e

γe(x1)

)
.
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=

f2

=
f1

x1 x2 x3

Fig. 5: S-NFG N2.

In particular, it holds that∑
x1

√∏
e

γe(x1) =
√

γ1(1) · γ2(1) · γ3(1) +
√

γ1(2) · γ2(2) · γ3(2)

(a)

≤
√
γ1(1) + γ1(2) ·

(√
γ2(1) · γ3(1) +

√
γ2(2) · γ3(2)

)
(b)
=
√
γ2(1) · γ3(1) +

√
γ2(2) · γ3(2)

(c)

≤
√
γ2(1) + γ2(2) ·

√
γ3(1) + γ3(2)

(d)
= 1, γe ∈ B≥

e , e ∈ E ,

where step (a) follows from the fact that γ1(1) and γ1(2) are non-negative. where step (b) follows from γ1 ∈ B≥
1 , i.e.,

γ1(1) + γ1(2) = 1, where step (c) follows from the Cauchy-Schwarz inequality, and where step (d) follows from γ2 ∈ B≥
2 and

γ3 ∈ B≥
3 i.e., γ2(1) + γ2(2) = γ3(1) + γ3(2) = 1. It further implies

F̂ alt
B,d,N2

(γ) ≥ 0.

When (
γ1, γ2, γ3

)
=

((
1, 0

)T
,
(
1, 0

)T
,
(
1, 0

)T)
or
((

0, 1
)T

,
(
0, 1

)T
,
(
0, 1

)T)
,

we have F̂ alt
B,d,N2

(γ) = 0, which implies

min
γ

F̂ alt
B,d,N2

(γ) = 0, s.t. γ ∈
∏
e

B≥
e .

8) For the S-NFG N2 considered in this section, the possible sequences {γ(m)}m defined in Item 2 in Definition 17 are(
γ
(m)
1 , γ

(m)
2 , γ

(m)
3

)
=

((
1, 0

)T
,
(
1, 0

)T
,
(
1, 0

)T)
or
((

0, 1
)T

,
(
0, 1

)T
,
(
0, 1

)T)
, m ∈ Z>0.

9) For the S-NFG N2 considered in this section, the possible sequences {λ(n)}n defined in Item 3 in Definition 17 are arbitrary

sequences satisfying ∑
e

λ(n)
e (x1) = 0, x1 ∈ [2], n ∈ Z>0.

VI. THE ANALYSIS OF A LOW-DENSITY PARITY-CHECK (LDPC) CODE EXAMPLE

In this section, we consider the example S-NFG N3 representing a (3, 4)-regular LDPC code based on the parity-check matrix

H =


1 1 1 1

1 1 1 1

1 1 1 1
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+

f5

+
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+
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(a) S-NFG N3.
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+

f5

+
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f7

(b) S-NFG N4.

Fig. 6: The S-NFGs in Definition 44.

as shown in Fig. 6(a), that is used for data transmission over a memoryless channel with input alphabet x ∈ {0, 1}, output alphabet

y ∈ {0, 1}, and channel law W (y|x) with W (y|x) ∈ R≥0 for all x, y and
∑

y W (y|x) = 1 for all x.

The S-NFG N4 in Fig. 6(b) is obtained from N3 by applying the closing-the-box (CTB) operation in N3. Consider the dashed boxes

in Fig. 6(a). Its exterior function is defined to be the sum, over the internal variables, of the product of the internal local functions.

Replacing this dashed box by a single function node that represents this exterior function is known as the CTB operation [3]. For

details of this operation in N3, see the definition in (98).

Definition 44. The details of N3 and N4 as shown in Figures 6(a) and 6(b) are given as follows.

1) The set of the edges in the S-NFG N4 is E = [12].

2) The alphabet of the variables xe is set to be Xe = {0, 1} for e ∈ E .

3) The variables y1, . . . , y4 take values in {0, 1}.

4) The observed variables y̌1, . . . , y̌4 take values in {0, 1}.

5) The set of the function nodes on the LHS in N4 is given by {fi}i∈I with I = [4].

6) The channel law is defined to be an arbitrary function such that

W (y|x) ∈ R>0, x, y ∈ {0, 1},
∑
y

W (y|x) = 1, x ∈ {0, 1}.

7) For each i ∈ I, the conditional probability PYi|Xi
is defined to be

PYi|Xi
(yi|xi) ≜ W (yi|xi), xi, yi ∈ {0, 1}.

8) The set of the function nodes on the RHS in N4 is given by {fj}j∈J with J = {5, 6, 7}.

9) For each j ∈ J , the alphabet for the parity-check node fj is given by

Xfj ≜
{
(x1, . . . , x4) ∈ {0, 1}4

∣∣∣ x1 + · · ·+ x4 = 0 mod 2
}
. (97)

10) For each i ∈ I and fixed ye, e ∈ ∂f , the function fi is defined to be

fi(x∂fi) ≜ [all xe, e ∈ ∂fi are equal] ·
∏

e∈∂fi

W (ye|xe), xe ∈ {0, 1}. (98)
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Note that fi(xi) can be obtained by applying the CTB operation in Fig. 6(a) for each i ∈ I.

In the remaining part of this section, if there is no ambiguity, we use the shorthands
∑

i,
∏

i,
∑

xfi
,
∑

j ,
∏

j and
∑

xfj
for
∑

i∈I ,∏
i∈I ,

∑
xfi

∈{0,1},
∑

j∈J ,
∏

j∈J , and
∑

xfj
∈Xfj

, respectively.

Assumption 45. We assume the observed variables are fixed to be y̌1 = · · · = y̌4 = 0 and the channel law satisfies

W (0|x) = W (1|1−x), x ∈ {0, 1}, W (0|0) > W (0|1) > 0, (99)(
W (0|0)

)4/3 ≥
∑

xfi
∈Xfi

\{(0,...,0)}

∏
e∈∂fi

(
W (0|xe)

)1/3
= 6
(
W (0|0) ·W (0|1)

)2/3
+
(
W (0|1)

)4/3
, i ∈ I. (100)

In the following, we will see that if the channel law satisfies Assumption 45, then the location of the optimal value for the associated

primal formulation has a simple structure. In order to avoiding confusion, we will discuss only S-NFG N4 in the remaining part of

this section. Note that the Bethe free energy functions for N3 and N4 are defined over different LMPs B(N3) and B(N4), respectively.

The Bethe free energy function FB,p,N4
(β), as defined in in (10), is given by

FB,p,N4(β) =
∑
j

∑
xfj

βfj (xfj ) · log βfj (xfj )−
∑
i

∑
xfi

βfi(xfi) · log fi(xfi)− 2
∑
i

∑
xfi

βfi(xfi) · log βfi(xfi). (101)

The associated Bethe partition function Z∗
B,p,N4

defined in (12) is given by

Z∗
B,p,N4

= exp

(
− min

β∈B(N4)
FB,p,N4

(β)

)
. (102)

where the LMP B(N4) is defined in (7).

We want to show that

Z∗
B,p,N4

(a)
= Z∗

B,d,N4
≤
∏
i

W (0|0), (103)

where step (a) follows from Proposition 16. Recall that Z∗
B,d,N4

defined in (19) equals

Z∗
B,d,N4

= sup
γ

inf
λ

Z∗
B,d,N4

(γ,λ)

s.t. γe ∈ B>
e , λe ∈ R|Xe|, e ∈ E ,

(104)

where B>
e is defined in (6) for each e ∈ E , and where the functions ZB,d,N4

(γ,λ) and Zf , as defined in (18) and (16), respectively,

satisfies

ZB,d,N4
(γ,λ) =

(∏
i

Zfi(γ∂fi ,λ∂fi)

)
·

(∏
j

Zfj (γ∂fj ,λ∂fj)

)
, (105)

Zfi(γ∂fi,λ∂fi) =
∑
xfi

[all xe, e ∈ ∂fi are equal] ·
∏

e∈∂fi

((
W (0|xe)

)1/3 · exp(λe(xe)) ·
√
γe(xe)

)
, i ∈ I, (106)

Zfj (γ∂fj ,λ∂fj ) =
∑
xfj

∑
e∈∂f

xe = 0 mod 2

 ·
∏

e∈∂fj

(
exp(−λe(xe)) ·

√
γe(xe)

)
, j ∈ J . (107)

For comparison, we also consider the function Zalt,∗
B,d,N4

defined in (21), which is given by

Zalt,∗
B,d,N4

= sup
γ

inf
λ

Z∗
B,d,N4

(γ,λ)

s.t. γe ∈ B≥
e , λe ∈ R|Xe|, e ∈ E ,

(108)

where B≥
e is defined in (6). By Proposition 15, to prove (103), it is sufficent to show that

Z∗
B,p,N4

= Z∗
B,d,N4

≤ Zalt,∗
B,d,N4

≤
∏
i

W (0|0).
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Lemma 46. Consider the S-NFG N4 specified in Definition 44 under Assumption 45. It holds that

Zalt,∗
B,d,N4

≤
∏
i

W (0|0),

where Zalt,∗
B,d,N4

is given in (108).

Proof. See Appendix M. ■

Theorem 47. Consider the S-NFG N4 specified in Definition 44 under Assumption 45. We have

Z∗
B,p,N4

= Z∗
B,d,N4

= Zalt,∗
B,d,N4

=
(
W (0|0)

)4
,

where Z∗
B,p,N4

and Z∗
B,d,N4

are given in (102) and (104), respectively. Also the following set of beliefs corresponds to the location

of the optimal value Z∗
B,p,N4

of the optimzation problem in (102).

βe(xe) = βfi(xe) =

 1 xe = 0

0 xe = 1

, i ∈ I, e ∈ E , βfj (xfj ) =

 1 xfj = 0

0 Otherwise
, xfj ∈ Xfj , j ∈ J . (109)

Proof. By Propositions 15 and 16 and Lemma 46, we know that

Z∗
B,d,N4

= Z∗
B,p,N4

≤ Zalt,∗
B,d,N4

≤
(
W (0|0)

)4
.

Now we analyze the optimal value Z∗
B,p,N4

for the primal formulation, which is given in (102). If the belief β is as in (109), then

we have

FB,p,N4
(β) = −4 logW (0|0),

which by the expression for Z∗
B,p,N4

in (102) implies

Z∗
B,p,N4

≥
(
W (0|0)

)4
.

Then we have

Z∗
B,p,N4

= Z∗
B,d,N4

= Zalt,∗
B,d,N4

=
(
W (0|0)

)4
.

With this, we know that the beliefs in (109) correspond to the locations of the optimal value Z∗
B,p,N4

. ■

Proposition 48. Consider the S-NFG N4 specified in Definition 44 under Assumption 45. One of the locations for the optimal value

Z∗
B,p,N4

corresponds to an SPA fixed point whose messages are given by

µe→f =
(
1, 0

)
, e ∈ ∂f, f ∈ F .

Moreover, the beliefs evaluated at this SPA fixed point are given by (109). The SPA is specified in Definition 5.

Proof. It can be proven directly following the definition of the SPA in Definition 5, Assumption 45, and Theorem 47. Thus the

details are omitted here. ■

Definition 49. Based on Theorem 47, we make the following definitions.

1) Consider the belief β given in (109). For each e ∈ E , we define the set Se to be

Se ≜
{
xe ∈ {0, 1}

∣∣∣ βe(xe) = 0
}
= {1}.

The complement of Se is defined to be

Sc
e ≜ Xe \ Se = {0}.
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2) For each function node f ∈ F , we define the associated function f ′ to be

f ′(xf ) ≜ f(xf )
∏
e∈∂f

[xe∈Sc
e ] =

 f(0) xf = 0

0 Otherwise
, xf ∈ Xf . (110)

3) We define N′
4 to be the factor graph consisting of the same vertex set F , edge set E , and alphabet X as N4. However, for each

vertex f ∈ F , the associated local function is f ′ instead of f .

Proposition 50. Consider the S-NFG N4 specified in Definition 44 under Assumption 45. The associated S-NFG specified in

Definition 49 has the following properties.

1) The S-NFG N′
4 has only one SPA fixed point, which is the same as the SPA fixed point in Proposition 48, and the beliefs

evaluated at the SPA fixed point equal the beliefs in (109). Recall that the SPA is specified in Definition 5.

2) Z∗
B,p,N′

4
= Z∗

B,d,N′
4
= Zalt,∗

B,d,N′
4
=
(
W (0|0)

)4
.

3) One of the locations of optimal value Z∗
B,p,N′

4
for the primal formulation is given in (109).

Proof. From the definition of f ′ in (110), we know that there is only one configuration of (xe)e∈E such that
∏

f f
′(xf ) ̸= 0, which

is xe = 0 for all e ∈ E . Note that when xe = 0 for all e ∈ E , we have
∏

f f
′(xf ) =

(
W (0|0)

)4
. Thus the above properties can be

proven straightforwardly and thus the details are omitted here. ■

VII. THE ANALYSIS OF GENERAL S-NFGS

In this section, we consider the S-NFGs N satisfying Assumption 4 and relate the locations of the optimal value F alt,∗
B,d,N for the

optimization problem in (22) to SPA fixed points. The results in this section generalize the results in Section IV. Here is the outline

of this section.

1) The first main result will be presented in Theorem 54:

lim
m,n,k→∞

− log

∏
f

Zf

(
γ
(m)
∂f , α(k) · λ(n)

∂f

) = F alt,∗
B,d,N, (111)

where Zf is defined in (16).

2) The second main result is that the sequence {α(k) · λ(n)}n,k converges to a stationary point of F alt
B,d,N(γ,λ) w.r.t. λ, i.e.,

lim
n,k→∞

∂

∂λe(xe)
F alt
B,d,N

∣∣∣∣
λ=α(k)·λ(n)

= lim
n,k→∞

(
−b

(m,n,k)
fi,e

(xe) + b
(m,n,k)
fj ,e

(xe)
)
= 0, xe ∈ Xe, e = (fi, fj) ∈ E , (112)

which will be stated in Lemma 56. By the definition of α(k) · λ(n) in Items 3 and 4 in Definition 17, the above expression

obviously holds if the supremum of F alt
B,d,N w.r.t. λ is obtained in R|X |. If the supremum is obtained in {R∪ {−∞,+∞}}|X |,

we need more details of F alt
B,d,N. Because of

∂

∂λe(xe)
F alt
B,d,N = −bfi,e(xe) + bfj ,e(xe),

and the expressions in (203) and (204), we know that the entries in the gradient and the Hessian of F alt
B,d,N w.r.t. λ are finite.

Thus we can analyze the second-order Taylor series expansion of F alt
B,d,N w.r.t. λ, which is also finite when some entries in

λ(n) go to infinity.

3) The third main result will be presented in Theorem 57:

F ∗
B,p,N = F ∗

B,d,N = F alt,∗
B,d,N.

The main idea of the proof is given as follows.
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a) From the definition of b
(m,n,k)
F in (37), we know that each entry in b

(m,n,k)
F is bounded and there exists a subsequence{

b
(m,n1,k1)
F

}
n1,k1

such that all entries in b
(m,n1,k1)
F converge for all m ∈ Z>0 as n1 and k1 go to infinity. By (112), we

know that (
lim

n1,k1→∞
b
(m,n1,k1)
F

)
∈ BF (N),

which means that b(m,n1,k1)
F converges to an element in BF (N) as n1 and k1 go to infinity. The LMP BF (N) is defined

in (9).

b) In this proof, we consider the following Bethe free energy function:

F
(1)
B,p,N(βF ) =

∑
f

∑
xf

βf (xf ) · log
βf (xf )

f(xf )
−

∑
e=(fi,fj)∈E

∑
xe

βfi,e(xe) + βfj ,e(xe)

2
· log

(
βfi,e(xe) + βfj ,e(xe)

2

)
,

which is defined in (11). As shown in the definition of F (1)
B,p,N, we do not require βF ∈ BF (N) here. By setting

βf = b
(m,n,k)
f , f ∈ F ,

we have

F
(1)
B,p,N

(
b
(m,n,k)
F

)
= − log

∏
f

Zf

(
γ
(m)
∂f , α(k) · λ(n)

∂f

)+
∑
f

∑
xf

b
(m,n,k)
f (xf ) ·

∑
e∈∂f

α(k) · λ(n)
e,f (xe,f )

+
∑

e=(fi,fj)∈E

∑
xe: γ

(m)
e (xe)>0

b
(m,n,k)
fi,e

(xe) + b
(m,n,k)
fj ,e

(xe)

2
· log

(
2γ

(m)
e (xe)

b
(m,n,k)
fi,e

(xe) + b
(m,n,k)
fj ,e

(xe)

)
.

(113)

Then we have

lim
n1,k1→∞

F
(1)
B,p,N

(
b
(m,n1,k1)
F

) (a)

≥ F ∗
B,p,N

(b)
= F ∗

B,d,N, m ∈ Z>0. (114)

where step (a) follows from the continuity of F
(1)
B,p,N w.r.t. βF and the definitions of F ∗

B,p,N in (13) and where step (b)

follows from Proposition 16. Then, in order to prove that the above inequality is indeed an equality, we first need to show

that

lim
n,k→∞

∑
f

∑
xf

b
(m,n1,k1)
f (xf ) ·

∑
e∈∂f

α(k) · λ(n)
e,f (xe,f ) = 0, (115)

which will be proven in Lemma 63. The main idea of the proof of Lemma 63 is as follows.

• To have (115), we need to define α(k) following the way in Item 4 in Definition 17.

• Then we prove that α(k) converges to the stationary point of F alt
B,d,N(γ, α · λ) w.r.t. α, which proves (115).

From this, it follows that

lim sup
m→∞

lim
n1,k1→∞

F
(1)
B,p,N

(
b
(m,n1,k1)
F

)
≤ lim sup

m,n,k→∞
F

(1)
B,p,N

(
b
(m,n,k)
F

)

≤ − lim inf
m,n,k→∞

log

∏
f

Zf

(
γ
(m)
∂f , α(k) · λ(n)

∂f

)+ lim sup
m,n,k→∞

∑
f

∑
xf

b
(m,n,k)
f (xf ) ·

∑
e∈∂f

α(k) · λ(n)
e,f (xe,f )

+ lim sup
m,n,k→∞

∑
e=(fi,fj)∈E

∑
xe: γ

(m)
e (xe)>0

b
(m,n,k)
fi,e

(xe) + b
(m,n,k)
fj ,e

(xe)

2
· log

(
2γ

(m)
e (xe)

b
(m,n,k)
fi,e

(xe) + b
(m,n,k)
fj ,e

(xe)

)
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(a)
= F alt,∗

B,d,N + lim sup
m,n,k→∞

∑
e=(fi,fj)∈E

∑
xe: γ

(m)
e (xe)>0

b
(m,n,k)
fi,e

(xe) + b
(m,n,k)
fj ,e

(xe)

2
· log

(
2γ

(m)
e (xe)

b
(m,n,k)
fi,e

(xe) + b
(m,n,k)
fj ,e

(xe)

)
,

(116)

where step (a) follows from (111) and (115). Using the fact that the Kullback–Leibler (K-L) divergence is nonnegative,

we have

lim sup
m→∞

lim
n1,k1→∞

F
(1)
B,p,N

(
b
(m,n1,k1)
F

)
≤ F alt,∗

B,d,N

(a)

≤ F ∗
B,d,N,

where step (a) follows from Proposition 15. Combining with (114), we have

lim sup
m→∞

lim
n1,k1→∞

F
(1)
B,p,N

(
b
(m,n1,k1)
F

)
= F alt,∗

B,d,N = F ∗
B,d,N = F ∗

B,p,N.

4) By (116) and the third main result, we obtain the forth main result

lim
m,n1,k1→∞

∑
e=(fi,fj)∈E

∑
xe: γ

(m)
e (xe)>0

b
(m,n1,k1)
fi,e

(xe) + b
(m,n1,k1)
fj ,e

(xe)

2
· log

(
2γ

(m)
e (xe)

b
(m,n1,k1)
fi,e

(xe) + b
(m,n1,k1)
fj ,e

(xe)

)
= 0.

By Pinsker’s inequality (see, e.g., [20, Theorem 2.33].), we have

lim
m,n1,k1→∞

∑
e=(fi,fj)∈E

∑
xe: γ

(m)
e (xe)>0

∣∣∣∣∣b
(m,n1,k1)
fi,e

(xe) + b
(m,n1,k1)
fj ,e

(xe)

2
− γ(m)

e (xe)

∣∣∣∣∣ = 0.

Because the entries in b
(m,n1,k1)
F and γ(m) are bounded, there exists a subsequence {m1} of {m} such that all entries of

{b(m1,n1,k1)
F }m1∈Z>0 and {γ(m1)}m1∈Z>0 converge. Combining the above equality with (112), we have

lim
m1,n1,k1→∞

b
(m1,n1,k1)
fi,e

(xe) = lim
m1,n1,k1→∞

b
(m1,n1,k1)
fj ,e

(xe) = lim
m1→∞

γ(m1)
e (xe), xe ∈ Xe, e = (fi, fj) ∈ E .

This result will be stated in (132) in Theorem 57.

5) The last main result will be presented in Theorem 61. We will show that there exists a sequence {γ(m2),λ(n2), α(k2)}m2,n2,k2∈Z>0

such that the collection of messages µ(m2,n2,k2), which is defined based on γ(m2), λ(n2), and α(k2), converges to SPA fixed-

point messages for a modified S-NFG N′ as m2, n2, k2 go to infinity. The details of N′ will be given in Definition 58. The

proof technique is standard.

Before proving the main results in this paper, we wonder whether the functions specified in Definition 17 for the dual formulation

is well defined. We answer this question by proving the following properties.

1) The optimal value F alt,∗
B,d,N of the optimization problem in (21) is real-valued.

2) It is sufficient to consider a sequence γ(m) such that the sequence
{
F̂ alt
B,d,N

(
γ(m)

)}
m

converges to F alt,∗
B,d,N as defined in (30)

and F̂ alt
B,d,N

(
γ(m)

)
is real-valued for each m ∈ Z>0.

3) For each m, n, and k, the function Zf

(
γ
(m)
∂f , α(k) · λ(n)

∂f

)
is positive-valued.

4) Based on the previous property, the belief b
(m,n,k)
f (xf ) in (37) for f ∈ F , which is defined based on the sequences γ

(m)
∂f ,

λ
(n)
∂f , and α(k), is nonnegative real-valued.

Proposition 51. Because the considered S-NFG N satisfies Assumption 4, then

∃x′ = (x′
e)e∈E ∈ X such that g(x′) > 0. (117)

It holds that

−
∑
f

log

(∑
x∂f,f

f(x∂f,f )

)
≤ − logZalt,∗

B,d,N = F alt,∗
B,d,N ≤ − log g(x′) < ∞, (118)
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−
∑
f

log

(∑
x∂f,f

f(x∂f,f )

)
≤ F alt

B,d,N(γ
(m),0) ≤ F̂ alt

B,d,N

(
γ(m)

)
, m ∈ Z>0. (119)

Proof. See Appendix N. ■

Proposition 52. We present some properties on the functions specified in Definitions 12 and 17. Some of the properties are stated

in the definition. Here we make a summary of them.

1) The function F alt
B,d,N evaluated at (γ(m), α(k) · λ(n)) is given by

F alt
B,d,N

(
γ(m), α(k) · λ(n)

)
= − log

∏
f

Zf

(
γ
(m)
∂f , α(k) · λ(n)

∂f

)
= − log

∏
f∈F

(∑
x∂f,f

f(x∂f,f ) ·
∏
e∈∂f

(
exp
(
α(k) · λ(n)

e,f (xe,f )
)
·
√
γ
(m)
e (xe,f )

)) . (120)

2) It is sufficient to consider a sequence {γ(m)}m such that F̂ alt
B,d,N

(
γ(m)

)
is bounded:

F alt,∗
B,d,N ≤ F̂ alt

B,d,N

(
γ(m)

)
≤ − log g(x′), ∀m ∈ Z>0. (121)

3) The sequences {γ(m)}m, {λ(n)}n and {α(k)}k have the following properties

a) The function Zf evaluated at these sequences is positive-valued:

Zf

(
γ
(m)
∂f , α(k) · λ(n)

∂f

)
∈ R>0, m, n, k ∈ Z>0, f ∈ F . (122)

b) With (122), there exists an xf ∈ Xf such that

b
(m,n,k)
f (xf ) ∈ R>0, m, n, k ∈ Z>0.

c) The function F alt
B,d,N evaluated at (γ(m),0) is also bounded:

−
∑
f

log

(∑
x∂f,f

f(x∂f,f )

)
≤ F alt

B,d,N(γ
(m),0) ≤ − log g(x′), m ∈ Z>0, (123)

where g(x′) is given in (117).

d) The sequence
{
γ(m)

}
m

satisfies

lim
m→∞

F̂ alt
B,d,N

(
γ(m)

)
= F alt,∗

B,d,N ∈ R. (124)

e) For fixed γ(m), it hold that

lim
n→∞

F alt
B,d,N

(
γ(m),λ(n)

)
= sup

λ
F alt
B,d,N

(
γ(m),λ

)
= F̂ alt

B,d,N

(
γ(m)

)
∈ R. (125)

f) For Fixed γ(m) and λ(n), it holds that

lim
k→∞

F alt
B,d,N

(
γ(m), α(k) · λ(n)

)
= max

α∈R∪{−∞,+∞}
F alt
B,d,N

(
γ(m), α · λ(n)

)
∈ R. (126)

Proof. See Appendix O. ■

Now we move on to the proof of the first main result. From (30) and (32), we know that

lim
m,n→∞

F alt
B,d,N

(
γ(m),λ(n)

)
= F alt,∗

B,d,N.

However, if we replace λ(n) with α(k) · λ(n), then we want to know whether the sequence
{
F alt
B,d,N

(
γ(m), α(k) · λ(n)

)}
m,n,k

converges. To be more specific, we want to prove that

lim
m,n,k→∞

F alt
B,d,N

(
γ(m), α(k) · λ(n)

)
= F alt,∗

B,d,N.
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To begin with, we prove that the associated sequence is a bounded sequence.

Proposition 53. For each γ(m), the following sequence is bounded:{
F alt
B,d,N(γ

(m), α(k) · λ(n))
}
n,k

. (127)

The following inequality also holds∏
f∈F

(
f(x∂f,f ) ·

∏
e∈∂f

(
exp
(
α(k) · λ(n)

e,f (xe,f )
)
·
√

γ
(m)
e (xe,f )

))
≤ exp

(
−F alt

B,d,N(γ
(m),0)

)
∈ R, m ∈ Z>0. (128)

Proof. By (125), the sequence {λ(n)} satisfies

F̂ alt
B,d,N

(
γ(m)

)
= lim

n→∞
F alt
B,d,N(γ

(m),λ(n)) = sup
λ∈R|X|

F alt
B,d,N(γ

(m),λ) ∈ R,

where F̂ alt
B,d,N is defined in (29). By (126), the sequence {α(k)}k satisfies

lim
k→∞

F alt
B,d,N

(
γ(m), α(k) · λ(n)

)
= sup

α∈R
F alt
B,d,N

(
γ(m), α · λ(n)

)
∈ R, λ(n) ∈ R|X |.

Thus

F alt
B,d,N

(
γ(m), α(k) · λ(n)

)
≤ F̂ alt

B,d,N

(
γ(m)

) (a)
∈ R, n, k ∈ Z>0,

where step (a) follows from the inequalities (121) in Proposition 52. Then we have

F alt
B,d,N

(
γ(m), α(k) · λ(n)

) (a)

≥ F alt
B,d,N(γ

(m),0)
(b)
∈ R, n, k ∈ Z>0,

where step (a) follows from the definition of {α(k)} in (34) and (35) and where step (b) follows from the property of F alt
B,d,N(γ

(m),0)

in (123). Thus the sequence in (127) is bounded. By (120), the above inequality implies that∏
f

Zf

(
γ
(m)
∂f , α(k) · λ(n)

∂f

)
=
∏
f∈F

(∑
x∂f,f

f(x∂f,f ) ·
∏
e∈∂f

(
exp
(
α(k) · λ(n)

e,f (xe,f )
)
·
√
γ
(m)
e (xe,f )

))

≤ exp
(
−F alt

B,d,N(γ
(m),0)

)
∈ R, m ∈ Z>0,

which proves (128). ■

Theorem 54. With fixed γ(m), it holds that:

lim
n,k→∞

F alt
B,d,N

(
γ(m), α(k) · λ(n)

)
= lim

n,k→∞
− log

∏
f

Zf

(
γ
(m)
∂f , α(k) · λ(n)

∂f

)
= F̂ alt

B,d,N

(
γ(m)

)
∈ R, m ∈ Z>0.

Proof. See Appendix P. ■

Corollary 55. It holds that

lim
m,n,k→∞

F alt
B,d,N

(
γ(m), α(k) · λ(n)

)
= F alt,∗

B,d,N.

Proof. It can be proven straightforwardly by Theorem 54 and the definition of {γ(m)} in (30). ■

It is natural to ask whether F alt,∗
B,d,N and F ∗

B,d,N are equal. By Propositions 15 and 16, we know that

F alt,∗
B,d,N ≤ F ∗

B,d,N = F ∗
B,p,N.
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In the following, we show F alt,∗
B,d,N = F ∗

B,p,N by analyzing the function F
(1)
B,p,N for the primal formulation as specified in Definition 8.

The main idea is listed as follows.

1) We consider the collection of beliefs b
(m,n,k)
F , which is defined based on the sequences {γ(m)}m, {λ(n)}n, and {α(k)}k. We

want to show that F (1)
B,p,N(b

(m,n,k)
F ) converges to F ∗

B,p,N as m, n, and k go to infinity.

2) By the definition of F ∗
B,p,N in (13) and Proposition 9, we know that it is related to the minimum of the alternative Bethe free

energy function F
(1)
B,p,N over a constrained set BF (N). Thus we need to show that b(m,n,k)

F converges to an element in BF (N).

By the definition of BF (N) in (9), it means that we need to show that the elements in b
(m,n,k)
F satisfy the local consistency

constraints as m, n, and k go to infinity.

3) In the expression of F (1)
B,p,N(b

(m,n,k)
F ), we note that it consists of F alt

B,d,N

(
γ(m), α(k) · λ(n)

)
and other terms. By Corollary 55,

we know that F alt
B,d,N

(
γ(m), α(k) · λ(n)

)
converges to F alt,∗

B,d,N. If we can show that the remaining terms converge to some

non-positive terms, then we have proven that F ∗
B,p,N ≤ F alt

B,d,N.

Lemma 56. It holds that

lim
n,k→∞

(
b
(m,n,k)
fj ,e

(xe)− b
(m,n,k)
fi,e

(xe)
)
= 0, γ = γ(m), xe ∈ Xe, e ∈ E ,

where b
(m,n,k)
f,e is defined in (39).

Proof. See Appendix Q. ■

By setting

βf = b
(m,n,k)
f , f ∈ F ,

where b
(m,n,k)
f is defined in (37), the function F

(1)
B,p,N defined in (11) equals

F
(1)
B,p,N

(
b
(m,n,k)
F

)
= − log

∏
f

Zf

(
γ
(m)
∂f , α(k) · λ(n)

∂f

)+
∑
f

∑
xf

b
(m,n,k)
f (xf ) ·

∑
e∈∂f

α(k) · λ(n)
e,f (xe,f )

+
∑

e=(fi,fj)∈E

∑
xe: γ

(m)
e (xe)>0

b
(m,n,k)
fi,e

(xe) + b
(m,n,k)
fj ,e

(xe)

2
· log

(
2γ

(m)
e (xe)

b
(m,n,k)
fi,e

(xe) + b
(m,n,k)
fj ,e

(xe)

)
, (129)

where b
(m,n,k)
F =

(
b
(m,n,k)
f

)
f

as defined in (38).

Theorem 57. The function F
(1)
B,p,N has the following property:

lim
m→∞

lim sup
n→∞

lim sup
k→∞

F
(1)
B,p,N

(
b
(m,n,k)
F

)
= F alt,∗

B,d,N = F ∗
B,d,N = F ∗

B,p,N, (130)

where b
(m,n,k)
F is given in (38), the function F

(1)
B,p,N is given in (129), the quantity F alt,∗

B,d,N is defined in (22), the quantity F ∗
B,d,N

is defined in (20), and the quantity F ∗
B,p,N is the minimum of the constrained Bethe partition function defined in (13). There exists

subsequences of {γ(m)}m, {λ(n)}n, and {α(k)}k indexed by {m1, n1, k1} such that(
lim

m1,n1,k1→∞
b
(m1,n1,k1)
F

)
∈ BF (N), (131)

lim
m1,n1,k1→∞

b
(m1,n1,k1)
fi,e

(xe) = lim
m1,n1,k1→∞

b
(m1,n1,k1)
fj ,e

(xe) = lim
m1→∞

γ(m1)
e (xe), xe ∈ Xe, e = (fi, fj) ∈ E , (132)

lim
m1,n1,k1→∞

F
(1)
B,p,N(b

(m1,n1,k1)
F ) = F alt,∗

B,d,N = F ∗
B,d,N = F ∗

B,p,N, (133)

where BF (N) is defined in (9).

Proof. See Appendix R. ■
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As mentioned in the introduction section, we want to relate location to the global minimum of the Bethe free energy function to

an SPA fixed point. In Theorem 57, we know that
{
b
(m1,n1,k1)
F

}
m1,n1,k1

converges to one of the locations of the minimum of the

Bethe free energy function. We want to know that whether there is a collection of messages defined based on γ(m1), λ(n1), and

α(k1) such that this collection of messages converges to SPA fixed-point messages.

Definition 58. Based on Theorem 57, we make the following definitions.

1) We define b∗F to be

b∗F ≜ {b∗f}, b∗f (xf ) ≜ lim
m1,n1,k1→∞

b
(m1,n1,k1)
f (xf ), xf ∈ Xf , f ∈ F . (134)

2) We define γ∗ to be γ∗ ≜ {γ∗
e (xe)}xe∈Xe,e∈E with entries given by

γ∗
e (xe) ≜ lim

m1→∞
γ(m1)
e (xe), xe ∈ Xe, e ∈ E . (135)

3) For each e ∈ E , we define the set Se to be

Se ≜
{
xe ∈ Xe |γ∗

e (xe) = 0
}
.

The complement of Se is defined to be

Sc
e ≜ Xe \ Se. (136)

4) We define f ′ to be

f ′(xf ) ≜ f(xf ) ·
∏
e∈∂f

[xe∈Sc
e ], xf ∈ Xf , f ∈ F .

5) We define N′ to be the factor graph consisting of the same vertex set F , edge set E , and alphabet X as N. However, for each

vertex f , the associated local function is f ′ instead of f .

Proposition 59. The collection of vector b∗F corresponds to one of the locations of the minimum of the Bethe free energy function

F
(1)
B,p,N′(βF ) over BF (N

′), i.e.,

F ∗
B,p,N = F ∗

B,p,N′ = F
(1)
B,p,N

(
b∗F
)
= F

(1)
B,p,N′

(
b∗F
)
,

where the function F
(1)
B,p,N is given in (129), and the quantity F ∗

B,p,N is the minimum of the constrained Bethe partition function

defined in (13), and the set BF (N
′) is defined in (9).

Proof. In this proof, we consider F (1)
B,p,N defined in (11), which is an alternative form of FB,p,N defined in (10). By (131) and (132)

in Theorem 57 and the definition of b∗f in (134), we know that

b∗F ∈ BF (N), b∗F ∈ BF (N
′).

It holds that

F ∗
B,p,N

(a)
= lim

m1,n1,k1→∞
F

(1)
B,p,N

(
b
(m1,n1,k1)
F

)
(b)
= F

(1)
B,p,N

(
b∗F
) (c)
= F

(1)
B,p,N′

(
b∗F
) (d)

≥ F ∗
B,p,N′ ,

where step (a) follows from (133) in Theorem 57, where step (b) follows from the continuity of F (1)
B,p,N(βF ) w.r.t. βF , where step

(c) follows from the definition of N′ in Item 5 in Definition 58, and where step (d) follows from the definition of F ∗
B,p,N′ in (13).

Denote the location of F ∗
B,p,N′ as

{b∗f ′}f∈F ∈ argmin{bf′}f∈F∈B(N′) F
(1)
B,p,N′

(
{bf ′}f∈F

)
.
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We have

b∗f ′,e(xe) = 0, xe ∈ Se, e ∈ ∂f, f ∈ F ,

which implies

F ∗
B,p,N′ = F

(1)
B,p,N′

(
{b∗f ′}f

)
= F

(1)
B,p,N

(
{b∗f ′}f

)
≥ FB,p,N.

■

Definition 60. In this definition, for consistency with Definition 5, with a slight abuse of notation, we define

µ
(m,n,k)
e→f (xe) ≜

 exp
(
α(k) · λ(n)

e,f (xe)
)
·
√
γ
(m)
e (xe) xe ∈ Sc

e

0 otherwise
. (137)

Z(m,n,k)
µe→f

≜
∑

xe∈Sc
e

µ
(m,n,k)
e→f (xe), e ∈ ∂f, f ∈ F . (138)

For each e = (fi, fj) ∈ E , we define

µ
(m,n,k)
e→fi,SPA

(xe) ≜


1

C
(m,n,k)
e→fi

·
b
(m,n,k)
fj,e

(xe)

µ
(m,n,k)
e→fj

(xe)
xe ∈ Sc

e

0 otherwise
, µ

(m,n,k)
e→fj ,SPA

(xe) ≜


1

C
(m,n,k)
e→fj

·
b
(m,n,k)
fi,e

(xe)

µ
(m,n,k)
e→fi

(xe)
xe ∈ Sc

e

0 otherwise
(139)

where normalization constants C
(m,n,k)
e→fi

and C
(m,n,k)
e→fj

are defined to be:

C
(m,n,k)
e→fi

≜
∑

xe∈Sc
e

b
(m,n,k)
fj ,e

(xe)

µ
(m,n,k)
e→fj

(xe)
, C

(m,n,k)
e→fj

≜
∑

xe∈Sc
e

b
(m,n,k)
fi,e

(xe)

µ
(m,n,k)
e→fi

(xe)
. (140)

For simplicity, we also define

µ(m,n,k) ≜
(
µ
(m,n,k)
e→f (xe)

)
xe∈Xe,e∈∂f,f∈F

, µ
(m,n,k)
SPA ≜

(
µ
(m,n,k)
e→f,SPA(xe)

)
xe∈Xe,e∈∂f,f∈F

.

Theorem 61. There exists a subsequence of {m1, n1, k1}, denoted by {m2, n2, k2}, satisfying the fixed-point message equations:

lim
m2,n2,k2→∞

µ
(m2,n2,k2)
e→fi,SPA

(xe) = lim
m2,n2,k2→∞

µ
(m2,n2,k2)
e→fi

(xe)

Z
(m2,n2,k2)
µe→fi

∈ R≥0, xe ∈ Sc
e , e = (fi, fj) ∈ E , (141)

lim
m2,n2,k2→∞

µ
(m2,n2,k2)
e→fj ,SPA

(xe) = lim
m2,n2,k2→∞

µ
(m2,n2,k2)
e→fj

(xe)

Z
(m2,n2,k2)
µe→fj

∈ R≥0, xe ∈ Sc
e , e = (fi, fj) ∈ E , (142)

lim
m2,n2,k2→∞

F
(1)
B,p,N(b

(m2,n2,k2)
F ) = F ∗

B,p,N = F alt,∗
B,d,N = F ∗

B,d,N, (143)(
lim

m2,n2,k2→∞
b
(m2,n2,k2)
F

)
∈ BF (N). (144)

where the vector b
(m2,n2,k2)
f is given in (37), µ(m2,n2,k2)

e→f is defined in (137), the constant Z(m2,n2,k2)
µe→f is defined in (138), µ(m2,n2,k2)

e→f,SPA

is defined in (139), the function F
(1)
B,p,N is given in (129), the quantity F ∗

B,p,N is defined in (13), the quantity F alt,∗
B,d,N is defined in (22),

the quantity F ∗
B,d,N is defined in (20), and the set BF (N) is defined in (9). It shows that µ(m2,n2,k2) ≜ {µ(m2,n2,k2)

e→f }e∈∂f,f∈F

converges to SPA fixed-point messages as m2, n2, k2 → ∞.

Proof. See Appendix S. ■
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VIII. CONCLUSION

In this paper, we have considered a general S-NFG, where the local functions are nonnegative real-valued, and we have related

the global minimum of the associated Bethe free energy function to an SPA fixed point. Note that finding the minimum of the Bethe

free energy function for an S-NFG is equivalent to finding the associated Bethe partition function. We have developed two main

techniques to obtain the main results in this paper.

1) The first technique transforms the Bethe partition function into a maximin optimization problem that can be viewed as the dual

formulation of the Bethe partition function.

2) The second technique is used to study relationship between the sequence of the variables, i.e., {γ(m),λ(n), α(k)}m,n,k∈Z>0

and the locations of the optimal value for the dual formulation, where the sequences in {γ(m),λ(n), α(k)}m,n,k∈Z>0
have been

defined to be the sequences that converge to one of the locations of the optimal value of the dual function. Because in the dual

formulation, the feasible sets of the collection of variables λ and the variable α are the fields of real numbers R, which do not

contain {±∞}. We want to know whether the first-order necessary optimality condition still holds when some of the entries

in λ(n) and α(k) go to infinity as n → ∞ and k → ∞. We have studied the Taylor series expansion of the objective function

in the dual formulation in this case and have shown that the sequences {λ(n)}n∈Z>0 and {α(k)}k∈Z>0 satisfy the generalized

first-order necessary optimality condition.

With these two techniques, we have shown the existence of a sequence of messages such that this sequence converges to SPA

fixed-point messages, and the associated sequence of beliefs obtained by this sequence of messages converges to one of the locations

of the minimum of the Bethe free energy function.

APPENDIX A

PROOF OF PROPOSITION 13

The proof of the first statement is given as follows. Because

log

(∑
xe

γe(xe)

)
= 0, γe ∈ B≥

e ,
∑
xe

γe(xe), e ∈ E ,

we have

F alt
B,d,N(γ,λ) = F alt

B,d,N(γ,λ) +
∑
e

log

(∑
xe

γe(xe)

)

= − log

∏f Zf (γ∂f ,λ∂f )∏
e

(∑
xe

γe(xe)
)


(a)
= − log

∏
f

∑
xf

f(xf ) ·
∏
e∈∂f

(
exp
(
λe,f (xe)

)
·

√
γe(xe)∑
xe

γe(xe)

),

where step (a) follows from the definition of Zf in (16) and the fact that each edge connects two function nodes. With this, the

optimization problem (22) is equivalent to the optimization problem

F alt,∗
B,d,N = inf

γ
sup
λ

{
F alt
B,d,N(γ,λ) +

∑
e

log

(∑
xe

γe(xe)

)}

s.t. λe(xe) ∈ R, γe(xe) ∈ R≥0, xe ∈ Xe,
∑
xe

γe(xe) ∈ R>0, e ∈ E .

Now we prove the second statement. Because the considered vector γe is in B>
e , it satisfies γe(xe) > 0 for all xe ∈ Xe. Then the

partial derivatives of the objective function in (26) w.r.t. γ are given by

∂

∂γe(xe)
F alt
B,d,N +

1∑
xe

γe(xe)

(a)
= −

bfi,e(xe) + bfj ,e(xe)

2γe(xe)
+ 1, xe ∈ Xe, e = (fi, fj) ∈ E ,
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where step (a) follows from the expression of bf,e in (25) for e ∈ ∂f and f ∈ F and the fact that γe ∈ B>
e , i.e.,

∑
xe

γe(xe) = 1

for all e ∈ E . Setting the above partial derivatives to zero, which is equivalent to using the condition ∂
∂γe(xe)

F alt
B,d,N + 1 = 0 as

mentioned in the proposition, we have

γe(xe) =
bfi,e(xe) + bfj ,e(xe)

2
, xe ∈ Xe, e = (fi, fj) ∈ E . (145)

Also the partial derivatives of the objective function in (26) w.r.t. λ are given by

∂

∂λe(xe)
F alt
B,d,N = −bfi,e(xe) + bfj ,e(xe), xe ∈ Xe, e = (fi, fj) ∈ E .

Setting the above partial derivatives to zero, which is equivalent to using the condition ∂
∂λe(xe)

F alt
B,d,N = 0 as mentioned in the

proposition, we have

bfi,e(xe) = bfj ,e(xe), xe ∈ Xe, e = (fi, fj) ∈ E . (146)

At a stationary point of the objective function, i.e., when both (145) and (146) hold, we have

γe(xe) = bfi,e(xe) = bfj ,e(xe), xe ∈ Xe, e = (fi, fj) ∈ E . (147)

Because of λ ∈ R|X |, we have exp(λe(xe)) ∈ R>0 for all xe ∈ Xe and e ∈ E and

bfi,e(xe) ∝ exp(λe,fi(xe)) ·
√

γe(xe) ·
∑

zfi
: ze=xe

fi(zfi) ·
∏

e′∈∂fi\{e}

(
exp
(
λe′,fi(ze′)

)
·
√
γe′(ze′)

)
, (148)

bfj ,e(xe) ∝ exp
(
λe,fj (xe)

)
·
√
γe(xe) ·

∑
zfj

: ze=xe

fj(zfj ) ·
∏

e′∈∂fj\{e}

(
exp
(
λe′,fj (ze′)

)
·
√

γe′(ze′)
)
, (149)

where λe,fi and λe,fj are defined in (15). Then we have

exp(λe,fi(xe)) ·
√
γe(xe)

(a)
=

bfj ,e(xe)

exp
(
λe,fj (xe)

)
·
√
γe(xe)

(b)
∝

∑
zfj

: ze=xe

fj(zfj ) ·
∏

e′∈∂fj\{e}

(
exp
(
λe′,fj (ze′)

)
·
√
γe′(ze′)

)
.

where step (a) follows from the expressions in (147) and the definitions of λe,fi and λe,fj in (15) and where step (b) follows

from (149). Similarly, we have

exp
(
λe,fj (xe)

)
·
√
γe(xe) ∝

∑
zfi

: ze=xe

fi(zfi) ·
∏

e′∈∂fi\{e}

(
exp
(
λe′,fi(ze′)

)
·
√

γe′(ze′)
)
.

By letting

µe→f (xe) ∝ exp(λe,f (xe)) ·
√

γe(xe), xe ∈ Xe, e ∈ ∂f, f ∈ F ,

we can obtain a collection of SPA fixed-point messages. The definition of SPA fixed-point messages is given in Definition 5.

APPENDIX B

PROOF OF THEOREM 14

Because of F alt
B,d,N(γ,λ) = FB,d,N(γ,λ) as defined in (23), it is sufficient to prove the properties for F alt

B,d,N only. The proof for

each property for F alt
B,d,N(γ,λ) is listed as follows.

1) [8, Section 4] For fixed γe ∈ Be(N) for all e ∈ E , the function F alt
B,d,N(γ,λ) is the negative of a “log-sum-exp” function w.r.t.

λ and thus it is concave.
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2) Although it was proven in [16, Section 6.2], here we provide another approach to prove it. For fixed λ and {γe′}e′∈E\{e}, by

the definition of F alt
B,d,N(γ,λ) in (23), it is sufficient to prove that − logZfi(γ∂fi ,λ∂fi) and − logZfj (γ∂fj ,λ∂fj ) are convex

w.r.t. γe for e = (fi, fj). The function Zfi(γ∂fi ,λ∂fi) defined in (16) equals

Zfi(γ∂fi ,λ∂fi) =
∑
xfi

fi(xfi) ·
√
γe(xe,fi) ·

(
exp

( ∑
e′∈∂fi

λe′,fi(xe′,fi)

) ∏
e′′∈∂fi\{e}

√
γe′′(xe′′,fi)

)
.

Because

• the function f(xfi) is nonnegative for xfi ∈ Xfi ,

• the function
√

γe(xe,fi) is concave w.r.t. γe(xe,fi),

• the vector λ is real-valued,

• the vector γ is nonnegative,

the function Zfi is concave w.r.t. γe. Due to the fact that the logarithm function is a concave and non-decreasing function for

positive real arguments, taking the logarithm of a concave function is again a concave function [21, Section 3.2.4]. Then we

know that the function logZfi is concave w.r.t. γe as well. Thus − logZfi(γ∂fi ,λ∂fi) is convex w.r.t. γe. Similarly, we can

prove that − logZfj (γ∂fj ,λ∂fj ) is also convex w.r.t. γe. Thus the function F alt
B,d,N(γ,λ) = −

∑
f logZf (γ∂f ,λ∂f ) is convex

w.r.t. γe for fixed λ and {γe′}e′∈E\{e}.

APPENDIX C

PROOF OF PROPOSITION 16

In this section, we prove that the Bethe partition function Z∗
B,p,N defined in (12) for an S-NFG N can be written as

Z∗
B,p,N = exp

(
− inf

γ
sup
λ

(
−
∑
f

logZf (γ∂f ,λ∂f )

))
,

s.t. λe(xe) ∈ R, xe ∈ Xe, γe ∈ B>
e , e ∈ E ,

where Zf is defined in (16) and B>
e is defined in (6).

Lemma 62. For each βe ∈ B≥
e , where B≥

e is defined in (5), we have

−
∑
xe

βe(xe) log βe(xe) = inf
γe

(
−
∑
xe

βe(xe) · log γe(xe)

)

s.t. γe ∈ B>
e . (150)

Proof. It is well-known that (see, e.g., [21, page 222])

−
∑
xe

βe(xe) log βe(xe) = inf
{ζe(xe)}xe

(
−
∑
xe

βe(xe) · ζe(xe) + log

(∑
xe

exp
(
ζe(xe)

)))
(151)

s.t. ζe(xe) ∈ R, xe ∈ Xe, (152)

where the location of the optimal value for the optimization problem defined on the RHS of the above expression is given by

exp(ζe(xe))∑
ze
exp
(
ζe(ze)

) = βe(xe), xe ∈ Xe.

Thus it is sufficient to consider ζe(xe) ∈ R for all xe ∈ Xe such that
∑

xe
exp(ζe(xe)) = 1 in the above problem. Therefore, the

optimization problem (152) becomes

−
∑
xe

βe(xe) log βe(xe) = inf
{ζe(xe)}xe

−
∑
xe

βe(xe) · ζe(xe)
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s.t. ζe(xe) ∈ R, xe ∈ Xe,
∑
xe

exp(ζe(xe)) = 1.

Substituting ζe(xe) by log γe(xe) for all xe ∈ Xe yields (150). Note that the constraints on ζe(xe) ∈ R for all xe ∈ Xe are equivalent

to γe ∈ B>
e . ■

By Lemma 62 and the fact that the local consistency constraints in B(N) are equivalent to

βe(xe) =
1

2

(
βfi,e(xe) + βfj ,e(xe)

)
, xe ∈ Xe, e = (fi, fj) ∈ E , (153)

where the marginals βfi,e(xe) and βfj ,e(xe) are given in (8), we can replace {βe}e with βF , both in F ∗
B,p,N defined in (10) and the

constraints (7). Then we transform Z∗
B,p,N defined in (12) into a constrained optimization problem w.r.t. the variables γ and βF , i.e.,

Z∗
B,p,N = exp

(
−min

βF
inf
γ

F
(2)
B,p,N(γ,βF )

)
(P1)

s.t. γe ∈ B>
e , e ∈ E , (154)

βf ∈ Bf , f ∈ F , (155)

βfi,e(xe) = βfj ,e(xe), xe ∈ Xe, i < j, e = (fi, fj) ∈ E , (156)

where Bf is defined in (4), and F
(2)
B,p,N is defined to be

F
(2)
B,p,N : R|X |

>0 ×
∏
f

Xf → R (157)

(γ,βF ) 7→ −
∑
f

∑
xf

βf (xf ) · log f(xf ) +
∑
f

∑
xf

βf (xf ) · log βf (xf )

−
∑
e

∑
xe

1

2
·
(
log γe(xe)

)
·
(
βfi,e(xe) + βfj ,e(xe)

)
. (158)

The optimization problem (P1) is equivalent to the following optimization problem:

Z∗
B,p,N = exp

(
− inf

γ
min
βF

F
(2)
B,p,N(γ,βF )

)

s.t. (154)–(156) hold.

(159)

Because

1) the constraints (155) and (156) form a compact set of βF ;

2) F
(2)
B,p,N is continuous w.r.t. βF in this set;

3) F
(2)
B,p,N is bounded in this set for fixed γ,

we have, for fixed γ, (
min
βF

F
(2)
B,p,N(γ,βF )

)
∈ R

s.t. (155) and (156) hold, and γe ∈ B>
e , e ∈ E .

(160)

For fixed γ, the optimization problem (160) is convex in βF , which means that the location of Z∗
B,p,N can be obtained using the

method of Lagrange multipliers. The details of this method are given as follows. We note that the optimization problem in (159) is

equivalent to the following optimization problem:

Z∗
B,p,N = exp

(
inf
γ

min
βF

sup
λ

L(γ,βF ,λ)
)

s.t. λe(xe) ∈ R, xe ∈ Xe, γe ∈ B>
e , e ∈ E ,

βf ∈ Bf , f ∈ F ,
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where the Lagrangian function L is given by

L(γ,βF ,λ) ≜ F
(2)
B,p,N(γ,βF ) +

∑
e=(fi,fj)

i<j

∑
xe∈Xe

λe(xe) ·
(
βfj ,e(xe)− βfi,e(xe)

)
, (161)

and the variables λ are the Lagrange multipliers w.r.t. the local consistency constraints in (156). By (160), we know that the optimal

value of the following optimization problem is real-valued for fixed γ:(
min
βF

sup
λ

L(βF ,γ,λ)
)
∈ R

s.t. λe(xe) ∈ R, xe ∈ Xe, e ∈ E ,

βf ∈ Bf , f ∈ F .

(162)

Because

1) L is convex in βF for fixed γ and λ;

2) L is concave w.r.t. λ for fixed γ and βF ,

by Sion’s minimax theorem (see, e.g., [21]), we can further transform ZB,p,N into the following optimization problem

Z∗
B,p,N = exp

(
− inf

γ
sup
λ

min
βF

L(βF ,γ,λ)
)

s.t. λe(xe) ∈ R, xe ∈ Xe, γe ∈ B>
e , e ∈ E ,

βf ∈ Bf , f ∈ F .

(163)

Note that in (163), the constraints for βF form a compact set, and L is continuous w.r.t. βF . Thus the minimum of L w.r.t. {βf}f∈F

for fixed γ and λ is attainable. By (162) and Sion’s minimax theorem, we also know that the optimal value of the following

optimization is real-valued for fixed γ: (
sup
λ

min
βF

L(βF ,γ,λ)
)
∈ R

s.t. λe(xe) ∈ R, xe ∈ Xe, e ∈ E ,

βf ∈ Bf , f ∈ F .

(164)

Now we proceed to solve the optimization problem (163) for fixed γ and λ. Because of the convexity of L w.r.t. {βf}f∈F

for fixed γ and λ and the fact that the constraints for βF form a compact and convex set, the location of the optimal value for

the optimization problem in (163), denoted by β∗
f (xf ) for all xf ∈ Xf and f ∈ F , can be obtained by solving the following

inequalities [19, Proposition 3.1.1]:∑
f

(∇βf
L
∣∣
βf=β∗

f

)T · (βf − β∗
f ) =

∑
f

∑
xf

∂

∂βf (xf )
L

∣∣∣∣
βf=β∗

f

·
(
βf (xf )− β∗

f (xf )
)
≥ 0, (165)

∀βf ∈ Bf , f ∈ F ,

where ∇βf
L is the gradient of L w.r.t. βf , and the entries in the gradient are given by

∂

∂βf (xf )
L = − log f(xf ) + log βf (xf ) + 1−

∑
e∈∂f

(
λe,f (xe,f ) +

1

2
log
(
γe(xe,f )

))
, xf ∈ Xf , f ∈ F ,

where the definition of {λe,f}e∈∂f,f∈F is given in (15). If we set β∗
F to be

β∗
f (xf ) =

1

Zf (γ∂f ,λ∂f )
· f(xf ) ·

∏
e∈∂f

(
exp
(
λe,f (xe,f )

)
·
√
γe(xe,f )

)
, xf ∈ Xf , f ∈ F , (166)
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where Zf (γ∂f ,λ∂f ) is the normalization factor defined in (16), then the resulting {β∗
f}f satisfies (166) and is at the location of the

optimal value for the optimization problem (163) for fixed γ and λ. Substituting the above expression (166) for {βf}f∈F into (161),

we obtain

L(γ, {β∗
f}f ,λ) = −

∑
f

logZf (γ∂f ,λ∂f ),

which proves (27). Combining with (164), we know that the optimal value of the following optimization problem is real-valued:(
sup

λ∈R|X|
−
∑
f

logZf (γ∂f ,λ∂f )

)
∈ R, γ ∈ R|X |

>0 ,
∑
xe

γe(xe) = 1, e ∈ E ,

which proves (28).

APPENDIX D

PROOF OF PROPOSITION 19

The proof consists of two parts, where the first part analyzes the fixed points of the inner loop, and the second part analyzes the

fixed points of the outer loop.

1) By the update rule of λ(t1)
dl,e(xe) in (46), at the fixed point of the inner loop, we have

b
(t1,t2)
dl,fi,e

(xe) = b
(t1,t2)
dl,fj ,e

(xe), xe ∈ Xe, e = (fi, fj) ∈ E . (167)

By the partial derivatives of F alt,∗
B,d,N1

in (40), we know that the fixed point corresponds to a stationary point of F alt
B,d,N2

with

respect to λ.

2) At the fixed point of the outer loop, we have

1

2
·
(
b
(t1,t2)
dl,fi,e

(xe) + b
(t1,t2)
dl,fj ,e

(xe)
)

(a)
= b

(t1,t2)
dl,fi,e

(xe) = γ
(t2)
dl,e (xe)

(a)
∈ R>0, xe ∈ Xe, e = (fi, fj) ∈ E , (168)

where step (a) follows from (167) and where step (b) follows from the fact that γe ∈ B>
e for all e ∈ E . Then we have(

∇γe
F alt
B,d,N2

)T
· (γe − γ′

e)

∣∣∣∣
λ=λ

(t1)

dl ,γ=γ
(t2)

dl

=
∑
xe

b
(t1,t2)
dl,fi,e

(xe) + b
(t1,t2)
dl,fj ,e

(xe)

2γ
(t2)
dl,e (xe)

·
(
γ
(t2)
dl,e (xe)− γ′

e(xe)
)

(a)
=
∑
xe

(
γ
(t2)
dl,e (xe)− γ′

e(xe)
)

= 0, e ∈ E ,γ′
e ∈ B≥

e . (169)

where step (a) follows from (168).

APPENDIX E

PROOF OF PROPOSITION 21

In Algorithm 2, we can update exp
(
λ
(t1)
dl,e(xe)

)
·
√
γ
(t2)
dl,e (xe) directly instead of updating exp

(
λ
(t1)
dl,e(xe)

)
and

√
γ
(t2)
dl,e (xe),

respectively. After updating exp
(
λ
(t1)
dl,e(xe)

)
·
√
γ
(t2)
dl,e (xe) for all xe ∈ E , we increase both t1 and t2 by one. Note that considering

exp
(
λ
(t1)
dl,e(xe)

)
·
√
γ
(t2)
dl,e (xe) is equivalent to considering the message sequence defined in (44) and (45). When we update µ(t1,t2)

following the steps in Algorithm 2, the resulting update rules are given as follows.

1) We randomly generate µ
(0,0)
e→f by generating γ

(0)
dl,e(xe) and λ

(0)
dl,e(xe) following the uniform distributions in [0, 1) and [−1, 1],

respectively, for all xe ∈ Xe and e ∈ E .
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2) For each t1 = t2 ∈ Z>0 and e = (fi, fj) ∈ E , we update µ
(t1,t2)
e→fi

by considering the normalization constraint in (45) and the

update rule of exp
(
λ
(t1)
dl,e(xe)

)
·
√
γ
(t2)
dl,e (xe) as stated in (47), (50), and (51):

µ
(t1,t2)
e→fj

(xe) ∝
∑

zfi
: ze=xe

fi(zfi) ·
∏

e′∈∂fi\{e}

µ
(t1−1,t2−1)
e′→fi

(ze′), (170)

∑
e

µ
(t1,t2)
e→fj

(xe) = 1. (171)

The update rule of µ(t1,t2)
e→fj

can be obtained similarly.

3) We increase t1 and t2 by one, respectively.

4) The update of µ(t1,t2)(xe) is stopped when some termination criterion is met.

5) Comparing the update rules in (170) and (171) with the update rule in (1) in the SPA in Definition 5, we know that Algorithm 2

is equivalent to the SPA in Definition 5.

6) Similar to the proof of Proposition 19, we can show that each fixed point of Algorithm 2 corresponds to a stationary point of

F alt
B,d,N.

APPENDIX F

PROOF OF PROPOSITION 26

We list the proof for each property in the following.

1) Omitted.

2) Omitted.

3) Omitted.

4) Because the S-NFG N1 is a single-cycle S-NFG, the SPA initialiaztion and update rules specified in Definition 5 for messages

µ
(t)
1→f1

and µ
(t)
1→f2

are equivalent to applying the power method for the matrix f1,r · fT
2,r. (See, e.g. [22, Section 7.3.1].) Thus

at the SPA fixed point, messages µ
(t)
1→f1

and µ
(t)
1→f2

correspond to the eigenvectors associated with the eigenvalue with largest

magnitude, i.e., Λmax(r).

5) Based on the previous properties, we can prove this property straightforwardly.

6) By Proposition 16, we have Z∗
B,p,N1

= Z∗
B,d,N1

. Because the S-NFG N1 is a single-cycle S-NFG and the local functions are

all positive-valued, by Proposition 10, the local minima of the Bethe free energy function correspond to the SPA fixed points.

Note that the considered S-NFG N1 has a single SPA fixed point, which means that the collection of beliefs in (66) and (67)

evaluated at this fixed point is at the location of the optimal value for the primal formulation. One can verify that

− log(Λmax(r)) = FB,p,N1
(β) s.t. β ∈ B(N1), where βf1 satisfies (66) and βf2 satisfies (67).

APPENDIX G

PROOF OF PROPOSITION 27

The proof for each property is listed as follows.

1) The eigenvalue Λmax(r) equals

Λmax(r) = 1 +
δ2(r)

2
+

c1(r)

2
+

δ1(r) · δ3(r)
2

. (172)

where δi(r) is defined in (61) and (62) for i ∈ [3], and c1(r) is defined in (65). The associated eigenvectors equal

vL ∝
(

δ2(r)−δ1(r)·δ3(r)+c1(r)

2
(
δ3(r)+1

) 1

)T
(a)
∈ R|Xe|

>0 , vR ∝
(

δ2(r)−δ1(r)·δ3(r)+c1(r)

2
(
δ1(r)+δ2(r)

) 1

)T
(a)
∈ R|Xe|

>0 , (173)
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where step (a) follows from the property of c1(r) in (65). Taking the limit r ↓ 0 completes the proof.

2) By Proposition 26, the SPA fixed-point messages are given by some eigenvectors:

µ
(t)
1→f1

∝ vL ∈ R|Xe|
>0 , (174)

µ
(t)
1→f2

∝ vR ∈ R|Xe|
>0 , (175)

µ
(t)
2→f1

∝
(

δ1(r)·δ3(r)−δ2(r)+c1(r)

2
(
δ1(r)+δ2(r)

) 1

)T
(a)
∈ R|Xe|

>0 , (176)

µ
(t)
2→f2

∝
(

δ1(r)·δ3(r)−δ2(r)+c1(r)

2
(
δ3(r)+1

) 1

)T
(a)
∈ R|Xe|

>0 , (177)

where step (a) follows from the property of c1(r) in (65). Taking the limit r ↓ 0 completes the proof.

3) As stated in Proposition 26, the location of F ∗
B,p,N1

is given by the SPA fixed point and satisfies (66). By the SPA fixed-point

messages given in (174)–(177), there exists a scalar cf1 ∈ C s.t.

βf1(1, 1) = cf1 ·
2δ1(r) + 2δ2(r) + δ2(r) · c1(r) +

(
δ2(r)

)2 − δ1(r) · δ2(r) · δ3(r)
2
(
δ1(r) + δ2(r)

) ,

βf1(1, 2) = cf1 ·
2δ1(r) + 2δ2(r) + δ2(r) · c1(r) +

(
δ2(r)

)2 − δ1(r) · δ2(r) · δ3(r)
2
(
δ1(r) + δ2(r)

) · δ2(r)− δ1(r) · δ3(r) + c1(r)

2(δ3(r) + 1)
,

βf1(2, 1) = cf1 ·

δ1(r) ·
(
δ1(r) · δ3(r) + c1(r)

)
−
(
δ2(r)

)2 · (2δ3(r) + 1)

2
(
δ1(r) + δ2(r)

) +
δ1(r) · (2δ3(r) + 1)

2

 ,

βf1(2, 2) = βf1(1, 1),

which proves (69). The proof of (70) is similar and thus it is omitted here.

APPENDIX H

PROOF OF PROPOSITION 28

The proof for each property is listed as follows.

1) The function Zf1 defined in (16) can be written as

Zf1

(
γ, λ

)
= exp

(
λ1(1) + λ2(1)

)
·
√

γ1(1) · γ2(1)

+ exp
(
λ1(1) + λ2(2)

)
·
√

γ1(1) · γ2(2)

+ δ1(r) · exp
(
λ1(2) + λ2(1)

)
·
√
γ1(2) · γ2(1)

+ exp
(
λ1(2) + λ2(2)

)
·
√

γ1(2) · γ2(2), (178)

where step (a) follows from the definition of λe,f in (15). The function Zf2 can be written as

Zf2

(
γ, λ

)
= exp

(
−
(
λ1(1) + λ2(1)

))
·
√

γ1(1) · γ2(1)

+ δ2(r) · exp
(
−
(
λ1(1) + λ2(2)

))
·
√
γ1(1) · γ2(2)

+ δ3(r) · exp
(
−
(
λ1(2) + λ2(1)

))
·
√
γ1(2) · γ2(1)

+ exp
(
−
(
λ1(2) + λ2(2)

))
·
√
γ1(2) · γ2(2). (179)

If we consider (γ,λ) given in (71)–(72), then we have

Zf2

(
γ, λ

)
· Zf1

(
γ, λ

)
= Λmax

(a)
= Z∗

B,d,N1
,



51

where step (a) follows from Proposition 26. By the SPA fixed-point messages µ given in (174)–(177) and the property of δi(r)

in (61) and (62) for i ∈ [3], we can prove (73)–(75).

2) We first prove that as for γ, the location for Zalt,∗
B,d,N1

satisfies γe ∈ B>
e for all e ∈ E . There are various cases that need to be

discussed.

a) We first suppose that γ1(1) = 0, which implies γ1(2) = 1 by γ1 ∈ B≥
1 . If we set

exp(λ1(2)) = exp(λ2(2)) = 1, exp(λ2(1)) =

√
δ3(r)

δ1(r)
,

then we have

Zf1

(
γ, λ

)
= Zf2

(
γ, λ

)
=
√
δ1(r) · δ3(r) · γ2(1) +

√
γ2(2)

(a)

≤
√

δ1(r) · δ3(r) + 1,

where step (a) follows from the Cauchy-Schwarz inequality and the fact that γ2 ∈ B≥
2 . Based on the above derivations,

we have

inf
λ∈R|X|

ZB,d,N(γ,λ) = inf
λ∈R|X|

Zf1

(
γ, λ

)
· Zf2

(
γ, λ

)
≤ δ1(r) · δ3(r) + 1

(a)
< Λmax

(b)
= Z∗

B,d,N1
.

where step (a) follows from the expression of Λmax in (172) and the property of c1(r) in (65) and where step (b) follows

from (68).

b) The proofs for other cases where at least one of the entries in γ equals zero, are similar and thus they are omitted here.

Consequently, we know that if at least one of the entries in γ equals zero, we have

inf
λ∈R|X|

ZB,d,N(γ,λ) < Λmax = Z∗
B,d,N1

.

Because of the above derivations and

Λmax = Z∗
B,d,N1

(a)
= sup

γ∈B>
1 ×B>

2

inf
λ∈R|X|

ZB,d,N(γ,λ),

where step (a) follows from the definition of Z∗
B,d,N1

in (19), we have

sup
γ∈B≥

1 ×B≥
2

inf
λ∈R|X|

ZB,d,N(γ,λ) = Λmax = Z∗
B,d,N1

.

By Proposition 15, we know that for the considered S-NFG N1, we have Zalt,∗
B,d,N1

= Z∗
B,d,N1

= Λmax.

APPENDIX I

PROOF OF PROPOSITION 35

We prove each property separately.

1) Recall that we consider γe ∈ B≥
e for all e ∈ E . By the expressions of Zf1 in (83) and Zf2 in (84), we have

Zf1

(
γ, λ

)
· Zf2

(
γ, λ

) (a)

≥ γ1(1) · γ2(1) + γ1(2) · γ2(2)

+

(
exp

(∑
e

(
λe(1)− λe(2)

))
+ exp

(
−
∑
e

(
λe(1)− λe(2)

)))
·
√
γ1(1) · γ1(2) · γ2(1) · γ2(2)

(b)

≥
(√

γ1(1) · γ2(1) +
√

γ1(2) · γ2(2)
)2

, (180)
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where step (a) follows from the fact that the terms in Zf1

(
γ, λ

)
·Zf2

(
γ, λ

)
are nonnegative, where step (b) follows from the

fact that x+ 1/x ≥ 2 for x ∈ R>0, i.e.,

exp

(∑
e

(
λe(1)− λe(2)

))
+ exp

(
−
∑
e

(
λe(1)− λe(2)

))
≥ 2.

By the expression of F alt
B,d,N1

(γ,λ) in (54) and the inequality in (180), we have

F alt
B,d,N1

(γ,λ) ≤ −2 log
(√

γ1(1) · γ2(1) +
√

γ1(2) · γ2(2)
)
, λ ∈ R|X |. (181)

Also by the definition of λ(n) in Definition 33, we have

lim
n→∞

F alt
B,d,N1

(γ,λ(n)) = lim
n→∞

− log
(
Zf1

(
γ,λ(n)

)
· Zf2

(
γ,λ(n)

))
= −2 log

(√
γ1(1) · γ2(1) +

√
γ1(2) · γ2(2)

)
. (182)

Then we can prove the first property:

−2 log
(√

γ1(1) · γ2(1) +
√
γ1(2) · γ2(2)

)
(a)
= lim

n→∞
F alt
B,d,N1

(γ,λ(n))

≤ sup
λ∈R|X|

F alt
B,d,N1

(γ,λ)

(b)
= F alt

B,d,N1
(γ)

(c)

≤ −2 log
(√

γ1(1) · γ2(1) +
√
γ1(2) · γ2(2)

)
,

where step (a) follows from the expressions in (182), where step (b) follows from the definition of F alt
B,d,N1

(γ) in (29) for N1,

and where step (c) follows from the inequality in (181).

2) By the expression of F̂ alt
B,d,N1

(γ) in (86), for all γ ∈
∏

e B≥
e , we have

F̂ alt
B,d,N1

(γ) = −2 log
(√

γ1(1) · γ2(1) +
√
γ1(2) · γ2(2)

) (a)

≥ −2 log
(
γ1(1) + γ1(2)

)
− 2 log

(
γ2(1) + γ2(2)

)
(b)
= 0, (183)

where step (a) follows from the Cauchy-Schwarz inequality and where step (b) follows from the fact that γ1,γ2 ∈ B≥
1 as

defined in (14), i.e.,

γ1(1) + γ1(2) = 1, γ2(1) + γ2(2) = 1.

Then by the definition of F alt,∗
B,d,N1

in (22), we get F alt,∗
B,d,N1

= 0. Then it holds that

F alt,∗
B,d,N1

(a)
= F ∗

B,p,N

(b)
= F ∗

B,d,N1

(c)
= F̂ alt

B,d,N1
(γ(1)) = 0.

where step (a) follows from (82), where step (b) follows from Proposition 16, and where step (c) follows from the definition

of γ(1) in Definition 33 and the expression of F̂ alt
B,d,N1

(γ(1)) in (183).
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We only prove for function node f1. The proof for f2 is similar and thus it is omitted here.

By the expression of b(1,n)f1
in (57) and the definition of γ(1) and λ(n) in Definition 33, we have

b
(1,n)
f1

=
1

γ
(1)
1 (1) + exp(−n) ·

√
γ
(1)
1 (1) · γ(1)

1 (2) + γ
(1)
1 (2)

γ
(1)
1 (1) exp(−n) ·

√
γ
(1)
1 (1) · γ(1)

1 (2)

0 γ
(1)
1 (2)

 .

Taking the limit n → ∞, we have

lim
n→∞

b
(1,n)
f1

=
1

γ
(1)
1 (1) + γ

(1)
1 (2)

γ
(1)
1 (1) 0

0 γ
(1)
1 (2)

 (a)
=

γ
(1)
1 (1) 0

0 γ
(1)
1 (2)

 ,
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where step (a) follows from the property γ1 ∈ B>
1 as stated in (53). Because

lim
n→∞

b
(1,n)
f1,e

(xe) = lim
n→∞

b
(1,n)
f2,e

(xe) = γ(1)
e (xe), xe ∈ Xe, e ∈ [2], (184)

the beliefs b
(1,n)
f1

and b
(1,n)
f2

satisfy the local consistency constraints and so (88) follows.

APPENDIX K

PROOF OF LEMMA 37

By the definition of γ(1) in Definition 33 and the definition of B>
e in (6), we have γ

(1)
1 ∈ R|X1|

>0 . Following the definition of λ(n)

given in Definition 33, we have

Zf1

(
γ(1), λ(n)

)
≥ lim

n→∞
Zf1

(
γ(1), λ(n)

)
= γ

(1)
1 (1) + γ

(1)
1 (2) ∈ R>0. (185)

By the definition of b(1,n)f1
in (55), we have

lim
n→∞

∑
x1,x2

b
(1,n)
f1

(x1, x2) · (λ(n)
1 (x1) + λ

(n)
2 (x2))

(a)
= lim

n→∞
b
(1,n)
f1

(1, 2) · λ(n)
1 (1)

= lim
n→∞

γ
(1)
1 (1)

Zf1

(
γ(1), λ(n)

) exp(−n) · (−n)

(b)
= 0,

where step (a) follows from the definition of λ(n) in Definition 33, and where at step (b) follows from the fact that limn→∞ exp(−n)·

(−n) = 0, and (185), i.e., a product of a sequence that converges to zero and a bounded sequence is again a sequence that converges

to zero. Similarly, we obtain

lim
n→∞

∑
x1,x2

b
(1,n)
f2

(x1, x2) · (λ(n)
1 (x1) + λ

(n)
2 (x2)) = 0.

APPENDIX L

PROOF OF THEOREM 38

By Lemma 36, the continuity of the Kullback–Leibler (K-L) divergence function, and the definition of the marginals bf1,e and

bf2,e in (58), we have

lim
n→∞

∑
e∈[2]

∑
xe: γ

(1)
e (xe)>0

b
(1,n)
f1,e

(xe) + b
(1,n)
f2,e

(xe)

2
· log

(
2γ

(1)
e (xe)

b
(1,n)
f1,e

(xe) + b
(1,n)
f2,e

(xe)

)
= 0, m ∈ Z>0. (186)

By the fact that the limit of a finite sum of sequences equals the finite sum of the limits of the sequences, provided that the limit of

each sequence exists in R, we have

lim
n→∞

F
(1)
B,p,N1

(b(1,n)) = lim
n→∞

− log
(
Zf1

(
γ(1), λ(n)

)
· Zf2

(
γ(1), λ(n)

))
+ lim

n→∞

(∑
x1,x2

b
(1,n)
f1

(x1, x2) · (λ(n)
1 (x1) + λ

(n)
2 (x2))−

∑
x1,x2

b
(1,n)
f2

(x1, x2) · (λ(n)
1 (x1) + λ

(n)
2 (x2))

)

+ lim
n→∞

∑
e

∑
xe: γ

(1)
1 (xe)>0

b
(1,n)
f1,e

(xe) + b
(1,n)
f2,e

(xe)

2
· log

(
2γ

(1)
e (xe)

b
(1,n)
f1,e

(xe) + b
(1,n)
f2,e

(xe)

)
(a)
= 0,

where step (a) follows from the property in (87), i.e.,

lim
n→∞

− log
(
Zf1

(
γ(1), λ(n)

)
· Zf2

(
γ(1), λ(n)

))
= F alt

B,d,N1
(γ(1)) = 0,
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and Lemma 37, and the equality in (186). By (87), we have

lim
n→∞

F
(1)
B,p,N1

(b(1,n)) = F ∗
B,p,N1

= F ∗
B,d,N1

= F alt,∗
B,d,N1

= 0.

APPENDIX M

PROOF OF LEMMA 46

We consider the following λ:

exp
(
λe(xe)

)
=
(
W (0|xe)

)−1/3

, xe ∈ Xe = {0, 1}, e ∈ E . (187)

Then the functions in (106) and (107) become

Zfi(γ∂fi ,λ∂fi) =
∑
xfi

[all xe, e ∈ ∂fi are equal] ·
∏

e∈∂fi

√
γe(xfi), i ∈ I, γe ∈ B≥

e , e ∈ ∂fi,

Zfj (γ∂fj ,λ∂fj ) =
∑
xfj

∑
e∈∂f

xe = 0 mod 2

 ·
∏

e∈∂fj

((
W (0|xe)

)1/3
·
√

γe(xe)

)
, j ∈ J , γe ∈ B≥

e , e ∈ ∂fj .

Then we can find the upper bounds of the above local functions. The proof for each i ∈ I and each j ∈ J is similar. Thus we only

provide the proof for f1 and f5.

1) For f1, because of 0 ≤ γi(x1) ≤ 1 for all x1 ∈ X1 and i ∈ {1, 2, 3}, we have

Zf1(γ∂f1 ,λ∂f1) =
∑

x1∈{0,1}

√
γ1(x1) · γ2(x1) · γ3(x1)

≤
√

γ1(0) · γ2(0) +
√
γ1(1) · γ2(1)

≤
√

γ1(0) + γ2(0) ·
√
γ1(1) + γ2(1)

(a)
= 1 · 1, γe ∈ B≥

e , e ∈ ∂f1, (188)

where step (a) follows from γi(0) + γi(1) = 1 for i ∈ {1, 2}. The proof for other local functions in {fi}i∈I is similar. Based

on that, we have

Zfi(γ∂fi ,λ∂fi) ≤ 1, i ∈ I. (189)

2) For f5, we have

Zf5(γ∂f5 ,λ∂f5) =
(
W (0|0)

)4/3 ∏
e∈∂f5

√
γe(0) +

∑
xf5

∈Xf5
\{(0,...,0)}

∏
e∈∂f5

((
W (0|xe)

)1/3
·
√
γe(xe)

)
. (190)

where Xf5 defined in (97) is given by

Xf5 = {xf5 | x1 + x4 + x7 + x10 = 0 mod 2} .

In particular, we define {x∗
e}e∈∂f5 to be

(x∗
e)e∈∂f5 ∈ argmaxxf5

∈Xf5
\{(0,...,0)}

∏
e∈∂f5

√
γe(xe), γe ∈ B≥

e , e ∈ ∂f5, (191)

Clearly, the Hamming weight of (x∗
e)e∈∂f5 is larger than or equal to 2. It holds that∑

xf5
∈Xf5

\{(0,...,0)}

∏
e∈∂f5

((
W (0|xe)

)1/3
·
√
γe(xe)

)

≤

 ∑
xf5

∈Xf5
\{(0,...,0)}

∏
e∈∂f5

(
W (0|xe)

)1/3 · max
xf5

∈Xf5
\{(0,...,0)}

∏
e∈∂f5

√
γe(xe)



55

(a)
=

 ∑
xf5

∈Xf5
\{(0,...,0)}

∏
e∈∂f5

(
W (0|xe)

)1/3 ·
∏

e∈∂f5

√
γe(x∗

e)

(b)

≤
(
W (0|0)

)4/3 · ∏
e∈∂f5

√
γe(x∗

e), γe ∈ B≥
e , e ∈ ∂f5,

where step (a) follows from (191) and where step (b) follows from the assumption about the channel law in (100). Note that

(x∗
e)e∈∂f5 as defined in (191) contains at least two components, denoted by x∗

e1 and x∗
e2 , such that x∗

e1 ̸= 0 and x∗
e2 ̸= 0. Then

the expression in (190) satisfies

Zf5(γ∂f5 ,λ∂f5) ≤
(
W (0|0)

)4/3
·

( ∏
e∈∂f5

√
γe(0) +

∏
e∈∂f5

√
γe(x∗

e)

)
(a)

≤
(
W (0|0)

)4/3
·

(√
γe1(0) · γe2(0) +

√
γe1(x

∗
e1) · γe2(x∗

e2)

)
(b)

≤
(
W (0|0)

)4/3
, γe ∈ B≥

e , e ∈ ∂f5,

where step (a) follows from γe ∈ B≥
e for all e ∈ ∂f5:

γe(xe) ≤ 1, xe ∈ {0, 1}, e ∈ ∂f5,

where step (b) follows from the similar considerations as in (188) and thus the details are omitted here. The proof for other

elements in J is similar. Therefore, we have

Zfj (γ∂fj ,λ∂fj ) ≤
(
W (0|0)

)4/3
, j ∈ J . (192)

When we consider λ in (187), the function ZB,d,N4
(γ,λ) given in (105) satisfies

ZB,d,N4
(γ,λ)

(a)

≤
(
W (0|0)

)4
,

where step (a) follows from the inequalities in (189) and (192). By the expression of Zalt,∗
B,d,N4

in (104), we have

Zalt,∗
B,d,N4

≤
(
W (0|0)

)4
.
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If we set γ to be

γe(xe) ≜

 1 if xe = x′
e

0 otherwise
, xe ∈ Xe, e ∈ E , (193)

where x′ = (x′
e)e∈E is given in (117), then we have

ZB,d,N(γ,λ)
(a)

≥ g(x′) > 0, λ ∈ R|X |, (194)

where step (a) follows from the definition of ZB,d,N in (18), the definition of F alt
B,d,N in (23), and the definition of Zf in (16), i.e.,

ZB,d,N(γ,λ) = exp
(
−F alt

B,d,N(γ,λ)
)
=

∑
{x∂f,f}f

∏
f∈F

(
f(x∂f,f )

∏
e∈∂f

(
exp
(
λe,f (xe,f )

)
·
√

γe(xe,f )
))

.

The inequalities in (194) also imply

F alt,∗
B,d,N

(a)

≤ F̂ alt
B,d,N(γ)

(b)
= sup

λ∈R|X|
F alt
B,d,N(γ,λ) ≤ − log g(x′) < ∞,
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where step (a) follows from the definition of F alt,∗
B,d,N in Item 5 in Definition 12 and where step (b) follows from the definition of

F̂ alt
B,d,N(γ) in (29). With this, we have

F alt,∗
B,d,N

(a)
= lim

m→∞
F̂ alt
B,d,N(γ

(m))
(b)
= lim

m→∞
sup
λ

F alt
B,d,N(γ

(m),λ), (195)

where step (a) follows from (30) and where step (b) follows from the definition of F̂ alt
B,d,N(γ) in (29). Then we have

F̂ alt
B,d,N(γ

(m)) = sup
λ

F alt
B,d,N(γ

(m),λ)
(a)

≥ F alt
B,d,N(γ

(m),0)
(b)

≥ −
∑
f

log

(∑
x∂f,f

f(x∂f,f )

)
, m ∈ Z>0, (196)

where step (a) follows from (31) and where step (b) follows from γ
(m)
e (xe) ∈ [0, 1] for all xe ∈ Xe and e ∈ E and f(x∂f,f ) ∈ R≥0

for all x∂f,f ∈ Xf as defined in Definition 3, i.e.,

F alt
B,d,N(γ

(m),0) = − log

∏
f∈F

(∑
x∂f,f

f(x∂f,f ) ·
∏
e∈∂f

√
γ
(m)
e (xe,f )

) ≥ − log

∏
f∈F

(∑
x∂f,f

f(x∂f,f )

)
Combining (195) with (196), we get

F alt,∗
B,d,N = lim

m→∞
sup
λ

F alt
B,d,N(γ

(m),λ) ≥ −
∑
f

log

(∑
x∂f,f

f(x∂f,f )

)
> −∞.
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We prove the claims in this proposition item by item.

1) This follows from the definitions of F alt
B,d,N and Zf in (23) and (16), respectively.

2) It can be proven by (118) in Proposition 51 and the property of γ(m) in (30).

3) We prove each property separately.

a) We prove it by contradiction. Suppose that there exists an f ′ ∈ F such that

Zf ′
(
γ
(m)
∂f ′ , α

(k) · λ(n)
∂f ′

)
= 0.

For fixed n and k, because γ
(m)
e ∈ B≥

e as defined in Item 2 in Definition 2, the function Zf is bounded and we have∏
f∈F

Zf

(
γ
(m)
∂f , α(k) · λ(n)

∂f

)
= 0.

By the definition of F̂ alt
B,d,N in (29), we have

F̂ alt
B,d,N(γ

(m)) ≥ − log

(∏
f

Zf

(
γ
(m)
∂f , α(k) · λ(n)

∂f

))
= ∞,

which is a contradiction of the inequalities in (121).

b) It can proven by the property in (122) and the definition of b(m,n,k)
f in (37).

c) It can be proven by combining the inequalities in (121) with the inequalities in (119) as stated in Proposition 51.

d) The proof of convergence follows from the definition of the sequence {γ(m)}m∈Z>0
in Item 2 in Definition 17. The proof

of F alt,∗
B,d,N ∈ R follows from (118) in Proposition 51

e) By inequalities in (121), we have

F̂ alt
B,d,N(γ

(m)) ∈ R.

By the definition of the sequence {λ(n)}n∈Z>0 in Item 3 in Definition 17, we can prove that

lim
n→∞

F alt
B,d,N(γ

(m),λ(n)) = F̂ alt
B,d,N(γ

(m)).
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f) By the definition of {α(k)}k in Item 4 in Definition 17, we can prove the equality in (126). The proof of the property

max
α∈R∪{−∞,+∞}

F alt
B,d,N(γ

(m), α · λ(n)) ∈ R

follows from

− log g(x′)
(a)

≥ F alt
B,d,N(γ

(m))
(b)

≥ F alt
B,d,N(γ

(m), α(k) · λ(n))
(c)

≥ F alt
B,d,N(γ

(m),0) ∈ R,

where step (a) follows from the inequalities in (121), where step (b) follows from (29), and where step (c) follows from

the definition of the sequence {α(k)}k in (35) in Definition 17.
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By the definition of F̂ alt
B,d,N(γ

(m)) in (29) and property (121) in Proposition 52, we know that

F alt
B,d,N(γ

(m), α(k) · λ(n)) ≤ F̂ alt
B,d,N(γ

(m)) ∈ R, n, k ∈ Z>0.

By the property of α(k) in (126), we have

lim
k→∞

F alt
B,d,N(γ

(m), α(k) · λ(n))− F alt
B,d,N(γ

(m),λ(n)) ≥ 0, n ∈ Z>0. (197)

As shown in (125), the sequence
{
F alt
B,d,N(γ

(m),λ(n))
}
n∈Z>0

converges in R, which means that this sequence is a bounded sequence.

Then we know that the following sequences are bounded as well:{
lim
k→∞

F alt
B,d,N(γ

(m), α(k) · λ(n))
}
n∈Z>0

,{
lim
k→∞

F alt
B,d,N(γ

(m), α(k) · λ(n))− F alt
B,d,N(γ

(m),λ(n))
}
n∈Z>0

.

1) It holds that

lim sup
n→∞

(
lim
k→∞

F alt
B,d,N(γ

(m), α(k) · λ(n))− F alt
B,d,N(γ

(m),λ(n))
)

≤ lim sup
n→∞

lim
k→∞

F alt
B,d,N(γ

(m), α(k) · λ(n))− lim inf
n→∞

F alt
B,d,N(γ

(m),λ(n))

(a)
= lim sup

n→∞
lim
k→∞

F alt
B,d,N(γ

(m), α(k) · λ(n))− F̂ alt
B,d,N(γ

(m))

(b)

≤ 0,

where step (a) follows from the property of λ(n) in (125) and where step (b) follows from the definition of F̂ alt
B,d,N(γ

(m))

in (29).

2) By (197), we have

0 ≤ lim inf
n→∞

(
lim
k→∞

F alt
B,d,N(γ

(m), α(k) · λ(n))− F alt
B,d,N(γ

(m),λ(n)
)

(a)
= lim inf

n→∞
lim
k→∞

F alt
B,d,N(γ

(m), α(k) · λ(n))− F̂ alt
B,d,N(γ

(m)),

where step (a) again follows from the property of λ(n) in (125).

3) Thus we have

F̂ alt
B,d,N(γ

(m)) ≤ lim inf
n→∞

lim
k→∞

F alt
B,d,N(γ

(m), α(k) · λ(n))

≤ lim sup
n→∞

lim
k→∞

F alt
B,d,N(γ

(m), α(k) · λ(n))

≤ F̂ alt
B,d,N(γ

(m)).
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For arbitrarily small r ∈ R>0 such that |r| < 1, we define δλ ∈ R|X | such that ∥δλ∥2 = 1 and δλ = (δλe
(xe))xe∈Xe, e∈E . For

each e = (fi, fj) such that i < j, we define

δλe,fi
= δλe

, δλe,fj
= −δλe

,

which is consistent with the signs in the definition of λe,f in (15). We first prove that the following sequence is bounded:{
F alt
B,d,N(γ

(m), α(k) · λ(n) + r · δλ)
}
n,k∈Z>0

. (198)

It holds that

0 ≤
∏
f∈F

(
f(xf ) ·

∏
e∈∂f

(
exp
(
α(k) · λ(n)

e,f (xe) + r · δλe,f
(xe)

)
·
√
γ
(m)
e (xe)

))
(a)

≤
∏
f∈F

(
f(xf ) ·

∏
e∈∂f

(
exp
(
α(k) · λ(n)

e,f (xe)
)
· exp(1) ·

√
γ
(m)
e (xe)

))
(b)

≤ exp
(
−F alt

B,d,N(γ
(m),0) + 2|E|

)
, xf ∈ Xf , f ∈ F , ∀n, k ∈ Z>0, (199)

where step (a) follows from

|r · δλe,f
(xe)| = |r · δλe(xe)| ≤ 1, xe ∈ Xe, e ∈ E ,

where step (b) follows from inequality (128) in Proposition 53 and
∑

f

∑
e∈∂f 1 = 2|E|. Then by (120) we get

F alt
B,d,N(γ

(m), α(k) · λ(n) + r · δλ) = − log

( ∑
{x∂f,f}f

∏
f∈F

(
f(x∂f,f ) ·

∏
e∈∂f

(
exp
(
α(k) · λ(n)

e,f (xe,f ) + r · δλe,f
(xe,f )

)
·
√
γ
(m)
e (xe,f )

)))

(a)

≥ − log

∑
f

|Xf |

+ F alt
B,d,N(γ

(m),0)− 2|E|, n, k ∈ Z>0,

where step (a) follows from (199) and
∑

{x∂f,f}f
1 =

∑
f |Xf |. Note that by inequalities (123) in Proposition 52, we have

F alt
B,d,N(γ

(m),0) ∈ R, m ∈ Z>0.

By the definition of F̂ alt
B,d,N in (29) and the property F̂ alt

B,d,N(γ
(m)) ∈ R as proven in (125), we know that

F alt
B,d,N(γ

(m), α(k) · λ(n) + r · δλ) ≤ F̂ alt
B,d,N(γ

(m)) ∈ R, n, k ∈ Z>0.

Now we know that the sequence in (198) is bounded. Combining with Theorem 54, we know that the following limits exist

lim inf
n→∞

lim inf
k→∞

(
F alt
B,d,N(γ

(m), α(k) · λ(n))− F alt
B,d,N(γ

(m), α(k) · λ(n) + r · δλ)
)
, lim sup

n→∞
lim sup
k→∞

F alt
B,d,N(γ

(m), α(k) · λ(n) + r · δλ).

Then we want to use the Taylor series expansion of F alt
B,d,N to prove this lemma. It holds that

lim inf
n→∞

lim inf
k→∞

(
F alt
B,d,N(γ

(m), α(k) · λ(n))− F alt
B,d,N(γ

(m), α(k) · λ(n) + r · δλ)
)

≥ lim inf
n→∞

lim inf
k→∞

F alt
B,d,N(γ

(m), α(k) · λ(n))− lim sup
n→∞

lim sup
k→∞

F alt
B,d,N(γ

(m), α(k) · λ(n) + r · δλ)

(a)
= F̂ alt

B,d,N(γ
(m))− lim sup

n→∞
lim sup
k→∞

F alt
B,d,N(γ

(m), α(k) · λ(n) + r · δλ)

(b)

≥ 0, (200)
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where step (a) follows Theorem 54 and where step (b) follows from the definition of F̂ alt
B,d,N in (29). The Taylor series expansion of

F alt
B,d,N(γ

(m), α(k) · λ(n) + r · δλ) w.r.t. r at r = 0 is given by

F alt
B,d,N(γ

(m), α(k) · λ(n) + r · δλ) = F alt
B,d,N(γ

(m), α(k) · λ(n)) + r ·

(
∇λF

alt
B,d,N

∣∣
λ=α(k)·λ(n),γ=γ(m)

)T

· δλ

+
r2

2
· δTλ ·

(
∇2

λF
alt
B,d,N

∣∣
λ=α(k)·λ(n)+r′·δλ,γ=γ(m)

)
· δλ, (201)

where r′ ∈ [0, r] is suitably chosen, the vector ∇λF
alt
B,d,N is the gradient of F alt

B,d,N w.r.t. λ with entries given by

∂

∂λe(xe)
F alt
B,d,N = −bfi,e(xe) + bfj ,e(xe), (202)

the function bf,e is given in (25), and the matrix ∇2
λF

alt
B,d,N is the Hessian matrix of F alt

B,d,N w.r.t. λ. By the entries of the gradient

∇λF
alt
B,d,N in (202), the entries in the Hessian matrix ∇2

λF
alt
B,d,N are given by

∂

∂λe2(xe2)

( ∂

∂λe1(xe1)
F alt
B,d,N

)
= − ∂

∂λe2(xe2)
bfi,e1(xe1) +

∂

∂λe2(xe2)
bfj ,e1(xe1),

e1 = (fi, fj), i < j, xe1 ∈ Xe1 , e2 = (fk, fℓ), k < ℓ, xe2 ∈ Xe2 ,

∂

∂λe2(xe2)
bfi,e1(xe1) = [i∈{k, ℓ}] ·


bfi,{e1,e2}(xe1 , xe2)− bfi,e1(xe1) · bfk,e2(xe2) e1 ̸= e2, k = i

bfi,e1(xe1) · bfℓ,e2(xe2)− bfi,{e1,e2}(xe1 , xe2) e1 ̸= e2, ℓ = i,

[xe1 =xe2 ] · bfi,e1(xe1)− bfi,e1(xe1) · bfk,e2(xe2) e1 = e2,

, (203)

∂

∂λe2(xe2)
bfj ,e1(xe1) = [j∈{k, ℓ}] ·


bfj ,{e1,e2}(xe1 , xe2)− bfj ,e1(xe1) · bfk,e2(xe2) e1 ̸= e2, k = j,

bfj ,e1(xe1) · bfℓ,e2(xe2)− bfj ,{e1,e2}(xe1 , xe2) e1 ̸= e2, ℓ = j,

−[xe1 =xe2 ] · bfj ,e1(xe1) + bfi,e1(xe1) · bfk,e2(xe2) e1 = e2,

(204)

where the marginals of bf are defined in (39). The above expressions and the fact that 0 ≤ bf (xf ) ≤ 1 for all xf ∈ Xf , f ∈ F ,

imply that the following sequences are bounded for ∥δλ∥2 = 1:{
δTλ ·

(
∇2

λF
alt
B,d,N

∣∣
λ=α(k)·λ(n)+r′·δλ,γ=γ(m)

)
· δλ

}
n,k

,

{
−

(
∇λF

alt
B,d,N

∣∣
λ=α(k)·λ(n),γ=γ(m)

)T

· δλ

}
n,k

.

Thus we have

0
(a)

≤ lim inf
r↓0

lim inf
n→∞

lim inf
k→∞

1

r

(
F alt
B,d,N(γ

(m), α(k) · λ(n))− F alt
B,d,N(γ

(m), α(k) · λ(n) + r · δλ)
)

(b)
= lim inf

r↓0
lim inf
n→∞

lim inf
k→∞

(
− ∇λF

alt
B,d,N

∣∣
λ=α(k)·λ(n),γ=γ(m) · δλ − r

2
· δTλ ·

(
∇2

λF
alt
B,d,N

∣∣
λ=α(k)·λ(n)+r′·δλ,γ=γ(m)

)
· δλ

)

≤ lim inf
n→∞

lim inf
k→∞

− ∇λF
alt
B,d,N

∣∣
λ=α(k)·λ(n),γ=γ(m) · δλ − lim sup

r↓0

r

2
· lim sup

n→∞
lim sup
k→∞

δTλ ·

(
∇2

λF
alt
B,d,N

∣∣
λ=α(k)·λ(n)+r′·δλ,γ=γ(m)

)
· δλ︸ ︷︷ ︸

is bounded ∀r > 0.

(c)
= lim inf

n→∞
lim inf
k→∞

− ∇λF
alt
B,d,N

∣∣
λ=α(k)·λ(n),γ=γ(m) · δλ, (205)

where step (a) follows from (200) and r ∈ R>0, where step (b) follows from (201), where step (c) follows from the fact that

a product of a real-valued number and a sequence that converges to zero is again a sequence converging to zero. Note that the

inequalities in (205) hold for any δλ ∈ R|X | such that ∥δλ∥ = 1. We have

lim
n,k→∞

∇λF
alt
B,d,N

∣∣
λ=α(k)·λ(n),γ=γ(m) = 0,
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which by (202), implies

lim
n,k→∞

(
−b

(m,n,k)
fi,e

(xe) + b
(m,n,k)
fj ,e

(xe)
)
= 0, γ = γ(m), xe ∈ Xe, e = (fi, fj) ∈ E .
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Before proving this theorem, we prove two lemmas.

Lemma 63. It holds that

lim
k→∞

α(k)
∑
f

∑
xf

b
(m,n,k)
f (xf ) ·

(∑
e∈∂f

λ
(n)
e,f (xe,f )

)
= 0, m, n ∈ Z>0,

where b
(m,n,k)
f is defined in (37).

Proof. If we can prove that

lim
k→∞

α(k) · ∂

∂α
F alt
B,d,N

∣∣∣∣
α=α(k)

= lim
k→∞

α(k) ·

(
∇λF

alt
B,d,N

∣∣
λ=α(k)·λ(n),γ=γ(m)

)T

· λ(n) = 0, m, n ∈ Z>0, (206)

where ∇λF
alt
B,d,N is the gradient of F alt

B,d,N w.r.t. λ, and the entries in the gradient are given in (202). Then we have

lim
k→∞

α(k) ·

(
∇λF

alt
B,d,N

∣∣
λ=α(k)·λ(n),γ=γ(m)

)T

· λ(n)

= lim
k→∞

α(k)
∑

e=(fi,fj)

∑
xe

λ(n)
e (xe) ·

(
−b

(m,n,k)
fi,e

(xe) + b
(m,n,k)
fj ,e

(xe)
)

(a)
= lim

k→∞
−α(k)

∑
f

∑
xf

b
(m,n,k)
f (xf )

∑
e∈∂f

λ
(n)
e,f (xe,f )

= 0, n,m ∈ Z>0,

where step (a) follows from the definition of {λe,f}e∈∂f,f∈F in (15). Then we prove the lemma.

In the following, we prove (206). There are various cases that need to be discussed.

1) Suppose that α∗ = ∞ for some m and n, if

∃{x∂f,f}f such that
∏
f∈F

(
f(x∂f,f ) ·

∏
e∈∂f

√
γ
(m)
e (xe,f )

)
> 0,

∑
e=(fi,fj)

(
λ(n)
e (xe,fi)− λ(n)

e (xe,fj )
)
> 0,

then we have

lim
k→∞

F alt
B,d,N(γ

(m), α(k) · λ(n))

= lim
k→∞

− log

∏
f

Zf

(
γ
(m)
∂f , α(k) · λ(n)

∂f

)
(a)
= lim

k→∞
− log

∑
{x∂f,f}f

∏
f∈F

(
f(x∂f,f ) ·

∏
e∈∂f

(
exp
(
α(k) · λ(n)

e,f (xe,f )
)
·
√
γ
(m)
e (xe,f )

))

= lim
k→∞

− log

 ∑
{x∂f,f}f

(∏
f∈F

f(x∂f,f ) ·
∏
e∈∂f

√
γ
(m)
e (xe,f )

)
· exp

(
α(k)

∑
e=(fi,fj)

(
λ(n)
e (xe,fi)− λ(n)

e (xe,fj )
))

= −∞

(b)
< − log

∏
f

Zf

(
γ
(m)
∂f ,0

)
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(c)
= F alt

B,d,N(γ
(m),0),

where step (a) follows from (120), where step (b) follows from the inequalities in (123), i.e.,

F alt
B,d,N(γ

(m),0) = − log

∏
f

Zf

(
γ
(m)
∂f ,0

) ∈ R,

and where step (c) follows from the definition of F alt
B,d,N in (23). The above inequalities contradict the properties of {α(k)}

in (35) and (126). Thus we only need to consider the following terms in
∏

f Zf :

∏
f∈F

(
f(x∂f,f ) ·

∏
e∈∂f

√
γ
(m)
e (xe,f )

)
> 0,

∑
e=(fi,fj)

(
λ(n)
e (xe,fi)− λ(n)

e (xe,fj )
)
≤ 0, x∂f,f ∈ Xf , f ∈ F . (207)

By (126), we know that there exists {x∗
∂f,f}f such that

∏
f∈F

(
f(x∗

∂f,f ) ·
∏
e∈∂f

√
γ
(m)
e (x∗

e,f )

)
> 0,

∑
e=(fi,fj)

(
λ
(n)
e,fi

(x∗
e,fi)− λ

(n)
e,fj

(x∗
e,fj )

)
= 0. (208)

Otherwise, by (120), we have supα∈R F alt
B,d,N(γ

(m), α · λ(n)) = ∞, which is a contradiction of (126). Then it holds that

∏
f

Zf

(
γ
(m)
∂f , 0

) (a)

≥
∏
f

Zf

(
γ
(m)
∂f , α(k) · λ(n)

∂f

) (b)

≥
∏
f∈F

(
f(x∗

∂f,f ) ·
∏
e∈∂f

√
γ
(m)
e (x∗

e,f )

)
> 0, k ∈ Z>0,

where step (a) follows from the definitions of F alt
B,d,N and α(k) in (23) and (35), respectively and where step (b) follows from

the expression of − log
∏

f Zf in (120) and the expressions in (208). Then for each n, there exists M1 ∈ R>0 such that the

following inequalities hold for fixed γ(m) and λ(n):

0 ≤
∑

{x∂f,f}f

∏
f

f(x∂f,f ) ·
∏

e∈∂f

√
γ
(m)
e (xe,f )

Zf

(
γ
(m)
∂f , α(k) · λ(n)

∂f

) ·

( ∑
e=(fi,fj)

(
λ(n)
e (xe,fi)− λ(n)

e (xe,fj )
))

≤ M1, k ∈ Z>0.

Then by limk→∞ α(k) · exp
(
c · α(k)

)
= 0 for c < 0 and the expression F alt

B,d,N in (120), we have

lim
k→∞

α(k) · ∂

∂α
F alt
B,d,N

∣∣∣∣
α=α(k)

= − lim
k→∞

∑
{x∂f,f}f

∏
f

f(x∂f,f ) ·
∏

e∈∂f

(√
γ
(m)
e (xe,f )

)
Zf

(
γ
(m)
∂f , α(k) · λ(n)

∂f

) ·

( ∑
e=(fi,fj)

(
λ(n)
e (xe,fi)− λ(n)

e (xe,fj )
))

︸ ︷︷ ︸
is bounded for fixed k

· α(k) · exp

(
α(k)

∑
e=(fi,fj)

(
λ(n)
e (xe,fi)− λ(n)

e (xe,fj )
))

= 0.

2) Suppose that α∗ = −∞ for some n, similar to the proof in the previous case, we have

lim
k→∞

α(k) · ∂

∂α
F alt
B,d,N

∣∣∣∣
α=α(k)

= 0.

3) Suppose that α∗ ∈ R, we have α(k) = α∗ for all k. The location of the optimal value for the optimization problem in (33)

satisfies

α∗ · ∂

∂α
F alt
B,d,N

∣∣∣∣
α=α∗

= 0.

■

Lemma 64. For fixed γ(m), the following sequence is bounded{
F

(1)
B,p,N(b

(m,n,k)
F )

}
n,k∈Z>0

,
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where b
(m,n,k)
F = (b

(m,n,k)
f )f as defined in (38).

Proof. As defined in (37), we have 0 ≤ b
(m,n,k)
f (xf ) ≤ 1 for all xf ∈ Xf and f ∈ F . It holds that∣∣∣∣∣ ∑

e=(fi,fj)∈E

∑
xe: γ

(m)
e (xe)>0

b
(m,n,k)
fi,e

(xe) + b
(m,n,k)
fj ,e

(xe)

2
· log γ(m)

e (xe)

∣∣∣∣∣ ≤∑
e

∑
xe: γ

(m)
e (xe)>0

∣∣∣log γ(m)
e (xe)

∣∣∣ < ∞, n, k ∈ Z>0.

Because the entropy function is finite for probability distributions with finite support, it holds that∣∣∣∣∣ ∑
e=(fi,fj)∈E

∑
xe: γ

(m)
e (xe)>0

b
(m,n,k)
fi,e

(xe) + b
(m,n,k)
fj ,e

(xe)

2
· log

(
b
(m,n,k)
fi,e

(xe) + b
(m,n,k)
fj ,e

(xe)

2

)∣∣∣∣∣ ≤∑
e

log |Xe|, n, k ∈ Z>0.

Combining with Theorem 54 and Lemma 63, we know that the first two terms in (129) are bounded and thus the function

F
(1)
B,p,N(b

(m,n,k)
F ) given in (129) is bounded. ■

In the remaining part of this appendix, we turn to prove Theorem 57. The proof of (130) is divided into three parts.

1) By Lemma 64, we know that the following limit exists

lim sup
n→∞

lim sup
k→∞

F
(1)
B,p,N(b

(m,n,k)
F ).

By the expression of F (1)
B,p,N in (129) and the proof of Lemma 64, we know that each term in F

(1)
B,p,N(b

(m,n,k)
F ) is bounded for

all n, k ∈ Z>0, where b
(m,n,k)
F = (b

(m,n,k)
f )f as defined in (38). Then we have

lim sup
n→∞

lim sup
k→∞

F
(1)
B,p,N(b

(m,n,k)
F )

≤ lim sup
n→∞

lim sup
k→∞

− log

∏
f

Zf

(
γ
(m)
∂f , α(k) · λ(n)

∂f

)
+ lim sup

n→∞
lim sup
k→∞

α(k) ·
∑
f

∑
xf

b
(m,n,k)
f (xf ) ·

∑
e∈∂f

λ
(n)
e,f (xe,f )

+ lim sup
n→∞

lim sup
k→∞

∑
e=(fi,fj)∈E

∑
xe: γ

(m)
e (xe)>0

b
(m,n,k)
fi,e

(xe) + b
(m,n,k)
fj ,e

(xe)

2
log

2γ
(m)
e (xe)

b
(n)
fi

(xe) + b
(n)
fj

(xe)

(a)
= F̂ alt

B,d,N(γ
(m)) + lim sup

n→∞
lim sup
k→∞

∑
e=(fi,fj)∈E

∑
xe: γ

(m)
e (xe)>0

b
(m,n,k)
fi,e

(xe) + b
(m,n,k)
fj ,e

(xe)

2
log

2γ
(m)
e (xe)

b
(m,n,k)
fi,e

(xe) + b
(m,n,k)
fj ,e

(xe)

(209)

(b)

≤ F̂ alt
B,d,N(γ

(m)), (210)

where step (a) follows from Theorem 54 and Lemma 63 and where step (b) follows from the following conditions:

• γ
(m)
e ∈ B≥

e for e ∈ E , where B≥
e is defined in (5);

• it holds that

b
(m,n,k)
f ∈ Bf , f ∈ F ; (211)

• (1/2) ·
∑

xe

(
b
(m,n,k)
fi,e

(xe) + b
(m,n,k)
fj ,e

(xe)
)
= 1 for all e = (fi, fj) ∈ E ;

• if γ(m)
e (xe) = 0, then both b

(m,n,k)
fi,e

(xe) and b
(m,n,k)
fj ,e

(xe) are zero;

• the Kullback–Leibler (K-L) divergence is nonnegative.

By (121) in Proposition 52, we know that F̂ alt
B,d,N(γ

(m)) ∈ R, i.e., F̂ alt
B,d,N(γ

(m)) is bounded for fixed m.
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2) By (211), we know that {b(m,n,k)
f (xf )}n,k∈Z>0

is a bounded sequence. By the Bolzano–Weierstrass theorem [23, Theorem

3.4.8], we can find a subsequence {n1, k1} of {n, k} such that the subsequence {b(m,n1,k1)
f (xf )}n1, k1∈Z>0

converges for all

xf , f ∈ F . By Lemma 56, we know that

lim
n1→∞

lim
k1→∞

b
(m,n1,k1)
fj ,e

(xe) = lim
n1→∞

lim
k1→∞

b
(m,n1,k1)
fi,e

(xe)− lim
n1→∞

lim
k1→∞

(b
(m,n1,k1)
fi,e

(xe)− b
(m,n1,k1)
fj ,e

(xe))

= lim
n1→∞

lim
k1→∞

b
(m,n1,k1)
fi,e

(xe), xe ∈ Xe, e = (fi, fj) ∈ E . (212)

Combining with (211), we know that {b(m,n1,k1)
f }n1,k1∈Z>0 converges to a point in BF (N). It holds that

F ∗
B,d,N

(a)
= F ∗

B,p,N

(b)

≤ F
(1)
B,p,N

(
lim

n1→∞
lim

k1→∞
b
(m,n1,k1)
F

)
(c)
= lim

n1→∞
lim

k1→∞
F

(1)
B,p,N(b

(m,n1,k1)
F )

≤ lim sup
n→∞

lim sup
k→∞

F
(1)
B,p,N(b

(m,n,k)
F )

(d)

≤ F̂ alt
B,d,N(γ

(m)), (213)

where step (a) follows from Proposition 16, where step (b) follows from the definition of F ∗
B,p,N in (13) and the fact that

{b(m,n1,k1)
F }n1,k1∈Z>0

converges to a point in BF (N), where step (c) follows from the continuity of F (1)
B,p,N(bF ) w.r.t. bF for

each bf ∈ Bf and f ∈ F , and where step (d) follows from (210).

3) By the property of γ(m) in (124), we have

lim
m→∞

F̂ alt
B,d,N(γ

(m)) = F alt,∗
B,d,N

(a)

≤ F ∗
B,d,N,

where step (a) follows from Proposition 15. Inequalities in (213) imply

F ∗
B,d,N ≤ lim

m,n1,k1→∞
F

(1)
B,p,N(b

(m,n1,k1)
F )

≤ lim
m→∞

lim sup
n→∞

lim sup
k→∞

F
(1)
B,p,N(b

(m,n,k)
F )

≤ lim
m→∞

F̂ alt
B,d,N(γ

(m))

= F alt,∗
B,d,N

≤ F ∗
B,d,N. (214)

Thus we have

lim
m,n1,k1→∞

F
(1)
B,p,N(b

(m,n1,k1)
F ) = lim

m→∞
lim sup
n→∞

lim sup
k→∞

F
(1)
B,p,N(b

(m,n,k)
F ) = F alt,∗

B,d,N = F ∗
B,d,N

(a)
= F ∗

B,p,N, (215)

where step (a) follows from Proposition 16.

Then we have

0
(a)
= lim

m→∞
lim sup
n1→∞

lim sup
k1→∞

∑
e=(fi,fj)∈E

∑
xe: γ

(m)
e (xe)>0

b
(m,n1,k1)
fi,e

(xe) + b
(m,n1,k1)
fj ,e

(xe)

2
· log 2γ

(m)
e (xe)

b
(m,n1,k1)
fi,e

(xe) + b
(m,n1,k1)
fj ,e

(xe)

(b)
= lim

m,n1,k1→∞

∑
e=(fi,fj)∈E

∑
xe: γ

(m)
e (xe)>0

b
(m,n1,k1)
fi,e

(xe) + b
(m,n1,k1)
fj ,e

(xe)

2
· log 2γ

(m)
e (xe)

b
(m,n1,k1)
fi,e

(xe) + b
(m,n1,k1)
fj ,e

(xe)
,

where step (a) follows from the inequalities in (210) and similar derivations in (214) and (215):

F alt,∗
B,d,N = lim

m,n1,k1→∞
F

(1)
B,p,N(b

(m,n1,k1)
F )
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≤ lim
m

F̂ alt
B,d,N(γ

(m))

+ lim
m

lim sup
n1→∞

lim sup
k1→∞

∑
e=(fi,fj)∈E

∑
xe: γ

(m)
e (xe)>0

b
(m,n1,k1)
fi,e

(xe) + b
(m,n1,k1)
fj ,e

(xe)

2
log

2γ
(m)
e (xe)

b
(m,n1,k1)
fi,e

(xe) + b
(m,n1,k1)
fj ,e

(xe)

≤ lim
m→∞

F̂ alt
B,d,N(γ

(m))

= F alt,∗
B,d,N,

and where step (b) follows from the fact that the subsequence {b(m,n1,k1)
f (xf )}n1, k1∈Z>0

converges in BF (N) for all xf , f ∈ F ,

and the K-L divergence is continuous. By Pinsker’s inequality (see, e.g., [20, Theorem 2.33]), we have

0 = lim
m,n1,k1→∞

∑
e=(fi,fj)∈E

∑
xe: γ

(m)
e (xe)>0

b
(m,n1,k1)
fi,e

(xe) + b
(m,n1,k1)
fj ,e

(xe)

2
· log

b
(m,n1,k1)
fi,e

(xe) + b
(m,n1,k1)
fj ,e

(xe)

2γ
(m)
e (xe)

≥ 1

2
lim

m,n1,k1→∞

∑
e=(fi,fj)∈E

( ∑
xe: γ

(m)
e (xe)>0

∣∣∣∣∣b
(m,n1,k1)
fi,e

(xe) + b
(m,n1,k1)
fj ,e

(xe)

2
− γ(m)

e (xe)

∣∣∣∣∣
)2

≥ 0. (216)

By the definition of γ(m) in Item 2 in Definition 17, the sequence {γ(m)}m is bounded. Thus there exists a subsequence of {γ(m)}m,

denoted by {γ(m1)}m1 , such that the following limits exist

lim
m1→∞

γ(m1)
e (xe), xe ∈ Xe, e ∈ E ,

lim
m1,n1,k1→∞

b
(m1,n1,k1)
fi

(xf ), xf ∈ Xf , f ∈ E .

By the equalities in (212) and the inequalities in (216), we have

lim
m1→∞

γ(m1)
e (xe) = lim

m1,n1,k1→∞
b
(m1,n1,k1)
fi,e

(xe) = lim
m1,n1,k1→∞

b
(m1,n1,k1)
fj ,e

(xe), xe ∈ Xe, e = (fi, fj) ∈ E ,

which implies (
lim

m1,n1,k1→∞
b
(m1,n1,k1)
F

)
∈ BF (N).

By (215), we have

lim
m1,n1,k1→∞

F
(1)
B,p,N(b

(m1,n1,k1)
F ) = F alt,∗

B,d,N = F ∗
B,d,N = F ∗

B,p,N.

APPENDIX S

PROOF OF THEOREM 61

In this proof, we only consider the variable xe ∈ Sc
e , i.e.,

γ∗
e (xe) ∈ R>0, ∀xe ∈ Sc

e ,

where Sc
e and γ∗ are defined in (136) and (135), respectively. The proof of (143) and (144) can be obtained by Theorem 57 and

the fact that
{
b
(m2,n2,k2)
F

}
m2,n2,k2

is a subsequence of
{
b
(m1,n1,k1)
F

}
m2,n2,k2

. In the remaining part of the proof, we focus on

proving (141) and (142).

By Theorem 57, the subsequence (m1, n1, k1) has the following property: for any small enough ϵ, c ∈ R>0, such that

0 < ϵ+ c <
√
γ∗
e (xe), xe ∈ Sc

e , e ∈ E , (217)

there exist integers M1, N1(M1), and K1(M1, N1) satisfying∣∣∣√γ
(m1)
e (xe)−

√
γ∗
e (xe)

∣∣∣ ≤ c, xe ∈ Sc
e , e ∈ E , m1 ≥ M1, (218)
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∣∣∣∣∣b
(m1,n1,k1)
fi,e

(xe)√
γ
(m1)
e (xe)

−
√
γ
(m1)
e (xe)

∣∣∣∣∣ ≤ ϵ, xe ∈ Sc
e , e ∈ E , m1 ≥ M1, n1 ≥ N1(M1), k1 ≥ K1(M1, N1). (219)

This implies that for all xe ∈ Sc
e , e ∈ E , m1 ≥ M1, n1 ≥ N1(M1), k1 ≥ K1(N1,M1), it holds that√

γ
(m1)
e (xe) > ϵ,

0 <

√
γ
(m1)
e (xe)− ϵ ≤

b
(m1,n1,k1)
fi,e

(xe)√
γ
(m1)
e (xe)

≤
√
γ
(m1)
e (xe) + ϵ.

By the definition of µ(m1,n1,k1)
e→f in (137) and the above inequalities, we have√

γ
(m1)
e (xe)− ϵ

exp
(
α(k1) · λ(n1)

e,fi
(xe)

) ≤
b
(m1,n1,k1)
fi,e

(xe)

µ
(m1,n1,k1)
e→fi

(xe)
≤

√
γ
(m1)
e (xe) + ϵ

exp
(
α(k1) · λ(n1)

e,fi
(xe)

) ,
√
γ
(m1)
e (xe)− ϵ√
γ
(m1)
e (xe)

· µ(m1,n1,k1)
e→fj

(xe) ≤
b
(m1,n1,k1)
fi,e

(xe)

µ
(m1,n1,k1)
e→fi

(xe)
≤

√
γ
(m1)
e (xe) + ϵ√
γ
(m1)
e (xe)

· µ(m1,n1,k1)
e→fj

(xe), (220)

∑
xe∈Sc

e

√
γ
(m1)
e (xe)− ϵ√
γ
(m1)
e (xe)

· µ(m1,n1,k1)
e→fj

(xe) ≤
∑

xe∈Sc
e

b
(m1,n1,k1)
fi,e

(xe)

µ
(m1,n1,k1)
e→fi

(xe)
≤
∑

xe∈Sc
e

√
γ
(m1)
e (xe) + ϵ√
γ
(m1)
e (xe)

· µ(m1,n1,k1)
e→fj

(xe),

(
1− max

ze∈Sc
e

ϵ

γ
(m1)
e (ze)

)
· Z(m1,n1,k1)

µe→fj
≤
∑

xe∈Sc
e

b
(m1,n1,k1)
fi,e

(xe)

µ
(m1,n1,k1)
e→fi

(xe)

(a)
= C

(m1,n1,k1)
e→fj

≤
(
1 + max

ze∈Sc
e

ϵ

γ
(m1)
e (ze)

)
· Z(m1,n1,k1)

µe→fj
, (221)

where the inequalities in (220) follow from the definition of λe,f in (15) and the definition of µ(m,n,k)
e→f , where the inequalities in (221)

follow from the definition of Z(m,n,k)
µe→f in (138), and where step (a) follows from the definition of C(m,n,k)

e→fj
in (140). We define

ϵ′ ≜ max
ze∈Sc

e , e∈E

ϵ

γ∗
e (ze)− c

=
ϵ

minze∈Sc
e , e∈E γ∗

e (ze)− c
. (222)

Then by (217) and (218), we have

0 < ϵ′ < 1, ϵ′ ≥ max
ze∈Sc

e , e∈E

ϵ

γ
(m1)
e (ze)

=
ϵ

minze∈Sc
e , e∈E γ

(m1)
e (ze)

, m1 ≥ M1. (223)

It holds that

µ
(m1,n1,k1)
e→fj ,SPA

(xe)
(a)
=

1

C
(m1,n1,k1)
e→fj

·
b
(m1,n1,k1)
fi,e

(xe)

µ
(m1,n1,k1)
e→fi

(xe)

(b)

≥

√
γ
(m1)
e (xe)− ϵ√
γ
(m1)
e (xe)

·
(
1 + max

ze∈Sc
e

ϵ

γ
(m1)
e (ze)

)−1

·
µ
(m1,n1,k1)
e→fj

(xe)

Z
(m1,n1,k1)
µe→fj

(c)

≥

√
γ
(m1)
e (xe)− ϵ√
γ
(m1)
e (xe)

·
(
1 + ϵ′

)−1

·
µ
(m1,n1,k1)
e→fj

(xe)

Z
(m1,n1,k1)
µe→fj

,

where step (a) follows from the definition of µ
(m1,n1,k1)
e→fj ,SPA

in (139), where step (b) follows from the inequalities in (220) and (221),

and where step (c) follows from (223). Similarly, we obtain

µ
(m1,n1,k1)
e→fj ,SPA

(xe)
(a)

≤

√
γ
(m1)
e (xe) + ϵ√
γ
(m1)
e (xe)

·
(
1− max

ze∈Sc
e

ϵ

γ
(m1)
e (ze)

)−1

·
µ
(m1,n1,k1)
e→fj

(xe)

Z
(m1,n1,k1)
µe→fj

(b)

≤

√
γ
(m1)
e (xe) + ϵ√
γ
(m1)
e (xe)

·
(
1− ϵ′

)−1

·
µ
(m1,n1,k1)
e→fj

(xe)

Z
(m1,n1,k1)
µe→fj

,



66

where step (a) follows from the inequalities in (220) and (221) and where step (b) follows from (223). The above inequalities imply(√
γ
(m1)
e (xe)− ϵ√
γ
(m1)
e (xe)

·
(
1 + ϵ′

)−1

− 1

)
·
µ
(m1,n1,k1)
e→fj

(xe)

Z
(m1,n1,k1)
µe→fj

≤ µ
(m1,n1,k1)
e→fi,SPA

(xe)−
µ
(m1,n1,k1)
e→fj

(xe)

Z
(m1,n1,k1)
µe→fj

≤

(√
γ
(m1)
e (xe) + ϵ√
γ
(m1)
e (xe)

·
(
1− ϵ′

)−1

− 1

)
·
µ
(m1,n1,k1)
e→fj

(xe)

Z
(m1,n1,k1)
µe→fj

. (224)

In particular, we have (√
γ
(m1)
e (xe)− ϵ√
γ
(m1)
e (xe)

·
(
1 + ϵ′

)−1

− 1

)
≥

((
1− max

ze∈Sc
e

ϵ

γ
(m1)
e (ze)

)
·
(
1 + ϵ′

)−1

− 1

)
(a)

≥ 1− ϵ′

1 + ϵ′
− 1

= − 2ϵ′

1 + ϵ′
, (225)

where step (a) follows from the property of ϵ′ in (223). Similarly, we obtain(√
γ
(m1)
e (xe) + ϵ√
γ
(m1)
e (xe)

·
(
1− ϵ′

)−1

− 1

)
≤

((
1 + max

ze∈Sc
e

ϵ

γ
(m1)
e (ze)

)
·
(
1− ϵ′

)−1

− 1

)
(a)

≤ 1 + ϵ′

1− ϵ′
− 1

=
2ϵ′

1− ϵ′
, (226)

where step (a) again follows from the property of ϵ′ in (223). By the fact that µ(m1,n1,k1)
e→fj

(xe) ≥ 0 for all xe as defined in (137),

we have

0 ≤
µ
(m1,n1,k1)
e→fj

(xe)

Z
(m1,n1,k1)
µe→fj

≤ 1, xe ∈ Sc
e , e ∈ E . (227)

Then by the inequalities in (224)–(227), it holds that

− 2ϵ′

1 + ϵ′
≤ − 2ϵ′

1 + ϵ′
·
µ
(m1,n1,k1)
e→fj

(xe)

Z
(m1,n1,k1)
µe→fj

≤ µ
(m1,n1,k1)
e→fj ,SPA

(xe)−
µ
(m1,n1,k1)
e→fj

(xe)

Z
(m1,n1,k1)
µe→fj

≤ 2ϵ′

1− ϵ′
·
µ
(m1,n1,k1)
e→fj

(xe)

Z
(m1,n1,k1)
µe→fj

≤ 2ϵ′

1− ϵ′
. (228)

For any small ϵ′′ ∈ R>0, because of √
γ∗
e (xe) > 0, xe ∈ Sc

e , e ∈ E ,

we further require that ϵ and c satisfiy

0 < ϵ ≤
(

min
ze∈Sc

e , e∈E
γ∗
e (ze)− c

)
· ϵ′′

2 + ϵ′′
. (229)

Then by the definition of ϵ′ in (222), we have

ϵ′ ≤ ϵ′′

2 + ϵ′′
(a)⇒ 2ϵ′

1− ϵ′
≤ ϵ′′. (230)

where step (a) follows from 0 < ϵ′ < 1 as stated in (223). To sum up, we require that ϵ and c satisfy (217) and (229). There exists

(M1, N1(M1),K1(M1, N1)) satisfying (218) and (219) for these scalars ϵ and c. Because of the inequalities (228) and (230) and

2ϵ′

1− ϵ′
≥ 2ϵ′

1 + ϵ′
,
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we know that∣∣∣∣∣µ(m1,n1,k1)
e→fj ,SPA

(xe)−
µ
(m1,n1,k1)
e→fj

(xe)

Z
(m1,n1,k1)
µe→fj

∣∣∣∣∣ ≤ ϵ′′, xe ∈ Sc
e , e = (fi, fj) ∈ E , m1 ≥ M1, n1 ≥ N1(M1), k1 ≥ K1(M1, N1),

which means that

lim
m1,n1,k1→∞

(
µ
(m1,n1,k1)
e→fj ,SPA

(xe)−
µ
(m1,n1,k1)
e→fj

(xe)

Z
(m1,n1,k1)
µe→fj

)
= 0, xe ∈ Sc

e , e = (fi, fj) ∈ E . (231)

Similarly, we obtain

lim
m1,n1,k1→∞

(
µ
(m1,n1,k1)
e→fi,SPA

(xe)−
µ
(m1,n1,k1)
e→fi

(xe)

Z
(m1,n1,k1)
µe→fi

)
= 0, xe ∈ Sc

e , e = (fi, fj) ∈ E . (232)

As defined in (139), the vector µ(m1,n1,k1)
e→f,SPA (xe) satisfies

0 ≤ µ
(m1,n1,k1)
e→f,SPA (xe) ≤ 1, xe ∈ Sc

e , e ∈ ∂f, f ∈ F , n1, k1 ∈ Z>0,

i.e., it is bounded. By the Bolzano–Weierstrass theorem [23, Theorem 3.4.8], we can find a subsequence {m2, n2, k2} of {m1, n1, k1}

such that the subsequences
{
µ
(m2,n2,k2)
e→f,SPA (xe)

}
m2,n2,k2∈Z>0

and
{
µ
(m2,n2,k2)
e→f (xe)/Z

(m2,n2,k2)
µe→f

}
m2,n2,k2∈Z>0

converge for all xe ∈ Sc
e ,

e ∈ ∂f , f ∈ F . Combining with (231) and (232), we have

lim
m2,n2,k2→∞

µ
(m2,n2,k2)
e→fj ,SPA

(xe) = lim
m2,n2,k2→∞

µ
(m2,n2,k2)
e→fj

(xe)

Z
(m2,n2,k2)
µe→fj

, xe ∈ Sc
e , e = (fi, fj) ∈ E ,

lim
m2,n2,k2→∞

µ
(m2,n2,k2)
e→fi,SPA

(xe) = lim
m2,n2,k2→∞

µ
(m2,n2,k2)
e→fi

(xe)

Z
(m2,n2,k2)
µe→fi

xe ∈ Sc
e , e = (fi, fj) ∈ E .
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