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Abstract

The sum-product algorithm (SPA) is a popular algorithm for efficiently approximating the marginals and the partition function of a
factor graph. Some key results for this algorithm were established by Yedidia et al., who proved that, roughly speaking, fixed points of
the SPA correspond to stationary points of the Bethe free energy function. However, some of their results were only for factor graphs
where the local functions take on strictly positive values. They also conjectured that similar results hold for factor graphs where the
local functions take on non-negative values. In this paper we make progress toward resolving this conjecture. In particular, we present
examples where the results of Yedidia et al. generalize and examples where their results do not generalize. Finally, we present a general

framework for analyzing fixed-points of the SPA based on a suitable dualization of the Bethe free energy function.

I. INTRODUCTION

In this paper, we consider standard factor graphs (S-FGs), which are factor graphs [1]]-[3] where all local functions take on non-
negatives values. S-FGs are used in a wide variety of disciplines, including communications (see, e.g., [4]]), statistical mechanics (see,
e.g., [5]), and coding theory (see, e.g., [6]). Inference problems involving probabilistic models in these areas are often formulated
as computing the marginal probabilities of some subsets of the variables in some S-FG and/or computing the partition function of
some S-FG.

The sum-product algorithm (SPA), also known as loopy belief propagation (LBP), is a practical and powerful way to approximately
compute the marginals and the partition function of an S-FG. In the case of cycle-free S-FGs, the SPA provides the exact marginals
and partition function. In the case of S-FG with cycles, the SPA often gives surprisingly good approximations of the marginals and
the partition function. This is part of the reason why SPA decoding of low-density parity-check (LDPC) codes appears in the 5G
telecommunications standard. Nevertheless, there are also S-FGs where the SPA provides a poor approximation of the marginals or
the SPA even fails to converge [7]], [8].

The seminal paper [9] by Yedidia et al. related the SPA fixed points to the Bethe free energy function, which is a function of

beliefs. In particular, they proved the following statements.

1) Every interior stationary point of the associated Bethe free energy function corresponds to an SPA fixed point [9, Th. 2].
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2) For S-FGs with positive-valued local functions only, every stationary point of the associated Bethe free energy function
corresponds to an SPA fixed point [9, Th. 3].

In a follow-up work, Heskes [8]] presented the following results.

1) The stable fixed points of the SPA are minima of the Bethe free energy function [8| Section 4].

2) The minimization problem of the Bethe free energy function can be transformed into a minimax optimization problem [8§}

Section 4].

3) The fixed point of the algorithm in [8, Algorithm 2] corresponds to a local optimal solution to the transformed minimax

problem.

In general, there is significant evidence that the SPA is well behaved also for S-FGs where not all local functions take on only
strictly positive values. In particular, the papers [10] (on S-FGs whose partition function equals the permanent of a non-negative
matrix) and [[11] (on (2, k)-regular LDPC codes) established that the SPA finds the global minimum of the Bethe free energy function,
even if that global minimum happens to be on the boundary of the Bethe free energy function domain.

There are various other results in the literature about fixed points of the SPA and the minimum of the Bethe free energy. For
example, in [[12] the authors tried to find all fixed points using the numerical polynomial-homotopy-continuation (NPHC) method,
and in [[13]], the authors analyzed the SPA on patch potential models and obtained interesting insights about the SPA’s properties.
The authors in [14], [15] studied the progress towards the minimum of the Bethe free energy function by introducing a pseudo-dual

function of the Bethe free energy function.

A. Outline of Results

In this paper we investigate whether the global minimum of the Bethe free energy function of an S-FG corresponds to an SPA

fixed point. Here are the main results of this paper.

1) We present the primal and dual formulations of the Bethe partition function, which are optimization problems whose optimal
values are equal. The primal formulation based on [9]] is related to the minimization of the Bethe free energy function. The
primal formulation has the following properties.

a) In this minimization problem, the feasible set of the beliefs, is a convex and compact set, which means that the locations
of the optimal value are attainable in this set.

b) The Bethe free energy function is a function of the beliefs associated with the function nodes and the edges in the
considered S-FG.

c¢) The Bethe free energy function is neither convex nor concave for general S-FG. (For some special S-FGs, e.g., a single-
cycle S-FG [[16, Corollary 2], the associated Bethe free energy functions are convex.)

The dual formulation is based on [§f], which is a maximin optimization problem where the minimization is taken over a part
of the variables and the maximization is taken over the remaining variables. This optimization problem has the following
properties.

a) The feasible set for the variables that are related to the minimization, is the set of real numbers, i.e., an open set, and the
locations of the optimal value are allowed to be outside the feasible set, i.e, some of the variables go to infinity when
they achieve the optimal value.

b) The feasible set of the variables related to the maximization, is a compact set.

¢) This maximin optimization problem contains the variables that are associated only with the edges in the considered S-FG.



d) The associated objective function is convex with respect to (w.r.t.) to the variables that are related to the minimization.
(For some special S-FGs, e.g., a single-cycle S-FG [16], the objective functions are concave w.r.t. the variables that are
related to the maximization.)
2) To solve the above-mentioned maximin optimization problem that is related to the dual formulation, we propose two algorithms
in Algorithms [T] and 2] where Algorithm [I]is based on [[8} Algorithm 2], and Algorithm [2]is equivalent to the SPA. We make

a comparison between these two algorithms.

a) Algorithm [I] is a double-loop algorithm while Algorithm [2] is simpler and contains a single loop only.

b) Algorithms [T and 2] have the same set of fixed points. However, they have different sets of stable fixed points. For some
special S-FGs, Algorithm (1| converges to the location of the optimal value of the maximin optimization problem, while
Algorithm @ i.e., the SPA, fails to converge. For details, see [8, Figure 2].

¢) Both Algorithms [T] and 2] try to find the stationary points of the objective function in the maximin optimization problem.

d) In particular, the inner loop of Algorithm [T]attempts to find the stationary point of the objective function w.r.t. the variables
in the minimization problem. Because the objective function is convex w.r.t. these variables as previously mentioned, the

inner loop also finds the locations of the optimal value of the minimization problem in the maximin optimization problem.

3) In order to appreciate the main results for the general S-FG, we first analyze the behavior of the SPA on some simple and
interesting S-FGs in Figs. 3| B| and [6] In particular, for the S-FG in Fig. 3] we cannot evaluate the beliefs at the SPA fixed
point. For Figs [5] and [6] we show that the locations of the optimal values of the primal and dual formulations of the Bethe
partition function are related to the SPA fixed points.

4) For general S-FG, we show that there exists a sequence of messages such that the beliefs defined based on the messages
converge to the locations of the global minimum of the Bethe free energy function. Also the messages converge to one of the
SPA fixed points of a modified S-FG that has the same minimum of the Bethe free function as the original S-FG.

We also make a comparison between the dualization in [9], [14], [[15] and the dualization in [8[], which is also the dualization

considered in this paper.
1) The dualization proposed in [9]], [14], [[15] works for the S-FG such that at least one of the locations of the associated Bethe
free energy function’s global minimum is in the interior of the feasible set defined in the primal formulation.
2) The dualization proposed in [8]] works for any S-FG.
3) The structure of the objective function in the dual formulation proposed in [8]] is similar to the structure of the pseudo partition
function evaluated at an SPA fixed point, which indicates that there is a relationship between the SPA fixed point and the
locations of the optimal value for the dual formulation.
In the following, we will use, without essential loss of generality, normal factor graphs (NFGs), i.e., factor graphs where variables
are associated with edges [2[], [3].

The rest of this paper is structured as follows. Section [l reviews the basics of S-FGs and the associated SPA. Section [[II] presents the
primal and the dual formulations of the Bethe partition function. Sections [Vl and [V] study the primal and the dual formulations of
Bethe partition function as well as the behavior the associated SPA for S-FGs in Figs. [3] [5] and [6] respectively. Section considers

general S-FGs and relates the locations of the global minimum of the Bethe free energy function to an SPA fixed point.

B. Basic Notations and Definitions

The sets R, R>q, and R are defined to be the field of real numbers, the set of nonnegative real numbers, and the set of positive

real numbers. If not mentioned otherwise, all variable alphabets are assumed to be finite. Square brackets are used in two different
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Fig. 1: NFG N in Example

ways. Namely, for any L € Z-q, the function [L] is defined to be the set [L] = {1,..., L} with cardinality L and for any statement

S, by the Iverson’s convention, the function [S] is defined to be [S] = 1 if S is true and [S] £ 0 otherwise.

II. THE STANDARD NORMAL FACTOR GRAPH (S-NFG)

Factor graph is a convenient way to depict the factorization of a multivariate function [1]]. Also many operations, e.g., taking the
summations and multiplications for multivariate functions can be visualized by factor graphs. In this paper, we will use, without
essential loss of generality, standard normal factor graphs (S-NFGs), i.e., S-FGs where variables are associated with edges [2], [3]].

The key aspects of an S-NFG are best explained with the help of an example.

Example 1. Let us consider the function

g(x1,... x5) = fi(wy, 22, 23) - fa(w1,24) - f3(22, 25) - fa(xs, 24, 25).
In particular, the function g, the so-called global function, is the product of the so-called local functions f1, ..., f4. The factorization
of g can be visualized via the S-NFG N in Fig. [I} where N consists of five (full) edges with associated variables 1, ..., x5, and

four function nodes f1,..., f4.

In general, edge e is incident on function node f if and only if x. is a argument of the associated local function f.

An edge that connects to two function nodes is called a full edge, whereas an edge that is connected to only one function node
is called a half edge. For simplicity, we consider S-NFGs with only full edges, due to the fact that S-NFGs with half edges can be
turned into the considered S-NFGs by adding dummy 1-valued function nodes to the half edges without changing any marginal or

the partition function.

Definition 2. An S-NFG N(F(N),E(N), X(N)) consists of the following objects:
1) The graph (F(N),E(N)) with vertex set F(N) and edge set E(N), where F(N) is also known as the set of function nodes.

(Every edge e € E(N) will be assumed to be a full edge connecting two function nodes.) Suppose that the numbers of function

nodes and edges are F' and E. The order of elements in the function node set and edge set is fixed

FNV={f, for ... ,fr},  EN)=[E]

L

2) The alphabet X(N) =[], . £(N) Xe, where X, is the alphabet of the variable x. associated with edge e € £.
In the following, if there is no ambiguity, we simply use F, &£, and X for F(N), £(N), and X' (N), respectively.

Definition 3. Given N(F, &, X), we make the following definitions:

1) For every function node f € F, the set Of is defined to be the set of edges incident on f.



2) For every edge e = (f;, f;) € € such that i < j, the pair (f;, f;) is defined to be the pair of function nodes that are connected
to edge e.

3) An assignment © = (1,)cce € X is called a configuration of the S-NFG. For each f € F, a configuration & € X induces the

A

vector &y = (Te)ecof-

4) In general, for every f € F, the local function associated with f is, with some slight abuse of notation, also called f. Here,
the local function f can be an arbitrary mapping from Heeaf Xe to R>o.

5) For every f € F, we define the alphabet Xy to be Xy = {xy € [ecos Xe ’ f(xy) #0}.

6) The global function g is defined to be the mapping g : X — R>¢, © — er}-f(a:f).

7) The partition function is defined to be Z(N) = Y omex g(w) Clearly, the partition function satisfies Z(N) € Rxo.

8) If Z(N) > 0, the probability mass function (PMF) induced on N is defined to be the function

N g(x)
= Zmy

9) Let T be a subset of E(N) and let ¢ = E(N) \ T be its complement. The marginal pz(xz) is defined to be

pr(er) £ Zp(m)a xz € X7,

rzc

where

T £ (xe)eel' S H Xea T1e £ (xe)eelc S H Xe.
ecT ecZc

If T = {e}, then we have
p{e}(xe) £ Z p(z).
For simplicity, when there is no ambiguity, we use the shorthands 3=, >~ 7, 3=, . > 205, { e, and (o, for 30 e 3o sc 7,

Deeex. Zm_fexf’ sze)(f’ {}o.ex. and (*)z.cx,. respectively.

In this paper, we make the following general assumption about S-NFGs.

Assumption 4. In this paper, for an S-NFG N we assume that
Jx € X such that g(x) > 0,

which is equivalent to assuming that Z(N) > 0.

As mentioned in the introduction section, for an S-NFG N, the SPA often gives a surprisingly good approximation of the partition
function Z(N) and the marginal py.y for edge e € £(N). Here we present the SPA by providing the technical details only. For the

motivation behind the SPA, we refer to [1]—[3]].

Definition 5. Given some S-NFG N. The SPA [1]-[3] is an iterative algorithm where the messages, which are functions associated
with edges, are sent along edges at each iteration. In particular, at each iteration, two messages are sent along each edge, one in

both directions.) The SPA consists of the following steps:

1) We consider the following setup.

INote that for notational convenience, here we impose a direction on every edge (f;, fj), i.e., we consider ¢ < j. This inequality is irrelevant for our results, i.e.,
the results in this paper also hold if we consider j > 4 for e.
2For some special S-NFGs, the associated local functions are different and we use notation different from f.

3In this paper, the partition function Z(N) of N is a scalar, i.e., it is not really a function. If N depends on some parameter (say, some temperature parameter),

then Z(N) is a function of that parameter.



a) For each t € Z>q, we consider the following vector of messages and the associated normalization constant:
t t Xe
Nilf - (Mglf(xe))w ER‘ZO‘7
t t
Clp =2 0tz) 1wy Gos) €Ron e=(fify) €€
zf; e’€dfi\{e}
where C(Hf is defined similarly for each e = (f;, f;) € €.
b) Fort =0, we randomly generate ;l, s Jollowing the uniform distribution in (0,1]1%<l for all e € Of, and f € F.
2) We update the messages as follows until some termination criterion is met.ﬁ

a) For every t € Z~ and e = (f;, f;) € € we first update the normalization constants C’ét_j;i) and Cét_:}j Then we update
the messages according to

1
Migfl() W Z fi(zg)- H MSJ} (zer,1,)- (D

e—fi  Zfize=te e’€dfi\{e}
()

The collection of messages p,”, 5,

is updated similarly.
(t)

3) For every t € Zq, the collection of messages pt) £ {pe_”f

(xe)}ooex,, ecar, fer is called a collection of SPA fixed-point

messages if it satisfies
pt @) =l (we),  we € X, e€df fEF.

4) For every t € Z~o and f € F, the normalization coefficient C](f) is given by

Cr e flap) - [T w2 () € Rao.
x

ecof

If C}t) > 0, then the belief obtained by the SPA message pu") for function node f is given by

B}t)(wf)é ) - I 6l (xe), € Xy 2
Cf ecaf

For each e € Of, the marginal 6](2 is defined to be

)2 Y (), @ e

ZpiZe=Tc

5) For every t € Zsq and e = (f;, f;) € &, the normalization coefficient Cét) is defined to be
ci & Z“e%f ) -1 (o).
If C’ét) > 0, the belief obtained by the SPA message ;l,(t) at edge e is defined to be

1
WW@éCmuQM ) 1y (), @ € A 3)
e

At an SPA fixed point, the beliefs ﬂ}t) and ﬂét) can be viewed as an approximation of the true marginals psy and py.) induced

by the PMF p, respectively, as specified in Definition [3]

Proposition 6. Given a collection of SPA fixed-point messages p), the beliefs Bj(f) and 69 evaluated at the fixed point satisfy
Bie(we) = By (xe) = BO(xe).  e=(fify) €€

Proof. Tt can proven straightforwardly from the definition of the SPA in Definition [5 ]

4In general, the termination criterion is a combination of numerical convergence and an upper bound on the number of iterations.



III. THE PRIMAL AND DUAL FORMULATIONS OF THE BETHE PARTITION FUNCTION

In this section, we present the primal and dual formulations of the Bethe partition function for an S-NFG N. The Bethe partition is
a function of the minimum of the Bethe free energy function, which can be viewed as an approximation of the partition function of
an S-NFG. The primal formulation is mainly based on [9} Section V], and the dual formulation is motivated by the main theoretical
results in Heskes’ paper [§]. In both these two formulations, some of the stationary points of the objective functions correspond to
the SPA fixed points.
1) In the primal formulation, the objective function, i.e., the Bethe free energy function, is neither convex nor concave in general,
and the feasible set is convex and formed by some linear constraints.
2) In the dual formulation, the objection function is concave when some of its arguments are fixed, and the feasible set for the
arguments has a simple structure. These properties enable us to gain insights for the associated locations of the optimal value

and obtain the main results in Section [VII

A. The Primal Formulation

In this subsection, we give the primal formulation of the Bethe partition function. We introduce the local marginal polytope (LMP)

for an S-NFG N first.
Definition 7. Given an S-NFG N(F, &, X), we define

B2 (Bs,Br), Be £ {Be}ece, Br £ {By}ser,
B2 (Belar) _ eREL B2 (Bs(ay)

c Rle‘
>0 -
e EX, TpEXy -

Note that if Of = {e1,ea} for some edges e, and e in E, we can define B to be a matrix where the rows and columns are indexed

by variables x., and x., respectively. We define

By £ {ﬁf > Brl@s) = 1; Bylas) € Rao, Vay € Xf}» fer, @
zf

BZ & {,36 Zﬁe(xe) =1; Be(ze) € R>p, Va, € XE}, e€é, &)

Be> £ {/66 Zﬂe(we) =1; Be(we) € R, Ve € XE}a e€l. (6)

Then the LMP is defined to be the set B(N)
B. € B2, Ve €&,
B(N)= |3 By € By, Vf € F, , ©)
Be(ze) = Bre(xe), Vf € F,e € Of, ze € Xe (local consistency constraints)

where B € B(N) is called a belief or pseudo-marginal vector, and By . is the marginal of (y:

ﬂf,E(wE)é Z Bf(zf)a xeexeﬂeeafvfe}-- ®)

ZfiZe=Te
We define an another LMP for Br:
By € By, VfeF,
Bx(N) £ Br 5]‘“@(37@) = 6fj,€($e)v : ©)

ze € Xe, e = (fi, fj) € & (local consistency constraints)

We make some remarks on the above definitions.



« The only difference between BZ and B. is that in BZ, we consider 3.(x.) € R>q for all z. € X, while in B, we consider
Be(ze) € Ry for all z, € X,.
e The condition 3 = (,Bg,ﬁf) € B(N) implies 87 € Bx(N).

o The sets By and BBZ are sets of vectors representing probability mass functions over X’ + and X, respectively.

Definition 8. [9] The Bethe free energy function w.rt. N(F,E, X)) is defined to be the mapping
Fepn:BIN) =R, B> Uss(Br) =Y Hos(Bs)+ > He(Be), (10)
! f e

where

UBny Bf-)R, ﬁfr—>—26f(wf)ologf(a:f),

T f

Hvi: Bf—>R, BfH—Zﬂf(mf)dog,Bf(mf),

Tf

Hge: Be =R, Bf—— Zﬁe(xe) -log Be(xe).

Te

The letter p in I , N means that it is related to the primal formulation of the Bethe partition function. We also define the function

1
Flg.,I)xN to be
F(l) . B R H H, ﬁf,;,e +16fj,6
son: [[Br—=R. Br—= Y Uss(Bs)=> Hes(Bs)+ > Hpe ) (11)
f f f e
Proposition 9. If B € B(N), we have Bz € Br(N) and Fg,n(8) = Fy') \(B7).
Proof. 1t can be proven straightforwardly following the definitions in Definition |

Theorem 10. The authors of [9)] related the fixed points of the SPA for an S-NFG N to the stationary points of the Bethe free energy

function.

1) [|90 Theorem 2] If the stationary point of the Bethe free energy function is in the interior of the LMP, i.e., 8 € B(N) and
Br € R‘;%f ! for all f € F, then it corresponds to an SPA fixed points of N.

2) [9, Theorem 3] If the S-NFG N contains only positive-valued local functions, i.e., f(zf) € Ruo for all zy € [[ cp; Xe and
f € F, then all local minima of the Bethe free energy function correspond to SPA fixed point of N.

When the S-NFG N is tree-structured, i.e, cycle-free, the minimum of the Bethe free energy function equals — log(Z(N)) and the

location of the optimal value

B € argminge g Fpn(B),
satisfies
Bi(xys) =ps(zs),  ®f € Xp, fEF,
Be(xe) = pe(xe)a Te € Xev ec ga

as proven in [9, Proposition 3] and [|17, Theorem 4.2]. For general S-NFG N, the minimum of the Bethe free energy function can
be viewed as an approximation of —log(Z(N)), and the elements 3; and 3. in the associated the location of the optimal value can

be viewed as an approximation of the marginals p; and p. induced by the PMF p, respectively.

Definition 11. The Bethe approximation of the partition function of N, i.e., the Bethe partition function, is defined to be

Zf pn = exp < ng&)FB,p,N(B)> = exp < BFIEIEE(N)FSL)LN(ﬂF)>v (12)



where Zy, |\ is the optimal value of the primal formulation of the Bethe partition function. We also define

* N, - : (1)
F5 o —ﬁrem?N)FB,p,N(ﬁ) —Bfggg(N)FB,p,N(ﬁf)- (13)

In this paper, we mainly focus on analyzing the function F](;; y instead of Fg , n. When B € B(N), ie., Br € Br(N), we have

)

Fp p.n(B) = FpN(Br). There are two advantages for analyzing FQRN.

o From the definition of FSI)LN in (TI), the associated argument B is in [, By instead of Bz(N), while the function Fp ;N
defined in (T0) requires that the associated argument 3 is in B(N). As we will see in Section a key step for obtaining the
main results is considering the function Fé%;N with an argument b("™*) that is allowed to be outside the set Br(N). (For

details, see (129).)

o We eliminate 3. in F]g)

5N by considering (B, + By,.c)/2 and the constraint By, . = By, . instead.

B. Definition of the Dual Formulation

In this section, we present a dual formulation of the Bethe partition function, which provides a different perspective to understand
the Bethe partition function. In this paper, we show that the Bethe partition function is equivalent to a maximin problem. The main
idea of this transformation was presented in [8, Section 4]. We make a comparison between the results in [8, Section 4] and the

results in this paper as follows.

o In [8, Section 4], the saddle-point problem proposed by the author was not well defined, i.e, he used max and min in the
considered problem, which are indeed sup and inf, respectively. Also the author did not analyze the locations of the optimal
value for the saddle-point problem, i.e, the locations of the optimal value.

« In this paper, we introduce a well-defined maximin problem which is indeed a dual formulation of the Bethe partition function.
(For details, see Theorem .

The reason why we call the transformed optimization problem the dual formulation of the Bethe partition function is that this
transformation process consists of expressing parts of 3, N in terms of their conjugate dual and solving the Lagrangian dual
problem of the minimization problem in (I3). For details, see the proof of Proposition [16]

Before presenting the dual formulation, we make some definitions.
Definition 12. We make the following definitions.
1) For every edge e = (fi, f;) € E(N), we define the variables to be
Ae £ (Aelze)), € R¥
Ye £ (vele)), € B2, (14)
Aefi ZXer Ay ==X, 1i<j < [FN), (15)

where B, is defined in (3).

2) We define the collections of vectors X and ~y to be

AE {)\e}ees, Y 2 {7@}668-

3) For every f € F(N), we define the collections of vectors Xpy and ~a5 to be

[I>

Aof = (e f)ecors Yor = (Ve)eeos-

Then we define the function Zy to be

Zi(vor Mog) 2> fg)- [] (exp(/\e,f(xe)) : %(me)>7 xye Xy, fEF. (16)
xf ecdf



4)

5)

0)
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We define the functions Fg gn and Zg anN to be

Fan(y,A) £ —log( [[ Zs(vor Mos) | € RU{—00,00}, (17)
f
Zpan(1:A) 2 [[ Z(vos, Aor) € Rxo U {oo}. (18)
f

Then we define Zf, 4 \ to be the optimal value of a maximin problem:

ZE,d,N £ sup igl\f ZB,d,N (v, A)
K (19)

st Ae(we) ER, 2. € Xy ve €B., e €E,
where B_ is defined in (). The reason why we use sup., instead of max. is that the function infx Z.aN(v, A) maybe
discontinuous w.r.t. v € [[, BZ. Note that the letter d in 2} q,n means that it is the optimal value of the dual formulation
of the Bethe partition function, which will be proven in Proposition @ We also define Fy, 4 \ to be the optimal value of a

minimax problem:

Fan = inf sup Fsan(v,A)

(20)
st Ae(we) ER, 2. € Xy ve €B, e €&
We consider another optimization problem that is closely related to Zf 4 \:
Zgld N = sup mf Zg.an(y,N)
(21)
st. Ae(ze) ER, 2, € X,y 7. € B2, e €E,
where BZ is defined in (3)). Similarly, we define Fgld \ fo be
Flglfi*N = mf Sup Fglg n(Y,A)
(22)
st. Ae(ze) ER, 2o € X, ve € Bg, ecé,
where
Flan(nA) 2 Fean(v,A) = —log | [[ Zs(vas: Noy) |- (23)

f
The only difference between Zgltd n and Z3 4 is that in Z3 4 \, we consider the vector v in B for all e in £, while in
Zgltd N, we consider the vector 7. in BZ for all e in E. The difference between Fglg n and Fy 4\ is the same as the difference
between Zg{t(i"N and Z3 4 -

For each f € F, we define the belief based on the variables Aoy and a5 to be

f(mf) ' Heé@f (exp()\e,f(xe)) : 'Ve(l'e)>
Zy (Yor: Aoy)
Let Iy be a subset of Of and let I £ 0f \ Iy be its complement. The marginal byz,(x1,) is defined to be

brz,(wz,) & D bylxy),

- CXrc
Fz3ETy

4L

€ By, Zs (a5, Aag) > 0. (24)

by(zy)

where

&
I>

f H Xe; XI; £ H Xev

e€ly eEI;

w1, = (Tc)ecz; € X1, xze £ (Te)eezs € Are.
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For example, the function by (.} is given by

bf,{e}(xe) = Z bf(Zf), ecdf, f € F. (25)

ZfiZe=Te

In the remaining part of this paper, we use the shorthand by . for by (.y for simpliciry.

Similarly, we can relate some of the stationary points of the objective function in the optimization problem (22) to the SPA fixed

points.

Proposition 13. The following two statements hold.

1) The optimization problem @22) is equivalent to the following optimization problem

i = inf Slip{Fﬁl,E,N(% A)+ > log <Z %(%)) }

S.t. )\e(me) € Ra ’Ye(ze) € RZOa Te € Xea Z'Ye(me) € R>07 ecé.

Te

(26)

Note that compared with the optimization problem in (22), the constraints ~. € BZ for all e € &, were changed into the
constraints Ye(x.) € R>g.

2) If there are variables ~y and A such that

a) Y. €BZ forallee&;

b) X e RI¥l;

) %Fgfg,,\, +1=0 and %Fﬁ{g,,\, =0 forall z. € X, and e € &, ie., the collection of vectors (v, \) is at the
stationary point of the objective function in the optimization problem (26),

then v and X correspond to an SPA fixed point.

Proof. See Appendix [A] [ |

Let us discuss some properties of the scalars F; 4 v Fgl’fﬂ’f,\,, and the function F3" \ (7, A) as specified in Definition

Theorem 14. [8], [16] The functions Fgan and F3Y \ defined in and @23), respectively, have the following properties.

1) [|8, Section 4] For fixed ~. € BEZ for all e € £, both the functions Fg q N and FEEE,N are concave w.r.t. \.

2) [16, Section 6.2] For fixed X and {~' }ercg\ (e}, both the functions g qan and Fg{g’,\, are convex w.r.t. 7e.
Proof. See Appendix [ |

Proposition 15. It holds that
Falt,* < F* Zalt,* > 7%
B,d,N = ©B,d,N> B,d,N < 4B,d,N-

Proof. As mentioned in Item |5/ in Definition |12} the only difference between Ff , \ and Fg{td”*N is that

e in I 4y, We consider v, in B2 forallee€g;

e in FS{E’,*N, we consider v, in BZ for all e € £.
Then the proposition follows immediately from the fact that B2 is a subset of BZ for all e € £. Finally, comparing the definitions
of Z; 4y and Zg{t(f,\l in (I9) and ZI), respectively, with the definitions of Fy; 4 \ and Fgffi”*,\, in (20) and (22), respectively, proving
ZE{ETN > 7 4 is equivalent to proving Fgffl”*,\, < Fjan
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Now we show that the optimization problem in (T9) with optimal value 2} qn is a dual formulation of the Bethe partition Zf; |
function defined in (I2). Another dual formulation is the optimization problem in (2I) with optimal value Zgltd*,\l, which will be

proven in Theorem
Proposition 16. It holds that

ZpN = ZBan (27)
or, equivalently,

* ok
FB,p,N - FB,d,N'

It also holds that

(inf Zoan(v. X)) €Rso,  Vre(@e) € Roo, e € Xy Y velwe) = 1, e € &, 28)

Te
Proof. We start by giving an outline of the proof for (27).

o Recall that the optimal value Z]’g’p’,\, of the primal formulation, as defined in (12)), is related to the minimum of Fy.p,N, which
is defined in (I0) and consists of the finite sum of the entropy functions in {HB,e}e. The function Hg . is a convex function
whose convex conjugate is a “log-sum-exp” function. We transform the function Hp . into a “log-sum-exp” function for each
e€ & in FgpN.

« After that, we minimize the transformed function w.r.t. 3z only. Solving this minimization problem is equivalent to solving the
convex conjugate of another entropy function, and the resulting function is again a sum of “log-sum-exp” functions. After that,

we obtain the dual formulation of the Bethe partition function.

For details, see the proof in Appendix [C} |

In the following, for simplicity, when we talk about the primal formulation and the dual formulation, we mean the formulation of
the Bethe partition function and the dual formulation of the Bethe partition function, respectively.
We conclude this section by pointing out that the dualization that is used here is different from the approach in [9], [14], [15].
The differences are sketched in Fig. [2}
« Fig. shows parts of an S-NFG of interest.
« Fig. shows parts of an NFG whose global function is equal to the Bethe free energy function of the S-NFG in Fig.
Note that here the global function is the finite sum of the local functions, not the product of the local functions.
o Dualizing the S-NFG in Fig. 2(b)] according to [9], [14], [15]] yields an NFG as in Fig. 2(d)]
o The approach by Heskes [8]] can be seen as first modifying Fig. to obtain Fig. Namely, the equal-contraint function
node in the middle of Fig. 2(b) is replaced by the, functionally equivalent, dashed box in Fig. The NFG in Fig. is
then dualized and yields the NFG in Fig.

C. The Locations of the optimal value for the Dual Formulation

In this section, we study the location of optimal value of the optimization problem in (2Z). As we will see in Theorem the
optimization problem in (22) is indeed the dual formulation of the Bethe partition function. There are two main goals in this paper.
1) We want to prove that F&%* = F* . = F* By P itions |15/ and 16| we have F2%* < F* . = F* . Theref

p B.dN = FB.an = F5 pn- By Propositions (15 an L we have Fy i < Fj gy = F5 , n- Therefore,
it remains to prove Fglf{*N > F§ q.n» Which will be done in Theorem
2) We want to show that there exists a sequence of messages defined based on the locations of the optimal value of the optimization

problem in (22)) such that the message sequence converges to an SPA fixed point.
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Fig. 2: Different dualizations of the Bethe free energy function.

To achieve these two goals, we first define the sequences based on the locations of the optimal value of the optimization problem
in (22).
Definition 17. We make the following definitions.
1) Given . in BZ for each e € £, we define
Flan(y )ESUPFBdN( A (29)
where BZ is defined in ().
2) We define {v\™},,cz., to be a sequence satisfying

a) for each e € £ and m € Z~, the element '7(5 ™) is in BZ, where BZ is defined in (3).

e’

b) the associated sequence {Fg{g,,\,(v(m))}m converges to Fgltd*N'

im Fgly N (™) = Fege (30)

3) Given (™), we define the sequence {)\("(m)) (’7("’))} ) to be a sequence such that it converges to one of the locations
n(m)€Zso

of the optimal value for the optimization problem in (29). There are two cases to be considered.

a) If there exists \* (’y(’”)) e RI*l such that
Filian (NA X (1)) = sup gl (7, ),
then we define
)\(n(m))(v(M)) = \* (,7,("1))7 n(m) € Zso.

b) If not, we define {)\("(m)) (’7(”‘))} to be a sequence satisfying
n(m)€Zso

Flin (70, A0 (5 ) = Bl (v, 0), (31)
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lim Fglh (00, A0 (407) ) = Bl (7). (32)

For simplicity, if there is no ambiguity, in the following we use A\ and n instead of X("(™)) (’y(m)) and n(m), respectively.

4) For each n and m, we consider the following optimization problem
0" € ArgmaX,epi oo, oo} Fian (Y™ - AM), (33)

To define a sequence that converges to o, there are two cases to be considered.

a) If there exists an o* in R, we define the sequence {a(’“(m’"))}k(mm) to be
alkFmn)) & o k(m,n) € Zsy. (34)

For example, if case |3a| happens, then we have o* = 1 and a*("™™) =1 for all k(m,n) € Zsy.

b) Otherwise, we define the sequence {a(k(m’"))}k(mm) to be

2k(m7n) a* = 400

ak(mn) & , k(m,n) € Zsy,
_2k(m,,n) af = —00
where the integer k(m,n) satisfies
Fian (v, o) X0y > Bl (40,0), k(m,n) € Zso. (35)

For simplicity, if there is no ambiguity, in the following we use a®) and k instead of o*(™™) and k(m,n), respectively.

5) For each f € F, we define the collection of variables Ty s to be

Lo = (Te.f)ecos € Xf. (36)

We also define a sequence of beliefs on function node f based on the sequences {’)’(m)}mez>0, {)\(”)}nez>0, and {oz(k)}kez>0.

The belief sequence on function node f is given by

F@g)  Tlecoy (exp(a(k) . )\in; (xe)) . 78”)(%))

b(m;ﬂ,k:) z) 2
po (@) Z; (A5, a® - AG))

, xfexf,zf(»y” (k) . A‘") >0, (37

where

a® AG) = (auc) A () c RI*I,

s

>$eEXe7 e€df, feF

7 ('7((97]?), )\(”) Zf ;cf H <exp(a(k) . )\glf)(-Te)) . ’)’ém)(fﬂe)>-

ecof

Then we define the collections of variables b§m’n’k) and b"™™F) 1o be

b(m nk) & (b(m n, k)(:r’f))mfexf’

b = (65" e s (38)
6) Let Iy be a subset of Of and let ¢ = Of \ Iy be its complement. We define the marginal
k m,n,k
bgfg;f” ar) 2 Y 00 ay),  wg, € Ay, (39)

25 €Xz5
7) For simplicity, if there is no ambiguity, we used the shorthands {-}m, {-}n, {-}r, and {-}nx for {}mez.o {-tnimyez-o

{ etmm),m)ezo» and {-}n(m) k(n(m),m)cz-o, respectively. We define the following operators

lim £ lim lim lim
m,n,k—o00 m—00 n(m)—oo k(m,n)—oo
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lim £ lim lim

m,n—00  M—00 n(m)—>oo7

lim £ lim lim
n,k—00 n(m)—o0 k(m,n)—oco

For fixed =, as proven in Theorem , the function F3' \ (v, ) is concave w.r.t. A. For each v, we can solve Fg{g’,\,('y) as
defined in (29) by finding the stationary point of F3'4 v, (v, A), which satisfies

9 a
mFE{&,N = —bfi,e(xe) + bfj,e(l‘e) = 07 Te € Xe7 e = (flafj) c 57 (40)

where by, . and by, . are given in (23). If

(bfi’e(ase),bfj,e(xe)) # (0,0), T € Xo,e € E,

then the equation in (@0) implies

Zg(vop, Aar) - 2 fi(zg)  Toeopngey exp(Nens, (2er)) - V/7er (2er)

ZfitZe=Te

ij (78f7A8f) . Z fi(zfi) . He”eafi\{e} eXp()‘e”7 i(ze”)) Y 'ye”(ze”)

Zf, 1 Ze=Te

exp(Ae(we)) =

€R>oU{oc}, (1)

Te € X, e €8,

where Z is defined in (I6) for all f € F. Note that A.(z.) does not appear on the righthand side of @T).

D. Algorithms for Solving the Dual Formulation

In this section, we present a double-loop algorithm in [, Algorithm 2] for solving the minimax optimization problem in (22)) by

rewriting the details based on our definitions in the previous sections. The main idea is unchanged.

Definition 18. /8| Algorithm 2] The details of the algorithm are given in Algorithm |l} The algorithm consists of two loops.
1) In the inner loop, we fix ~v and find the stationary point of F]‘gl,fj’,\,l (v, A) wrt. A
2) In the outer loop, we fix X and find the stationary point of Fgl’g’,\,l(’y, A) w.rt. 4.

Then we consider the following setup.
1) Let t1,to € Z>q be the iteration indices.

2) For each e = (f;, fj) € &, we define

t 1 t =
A e (\e) 2 (i), 42)
Nitly, 225 Nitly, 2 MG @)

We also define the message sequence based on the above-defined sequences to be the sequence {Nii’?)}tl,tz satisfying
t1,t2 1 ta
e () o eXP(/\fu e )) Y0 (@), we € A, (44)

Zugt;jf) =1, ec& ferF. (45)

3) Then we define the following collections of variables:

A(t1) é( (tl)) (t2) & ( (tz)) (t1,t2) é( (t1,t2) ) _
dl T Ve ) peer H Hesy (we) 2 €X,, e€Of, fEF

4) Given )\((ﬂl) and 'ydl , for each f € F, we define the normalization constant Zé 212) 45 be

(ta,t (ta,t )
Zdllf2 2 Zf(wf H Me_>f2 Te)
zf

ecof
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If Zﬁl}tz) is positive-valued, the associated belief on function node f is

(t1,t2) 1 (t1,t2)
bd1f2( f)ém H'LL€—>f2 Ze), Ty € Xy, fEF.
dl,f

ecof
The associated marginal is defined to be

bg?;g( AEEDY bgtll}ti)(zf), 2. € X,, e € DFf.

ZfiZe=Te

Note the letters “dl” in the above defined variables stands for double loops. The main idea of the algorithm is given as follows. For
details, see Algorithm [I]

5) We randomly generate ’le . following the uniform distribution in (0, 1]‘)( <l for all e € Of, and f € F.

6) We randomly generate )\dl following the uniform distribution in [—1,1)1%! for all e € 0f, and f € F
7) Fixing the index of the outer loop ty and the vector 'y( 2)

a1 » we update )\( VY in the inner loop until some termination criterion
is metf

a) If borh 237 and 7§V
Falt *

are positive-valued, by the derivations in @O)—W@]1), to find the stationary point of
B.dN, WL A, we update variable /\( 1) such that

)\(tlfl) xe) lf‘b tl 1,ta— 1 (x )—btl 1,to— 1)
A () o 4 e ( dl, fe

dl, fj.e (ze) =0
dle 1)\(751) (2.)

5 xeexeue:(fi7fj>eg7i<j7 (46)
dle Otherwise

where

t1 t1—1,ta—1 t1—1,ta—1
MNid@e) 21og| > filzr) - [T wl5p V) | g Y filzn) [T w85V )
240 ze=Tc e’edf;\{e} Zf, Ze=Te e’€dfi\{e}

A T R

b) When some termination criterion is met, we stop updating )\( Y and switch to the outer loop

8) For each ty € Zo and e = (f;, f;) € &, we fix )\( Y and update v*2) as follows

a) If both Z(tjjzjz Y and Z,Silj’cfrl) are positive-valued, we update 7( )

dﬁ?e (xe) such that
(a1

eXp()‘dl e fl( )) -1
R e D DI (COLN | BT i C

dl, f; ZfiZe=Te e’edfi\{e}

(t1)

exp()\dl s (xe))
e (t1,t2—1)
Z(tl to—1) ’ Z fj(wfﬂ) H H 57

o' fr (zer), Te € X, 47
dl, f; e'€dfj\{e}

+

LZe=T
] e—de

va;if (we) =1, e=(fi.f;) €&

(48)
9) For each ty € Z~, after updating ’7( 2) ]

a1 > we switch back to the inner loop, i.e., to steplj to update X\ i),
10) The outer loop, i.e., the update of 'y( 2)

a1 » IS stopped when some termination criterion is met
11) A collection of )\( Y and *y((ﬁ?) is a called a fixed point of Algorithm || if

(t) _ \(ti—1) (t) _ _(ta—1)
Aa = Y =Ya®T -

(49)
Proposition 19. Each fixed point of Algorithm |I|with ~. € BZ for all e € £ corresponds to a stationary point of Fglﬁi N

Proof. See Appendix [D}]

5In general, the termination criterion is a combination of numerical convergence and an upper bound on the number of iterations
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Algorithm 1 The double-loop algorithm in Definition
Set t1 =ty = 0.

Generate )\((ﬂlg(ie) following the uniform distribution in [—1,1] for all z. € X, and e € £.
Generate 7((1’;2)(%) following the uniform distribution in (0, 1] for all z. € X, and e € £.
repeat
repeat
for n,=1to |E| do
Update )\((fllg(xe) according to (46).
Increase ¢; by one.
end for
until Some termination criterion is met. (The end of inner loop)
for n.=1to || do
Update *yéﬁze) (z.) according to (@7) and @8).
Increase ¢ by one.

end for

until Some termination criterion is met. (The end of outer loop)

Algorithm 2 The alternative SPA
Set t1 =t = 0.

Generate )\fﬁlg(xe) following the uniform distribution in [—1,1] for all z. € X, and e € £.
Generate yéfl’z)(:zze) following the uniform distribution in (0, 1] for all z. € X, and e € £.
repeat
for n.=1to |€| do
Update /\((flle)(a:e) according to (46).
Update fy((ﬁ?e) (z.) according to (50) and (BI).
Increase ¢; and ¢y by one, respectively.

end for

until Some termination criterion is met.

Definition 20. We give the details of Algorithm 2| in the following. There are two main differences between Algorithm [2| and
Algorithm
1) In Algorithm 2] we replace step [8d| in Definition [I8) by the following step.

o If both Zg’lj’cjrl) and Zfﬁ}jjrl) are positive-valued, we update 'Vé?e) (ze) such that

(t1)
eXP(A(ﬂ e fi (fe))
to »&Ji z : I | t1,ta—1
fY((ﬂ,e)(‘xE) X Z(t17t2_1) : fl(zfl) . Mi/_)f'i )(Zc/)

dlL, f; Zf, 1 Ze=Te e'cdfi\{e}
1/2
eXp (/\t(itﬁ;fj (xe)> (t1,t2—1)
e | 2 A I wSiE) ) ) 60
dL.f; BfjiRe=te e'edfj\{e}

Zexp@ﬁ (xe)) Y '7<(i1i2e)(xe) =1 D
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N
—

& I
+
Fig. 3: S-NFG N;.

2) In Algorithm we set t1 = to and we first update )\gﬁg(xe) according to steps an in Definition and then update
’y((ﬁ"’e) (z¢) following the previous step. After updating )\é?g(xe) and 'y((ﬁf (ze) for all x. € &, we increase both t1 and to by

one.

Proposition 21. Algorithm 2| is equivalent to the SPA in Definition E] Each fixed point of Algorithm 2| with v, € B for all e € £
satisfies and (I68), i.e., corresponds to a stationary point of F3% \.

Proof. See Appendix [E| [ |

We conclude this section with some remarks.

1) Based on the definition of an S-NFG and its associated partition function and SPA in Section [[IL we have defined the Bethe
partition function, which can be viewed as an approximation of the partition of the S-NFG. In Theorem [I0] we have recalled
the mains results of [9]], which relate some of the SPA fixed points to some of the stationary point of the Bethe free energy
function.

2) We have derived one of the dual formulations of the Bethe partition function of the S-NFG, which is denoted by Zf 4 . We
have also defined the quantity Zglfcif,\, which provides an upper bound of the Bethe partition function. We want to show that
Zian = Zgl’td’fN in the remaining part of this paper. We have defined the sequences based on the locations of optimal value
for the optimization problem in ZI).

3) We have presented an algorithm for solving Zglfd’:"N, which contains two loops. We have shown that the SPA can be recovered

from this double-loop algorithm.

IV. THE ANALYSIS OF A SINGLE-CYCLE S-NFG EXAMPLE

In this section, in order to have a better understanding of our main results that will be presented in Section [VII, we consider
a simple single-cycle S-NFG N, as shown in Fig. [3] We want to relate one of the locations of the optimal value Fy |\, for the

optimization problem in (13) to an SPA fixed point for N;. We propose two ways to relate these two concepts.

1) [9, Argument of Conjecture 2] For N; consisting of local functions f; and f, which equal zero for some z; and zo, we
consider a modification of the local functions by adding an infinitesmal positive-valued term to each zero factor. In this modified
S-NFG, the location of the optimal value for the optimization problem in (T3] corresponds to an SPA fixed point [9 Theorem
3]. In Item [T] of Theorem 27} we will show that when we let these infinitesmal positive-valued terms converge to zero, the SPA
fixed point for the modified S-NFG converges to an SPA fixed point for the original S-NFG N; where some local functions’
values are zero. Besides that, in (69) and (70) in Proposition we will prove that the belief on each edge obtained by the
SPA fixed point for the modified S-NFG converges to 1/2 - (1, 1>T as the infinitesmal positive-valued terms go to zero.

2) Another way is that we consider the dual formulation of the optimization problem in (I3), i.e., the optimization problem in (ZI))

with optimal value Zgl’td’j‘Nl. We let (™ and A(™ be sequences such that the associated objective function ZB,d,N, (’y(m), /\("),
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as defined in (T8), converges to Zgltd’*Nl ﬁ Then in Theorem @I, we will prove that the collection of messages p("™") converges

to an SPA fixed point of Nj, where p(™™) is given by

n) _ (, (mmn)
(mn) = (“e%f (xe))mce)(c,eeaf,fef’

W () & exp (A (2e)) - W™ ().

n

Also, in Theorem we will prove that the set of beliefs bgn’”) defined in (B;S'I), which are functions of 'y(m) and \("W) satisfies

lim bgflrf’en)(xe) — lim p™™ (ze) = 7™ (), Te€X., meZsy, ™ eB eck, (52)

n—00 n—oo J12:€

which shows that by varying (™), we can let the marginals of the beliefs on edges b(]f-n’”) converge to any point in [], B .
As we will see in Theorems |36| and @L by the second method, we can show that any point in B(N;) with

Wy o

gy | W EBT
0 7 (2)

bfl = bfz =

corresponds an SPA fixed point of N;, which indicates that the second method is a promising method for generalizing our

results in this section to the general S-NFGs.

Let us provide some technical details of the S-NFG N; first.

Definition 22. We make the following definitions for Ny.

1) The dots in Fig. [3] are used for denoting the row indices of matrices f1 and fo associated with function nodes fi and fo,

respectively. To be more specific, the rows in the following matrices

f1 £ (f1($1,$2)) s fo £ (f2($1,$2))

T1,T2 T1,T2

are indexed by x1 and the columns are indexed by xo. Because we want to discuss different fi and fo in Ny, the details of
f1 and fo will be given in the coming sections.

2) The set of edges is given by € = [2].

3) The variables x1 and x5 take value in the alphabet Xy = X = [2] = {1, 2}.

Based on the previous definitions, we further investigate the function F]glfi’*Nl and the associated sequences v(™ and A for Ny,

which are specified in Definition [T7]

Remark 23. Let us provide specific properties of the dual function FS{&*NI and the associated sequences v™ and X™ for N;.

1) For simplicity, we do not consider the sequence {a(k)}k in this example because it is unnecessary for obtaining the main
results in this section.

2) By the definition of ¥\ in 29), the collection of vectors ~(™) satisfies
M) 44 @) =1, AWM1) +45M(@2) =1 v/ 53
no M@ =1 (D4 (2) =1, m e Zs,. (53)
3) By the definition of Fgl_’g’,\,l('y,/\) in (I7) for Ny, the function Fgffi,,\,l('y(m), (™) equals

a m n)y (@) m n m n
Fglyn, (7™, A0) = —log Zy, (™), A1) —log Zy, (v, A™). (54)

6 Although by Propositions |15 and we only know that Zgl,td’ijl > Z]’_;)’CL,\I1 = Z]’_;)’p“l, in Theorem [57|in Section v we will prove that Zglf(i:kN = Zf;p,N,
which shows that the optimization problem in ZI) is the dual formulation of the Bethe partition function.
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4) The functions b( (xl,xQ) and b(m ™) (1, 2) defined in can be written as
exp()\( ) (21) + A8 (2o ) \/’y( ™ (1) - 5™ (9)
Zg, (v, Am) ’

exp(*A({L)( 1) — )\()1’2> \/V(m) 1) %m)(IZ)
ng( (m), )\(n)) ’

b(m”)(x \22) = fi(z1, 22) - Zg (7™, AM) > 0, (55)

b(mn)

b (T1,22) = fo(T1,22) - Zg, (7™, AM) > 0. (56)

We also define the matrices bgfln’n) and bgf:’n) to be

b (1,1) b (1,2)

(m,n) a .
A A e , i€ [2]. (57)
b (2,1) b (1,2)
The collection of belief b(}-m’") is defined to be
(m,n) a (m,n) (m,n)
b]: - (bfl bfz ) :
5) The marginal b( ™) given in 23) can be rewritten as
b(fTin) (z1) = Z bErT’n)(ﬂﬁh T2), bﬁ{'fé”)(xz) = Z bS{.”’") (1, 22), i€ [2]. (58)

For the S-NFG N; given in Definition we can obtain explicit expressions for the sequences {'y(m)} and {)\(”)}. Although
these expressions are not unique, analyzing the sequences with explicit expressions helps us to better understand the proof of the

main results for this single-cycle S-NFG and even for the general S-NFGs.

A. An Example Single-Cycle S-NFG with Positive-Valued Entries Only

In this subsection, we discuss N; in Fig. [3| with positive-valued local functions only.

Example 24. For r € Ry, we consider Ny, where the local functions associated with function nodes fi and fy are given by fi ,

and f3 ,:
P RO P R 5
fl,T(Qal) fl,r(272) 61(70) 1
T 9 T b 6
for [P0 22} L (1 800} )
f2r(2,1) f2,,(2,2) da(r) 1

which means that

fi=fir fo=for.

Here, the functions 01(r), d2(r), and d3(r) are arbitrary functions such that

61(T)7 62(T)u (53(T) € I§>07 re IR>O7 (61)
13?0151'(7") =0, ie[3. (62)

In this section, we let r go to zero and thus some of the entries in the local functions converge to zero. We want to study whether the
associated location of the optimal value for the primal formulation converges. Let us make some definitions for the above-considered

S-NFG N;.
Definition 25. The vector §(r) is defined to be

5(r) 2 (51(r) 8a(r) 55(r)- (63)



21

The matrix G, , is defined to be

GNI,T =

||>
=k
3
B
3

52(7") —+ 1 53(1") —+ 1
(51(7’) + (52(7") 51(7") . 63(7") + 1

€ RZ¢2. (64)

Let Apax(r) be the eigenvalue of G, , with the largest magnitude and vy, and vy be the associated left and right eigenvectors,
respectively. It follows from Perron-Frobenius theory that Ap.x (1) is unique and nonnegative real-valued, and that vy, and vg can

be chosen to have only positive entries. (See, e.g., [18 Section 8.3].) For convenience, we define c1(r) to be

e1(r) 2 1/ (81(r) - 85(r) — 62()% + 4(01(r) + 62(r)) - (1+8(r)).

Proposition 26. The following properties hold for the S-NFG Ny considered in Definition 22] and Example

)
P

Fgpn, and Fél’l))’Nl for Ny are defined in (10) and (11, respectively, and the set B(N1) is defined in (7).
2) [9 Theorem 3] The location for the optimal value Fy;
3) If 16:(r)] <1 for all i € [3], we have

1) [16, Corollary 2] Both the Bethe free energy function Fg , N, and its alternative Fél N, @re convex w.rt. B € B(Ny), where

p.N, are given by the SPA fixed-point messages.

e (r) > max(%g(r), 261 (r) ~(53(r)). (65)

4) The SPA fixed-point messages ,u,gi # and ,u,gi 7, are proportional to vy, and vR, respectively, i.e., ugz £ XL and /LYL o X

VR.

5) The beliefs of function nodes evaluated at the SPA fixed point, as defined in (2)), satisfy

Bp (@1, m2) o< vn(21) - fr.r(21,22) (Z for(2], 22) 'UR($3)>7 (66)

!
Ty

B, (21, 22) o (Z oL (z7) - f1,r($/1,302)> for (1, 22) - vR(21). (67)

!
Ty

6) The associated Bethe partition function Z3 satisfies

,p,N1
Z8 0Ny = ZB.aN, = Amax(1) = FBpn, (8) s.t. 3 € B(Ny), where By, satisfies (66) and By, satisfies (7). (68)
Proof. See Appendix [F] [ |
Then we analyze the properties of the beliefs at the SPA fixed point and the primal formulation as 7 | 0.
Proposition 27. The following properties hold for the S-NFG Ny considered in Example
1) The eigenvalue Ayax(r) for matrix Gy, -, as specified in Definition @ satisfy
lirgl Amax(r) = 1.

r

The associated eigenvectors, as specified in Definition 23] satisfy

rl0

lifnvL(r) = (0 1)T, lriﬁ)lvR(r) = (1 O)T.

2) The SPA fixed-point messages p'? satisfy
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3) The beliefs evaluated at the SPA fixed point satisfy

Jim 8 1(1 0 69)
rl‘{rOl fi— 5 0 1 ’ (
lim 3 Lt o 70
e =5, (70)
Proof. See Appendix [G| [ ]
For comparison, we also study the dual formulation.
Proposition 28. The following properties hold for the S-NFG N considered in Example
1) If we set v and X to be the collections of the vectors satisfying
\/He f1 /-%f (me) Te € Xey Ve € Be>7 e€d, (71)
(t)
/’Lp 1
exp(Ae(z.)) = e, (Te) T € Xoy e €E, (72)

f 9
ui}z( e)

where the SPA fixed-point messages pt) are given in (I7T4)—(T77) in the proof of Proposition then the above given (v, )

are at the location of the optimal value for the dual formulation in (19). If we let r |, 0, the associated optimal location of the

optimal value satisfies

1;3}% = % (1 1)T7 ecé, (73)
lim (exp( (1)) exp(ni(2))) = (0 o) (74)
tim (exp(ha(1) exp(ha(2)) = (s 0). )

2) The quantity Zgl d.N, €quals the Bethe partition function of

alt,*

ZB d,N; — ZB d,N; — Z];,p,Nl = Amax- (76)
Proof. See Appendix [ |

We summarize the above results as follows.

1) Because all the local functions are positive-valued, in Proposition [26] we showed that the locations of the optimal values for
both primal and dual formulations correspond to an SPA fixed point.

2) Because N; in Fig. [3| is a single-cycle S-NFG, the SPA is equivalent to applying the power method on the matrix associated
with Ny, and the SPA fixed-point messages correspond to the eigenvectors of the matrices f; , - f; ,» and f{ » for

3) In (69) and in Proposition 28] we showed that the location of the optimal value for the primal formulation converge as

follows:

r1 € X,.

1
i By, 1 (w1) =1 By, 1 (w1) = lim By, 2(01) =1im By, o(21) = 5,

4) In Proposition 28] we showed that one of the locations of the optimal value for the dual formulation satisfies

li L ! £
mye =3 (1 1) ; e€é. (77
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B. An Example Single-Cycle S-NFG with Zero Entries

In this subsection, we consider N; in Fig. [3| with the details specified in Example The remaining details of N; are given in
Definition In this S-NFG, we consider local functions fl(},? and f, for function nodes f; and f> such that lim, o fl(},? = f1. (For
details, see Example @ below.) We want to see that whether the beliefs evaluated at the associated SPA fixed point still converge to

the limits in (69) and (70) as r goes to zero.

Example 29. In this section, we consider S-NFG N1, where the local functions for function nodes f1 and fo are given by

1) nan a2 1+d5(r) 1 fp = LD A2} _ (10
2_ - )

Den f1@) oi(r) 1 R(21) £22) o1
where 01(r) and d2(r) are defined in Example Let Ag;x(r) be the eigenvalue of the matrix fl(l,) with the largest magnitude and

v£ and vl(%) be the associated left and right eigenvectors, respectively.

“
i
%
I
>

Proposition @ still holds for the S-NFG N; considered in Deﬁnition@ and Example |7_§| (modulo the notational changes mentioned

in the following proposition).

Proposition 30. Proposition [26] still holds for the S-NFG Ny considered in Definition 22| and Example 29| after making the following

the notational changes.

1) The local functions f,, and fs, are replaced by fl(lr) and fs, respectively.

2) The eigenvalue Apax(r) is replaced by Aﬁngx( ).

1)

3) The vectors vi, and vy are replaced by ’UL ) and 'UI(DL , respectively

Proof. The proof is similar to the proof of Proposition [26] and thus it is omitted here. |
However, some of the properties in Proposition [27| do not hold for the S-NFG N; considered in this section.

Proposition 31. The following properties hold for the S-NFG Ny considered in Definition |22| and Example

1) Items I and |Z| in Proposition 27 hold after making the the notational changes in Proposition 30

2) If we set d2(r) = +/cs - 61(r) for some c5 € R>, the beliefs evaluated at the associated SPA fixed point satisfy
1 fs(cs)
5+ ssr 0
li _ | 2 " 8+2fs(cs) 78
rlfg'@fl 0 1 fs(es) ’ (78)
2 S+2f5 (Ca)
Eigﬁfg = 15{)1 B (79
where f5(cs) = cs + V¢ 4+ 4cs € Rug. For any 1/2 < a5 < 1, we can find a c5 € R such that
ags 0
lim B¢, = hm B¢, =
740 0 1—as
Proof. The proof is similar to the proof of Proposition [27| and thus it is omitted here. |

Comparing Proposition [31] with Proposition 27] for the S-NFG considered in this paper, we can let the beliefs evaluated at the
SPA fixed point converge to different limits instead of the limits in (69) and (70) by suitably defining d2(r) based on dy(r).
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C. Another Example Single-Cycle S-NFG with Zero Entries

In this subsection, we consider N; in Fig. 3| with the details specified in the upcoming Example The remaining details of N

are as in Definition [22] There are two main goals in the subsection.
1) The first goal is to compare the results obtained in this subsection with the results obtained in Section

a) In Section we considered a modified S-NFG such that all the local function are positive-valued, and we found the
locations of the optimal value for the primal and dual formulations. As proven in Propositions 26 and [28] these locations
correspond to an SPA fixed point. Then we some entries in the local functions converge to zero. The associated locations
and the SPA fixed-point messages converge. In particular, the SPA fixed point for the modified S-NFG converges to the
SPA fixed point of the original S-NFG with zero-valued local functions.

b) In this section, we directly consider the S-NFG with zero-valued local functions, and we will show that any collection of

3”*,\,1 of the optimization problem

in as well as an SPA fixed point of the S-NFG N;. (For details, see Proposition and Theorem ) It is different

from the results obtained in Section where we only show that the ~ in corresponds to an SPA fixed point of

N; considered in Example

vectors v € [[, BZ with 41 = -y, corresponds to the location of the optimal value F§1

2) The second goal is to understand the main idea of the proof for the general S-NFG in Section [VII| by analyzing this simple
example. Note that the main results in this subsection are obtained by analyzing the location of the optimal value for the
optimization problem in (22)), which is similar to the main idea in Section In Definitions [33] we will specify the sequence
{AM}, e, and the vector 41 such that FS{‘ELNI (v, AM) converge to Fg{ngl as n — 0o. Based on that, in Theorem we
will show Fgl’fj’le =Igan, = BN, andin Theorem@ we will prove that the collection of messages pu(1™) satisfying
converges to SPA fixed-point messages. The idea of these Theorems’ proof is similar to the idea of the main results’ proof in

Section

Example 32. The local functions for function node fi and fo are given by lim,. o fi , and lim, o fa ,

, , 1 11 , ‘ 1 &(r) 10
flzhm.fl,r:hm = ’ f2:hmf2,r:hm = )
ri0 PG 1 0 rio 0 \Gy(r) 1 0 1

where 01(r), 02(r), and 05(r) are defined in Example Note that the left and right eigenvectors of fi are (0 1)T and (1 0)T,

respectively.

We define the sequences {v(*)}, and {\(™}, in the following such that they correspond to the locations of the optimal value for

the dual formulation. (For details, see Proposition [35|in the following text.)

Definition 33. We make the following definitions for the sequences {v*}, and {AM},,.
1) We fix k = 1 and define V) to be

weB:,  ee£=1
W) =" @), €. (80)
2) We consider the following sequence of {A\},,:
A1) =-n, AT@ =0, A1) =n A@)=
The definition of A(™) in Definition [33| implies

exp()\(ln)(zl) + )\(2")(:1:1)> =1, x1 € [2], n € Zyo,
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lim eXp(/\gn)(l) + )\én)(Q)) = lim exp(—n) =0.

n—oo n—oo

Remark 34. We make the following remarks for the functions and the sequences relating to the S-NFG N specified in Definition 22]
and Example [32]
1) The associated Bethe free energy function Fg N defined in (I0) for Ny satisfies
FB,p,N1(5) 207 /3 € B(N1)7 (81)
where B(N1) is defined in (7). The above expression implies
Fgpn, =0 (82)

P

2) The function Zy, defined in (16) equals

Zg (7. A) = > exp(A.p, (21) + Az.p, (22)) - V1 (21) - 2(2)
z1,z2€{(1,1),(1,2),(2,2) }

@ exp (M (1) +Xe(1)) - V(1) 22 (1)
+ eXp()\l(l) + >\2(2)) V(1) - 72(2)
+exp(M(2) +22(2)) - vV (2) 2202, (83)
where step (a) follows from the definition of ¢,y in (I3). Similarly, the function Z;, defined in [84) equals
Zp, (v, A) = exp(= (A1) + 2(1) ) - V(1) -3 (1)
+exp(—= (M@ +2(2)) - V@) ). (34)
3) By the definition of ¥V in Definition we have ‘yél) € B2 for all e € € = [2]. Then the functions Zy, and Zy, satisfy
Zp (YO, XY Z, (v, M) € R, n € Zso, (85)

which implies b}ll’n) in (33) and b%’n) in (36) are well defined, i.e.,

A(x1,22) € [2] X [2] s.t. b(fi’n)(arl,xg) € Ry, n € Zso,
Az, xh) € [2] x [2] s.t. bgcin)(x’l,xé) € Ry, n € Zsg.

We focus on the optimization problem defined in 22)) first. We show that the considered sequence {)\(")}nez>0 converges to the

location of the optimal value Fglg n, and the sequences {)\(”)}nez>0 and v(!) converges to one of the locations of the optimal value

for the dual formulation.

Proposition 35. Consider the S-NFG Ny specified in Definition 22| and Example
1) It holds that

lim Baltd N1 (’7, A(n)) = FABaltl N, ('y)
n— o0 i o

where BZ and F’g{td)Nl are defined in () and 29), respectively.
2) It holds that

. a n [a * 1t,* *
Jim Bl (A0 = Bl () = Fan, = Fad, = Fopn, =0, m € Zsp. &7)

Recall that vV and the sequence {)\(")}n are specified in Definitions
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Proof. See Appendix Il [ |

Now we focus on the optimal value F |\ of the optimization problem in (T3). We want to show that the beliefs associated with
the sequence as defined in (57 converge to the location of the optimal value for the primal formulation. The first step is to show

that the collection of beliefs converges to the LMP B(N;) as n — oo.

Lemma 36. Consider the S-NFG N specified in Deﬁnitionand Example The collection of the beliefs b;ll’n) and b%’n) defined

in (33) and (B6) satisfies

(1)
: n m (1)
lim bS} =" " ) fi e {f1. f2},
nree 0 71 (2)
im b5 € B(Ny). (88)
Proof. See Appendix [J} [ |

By setting

1,n 1,n
ﬁfl:bgcl )’ ’8f2:b§‘2 )’
where bg}l’") and bg’n) are defined in (33) and (36)), the objective function Fg’;,\ll for the primal formulation becomes

F§)  0%™) = —log Zp, (v, X)) —log Zp, (D, A™) + 57 b (@1, 20) - (A (1) + AT (22))

= 3 B @) - A (1) + AL ()

Z1,T2

b () + 00 () 9 (1)
frie WWe) T Ope (e) e (@)
+ Z Z 2 log b(l’") (1,n)(xe) ) (89)

€ a:e:’Yil)(ase)>0 f1e (Ie) erfz,e

where Fé%l))’Nl is defined in (TI).

(J_}’") associated with the sequences {)\(")}nez>o converges to the location of

the optimal value for the primal formulation, i.e, the sequence {bsfl’")}nez>0 converges and lim,,_, o, F]éll)) N, (bgfl’”)) = Fglgj‘Nl =0.

Now we want to prove that the collection of beliefs b
By and the expression of F3't \ in (34), we know that the first two terms in (89) converge to zero as n — oo. It is sufficient
to prove that the remaining terms in (89) converge to zero as well.

Lemma 37. Considering the sequence \™) given in Definition we obtain

Jim (Z b (s a) - (A (@) + A8 (@2)) = 3 b (@ w2) - (A (1) +Aé"><x2>)> = 0.

T1,T2 T1,T2

Proof. See Appendix [ |

Theorem 38. For the sequence \™ specified in Definition it holds that

. 1 1, alt, * *
7}1_{20 F];,;,Nl (bgf n)) = F§,Ei,*N1 =Fgan, = Fpn, =0, (90)
where bg}l’n) and bgé’n) are given in (33) and (36), the function Flgl)),Nl is given in (1)), the quantity FS{E”*NI is defined in (22)), the

quantity Fy 4\, is defined in @0), and the quantity Fy N, is the minimum of the constrained Bethe partition function as defined
in (13).

Proof. See Appendix [ |
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After relating the sequences v(*) and {A\(™)},, to the locations of the optimal value for the primal and dual formulations, we want

to relate these sequences to an SPA fixed point for the considered S-NFG. We first define messages based on the sequences.

Definition 39. For each e = (f1, f2) € [2], we define

uglj}) (ze) = eXp()\gZZi (ze)) - Vgl)(xe), Te € Xe, i € [2]. 1)
n 1,n .
Z(3m 2 N ) (@), e 2], 92)
TeE€EXe
(1,n) (1,n)
am pya L b () am e L e () 93)
Pe—f1,sPA\Te) = ctm A ’ He— fa,sPA\Te) = on) () ’
erfy Hesfy (Te) erfy Helsp (Te)
where Céz})l and C’gg}l are normalization constants:
(1,n) (1,n)
C(l,n) 2 bfz,e (:Ce) C(l’") S 7bfl’e (Ie) 94)
e—f1 (1,n) ( )’ e— fa (1,n) ( )7
Te e— fa Le Te 'ue~>f1 Le
and the marginal by . for f € {f1, fo} and e € (2] is defined in (64).
Theorem 40. The following equation for SPA fixed-point messages holds:
(1,n) M(l’r}) (ze)
. n . e—fi € .
nl;rrgope f“SPA(me) = nl;rr;o W € Rxq, Ze € Xey e = (f1, f2) € 2], 7 € [2], (95)

where the vector ;LS_’:}{ is defined in (O1), the constant Zﬁt’_@h is defined in (92), and messages ,ug_’:})l gpa and uiﬁ’}? gpa are defined
in (Q3). It shows that the message sequence ptm) & {uﬁl;,?}eeaf, teF converges to an SPA fixed point as n — oo. In particular, it

holds that

' (1,n) (1,n) ’ i ~ (1,n) (1,n) T i

Jim (/‘1—’>f1,SPA(1) /‘1—’>f1,SPA(2)) = (0, 1) ;o dim <N2i>f1,SPA(1) /1‘2—7>f1,SPA(2)> = (17 0) ’
hich, by Exampl hows that th (1) d (ur he left and righ
which, by Example shows that the vectors (p; ¢ spa(Ze))z.cx, and (ot spa(Te))s.cx, converge to the left and right

eigenvectors of the matrix fi - f5, respectively, where fi and fo are given in Example

Proof. For the sequence A(™) specified in Definition it holds that

1, 1
o MR ewn) NP
n—oo (1,n) n— oo ’
T2t T exp(on) () + @)
Similarly, we obtain
1,n 1,n 1,n
L MORG) e () (@)
n—00 Z(la") o n—00 Z(L”) o n—00 Z(lvn) o
H1—fq H2—fq H2— fq
(1,n) (1,n) (1,n) (1,n)
li ul%ﬁ(l) -1 li Ml*}fz (2)_ 0 . MZaﬁ(l) —0 li M2Hf2 (2)_ 1
n— 00 Z(lwn) ’ nlﬁnolo Z(lv”) s n— 00 Z(lvn) R ngrolo Z(l’”) o
H1— fo H1— fo H2— fo H2— fo

Also by the definitions of b%’n) and uilj})’sp A in (33) and (©3), we have

. 1,n 1,n 1 1,n 1,n _
nh_{[;o (Mg—n’)l,SPA(l) :ug—>f)1,SPA(2)> = nh_?;) (N§—>}2,SPA(1) Mg—)fé,SPA@)) = <0> 1) )

. 1,n 1,n I 1,n 1,n _
nh_?;o (lug—n’)l,SPA(l) :ué—>f)1,SPA(2)> = nh_?;o (Ng—>f)2,SPA(1) :ug—>f)2,SPA(2)> = (1, 0) .

The derivations of the above expressions are similar and thus they are omitted here. ]

Example 41. We present some numerical results w.r.t. Fglg Nl(’y,)\) and Fgp N, (7, A) for corroborating the theoretical results

obtained in this section.
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The shape of F§§'y v, (7, A) given in 4) for ve(xe) = 1/2 for all x. € X, and X\.(2) = 0 for all e € (2], is plotted in Fig.
In this case, the function FSI,E,Nl (v, A) equals
Filin, (1, 2) = 210g 2 = log (1 -+ exp(Aa (1) + Ao (1) + exp(Ai (1)) — log (1 + exp(hi (1) + Aa(1))).

We can see that the function FE{E’NI (7, A) is concave w.r.t. A, which corroborates Item |l|in Theorem
Fig. plots Fg{g,Nl (v, A) w.rt. A1 (1) under the same condition as the condition in Fig. with an additional condition
A2(1) = =1 (1). In this case, the function Fg{&,\ll('y, A) equals

Filh, (1, A) = log 2 — log (2 + exp(Ai(1) ).

From the figure, we can see that the function is decreasing w.r.t. \1(1), which corroborates the expression in [86) that

F3' n, (7, A) takes supremum when My (1) — —oc.

The shape of F§{37N1 () given in (86), is plotted in Fig. By B6), the function F§{§17N1 () equals
%, () = —2log (von (D) - 32(0) + /(1= 31 (1) - (1= 3 (1)) )

We can see that the function Fgl’g’m (7) is convex w.r.t. vy, which corroborates Item 2| in Theorem
In particular, Fig. |4(d)| plots ﬁ'ﬁ{fi’,\,l('y) w.rt. y1(1) when ~v2(1) = 1/2. In this case, the function FSI,E,Nl('Y) equals

B, (1) = —2108;(\/;%(1) + \/; (1- 71(1))).

From the figure, we can see that the function takes minimum when v1(1) = v2(1) = 1/2, which corroborates the equalities

in 7) that FE{E’NI () takes minimum when 1 (1) = v2(1).
The shape of the Bethe free energy function Fg , n, (B3) given in [81)) is plotted in Fig. which corroborates the expression
of FpN, in @)

We also discuss the behavior of the double-loop algorithm applied in the considered S-NFG Nj.

Proposition 42. Consider N1 specified in Definition |22| and Example If we run the double-loop algorithm defined in Algorithm

for Ny and set

0
71(11) € HBe>7
ecé

then we have

Jim (oA @), en(A ;@) =l (e (A ,0), ep(Ai1,@)) = (0. 1),
Jim (exp(xgﬁj;fzu)), exp(xgﬁj},ﬁ(z)))zt}gnw (exp(Agﬁj;flu)), exp()\gﬁ;ﬁ@))):(l, 0).

0
v =, teZso

Proof. 1t can be proven straightforwardly. ]

V. THE ANALYSIS OF A DOUBLE-CYCLE S-NFG EXAMPLE

In this section, we consider an example double-cycle S-NFG Ny as shown in Fig. [}

Remark 43. We make the following remarks for No as shown in Fig. 3]

1y

The alphabet of the variables is given by X, = [2] for all e € .
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2) The local functions satisfy
fi(zr,@2,23) = folzr, 22,23) = [11 =22 = 23],  21,22,23 € [2].
3) The associated Bethe free energy function Fg , N, defined in (]E[) equals
FppN,(B) = —Hg,¢(Br,) — He s (Br,) + ZHB (8.) & Zﬁe z1) -logBe(x1), B €B(N2), e €3]
where B(N2) is defined in ({), and where step (a) follows from

Hg 1(Bs) =~ Y By(ws)-logBr(ay)

Ty EXy

== Y Brlxy) logBslxy)

xy: f(axy)>0

= - Zﬁf (xe7 Te, xe) -log 6]” (Z‘e, Te, xe)

Ze

== Be(we) -logBe(xc), B € B(Ny).
Note that Fg , n,(B) is a concave, not a convex, function of B. The above expression implies

in P =0.
plmin  Fopns (B)

4) The S-NFG N has three SPA fixed points:
a) Meosfy = Mooty = (1, 0>T,for all e € &
b) fersf = Mesf, = (07 1)T,for all e € &;
C) Heosfy = Mesfy = % (1’ 1)T ,forall e € E.
The first two fixed points correspond to the minima of Fg , n,(8), B € B(Ny). The last fixed point corresponds to the maximum

of FepN,(B), B € B(Ny).
5) The function Zfl defined in @) can be written as

Zs (v, A) = Z[ﬂh = 1y = 73] exp(z Ae,fr (Te ) : /H’Ye(xe)
@ Zexp(Z/\ 1 ) . /H’ye(xl),

where step (a) follows from the definition of .y in (13). Similarly, the function Zy, can be written as

Zg (v, A Zexp( Z)‘e(xl))' /H'ye(,m). (96)

6) The vector X € argmaxycpix| F§' v, (7, A) satisfies

> Aelwr) =0, €2,

which can be proven directly from Theorem ie., FE{&NQ(’)’, A) is convex w.r.t. A and the necessary optimality conditions
in [[19, Proposition 1.1.1]: if X is at the location of the optimal value, then X is at a stationary point of Fgl}tdﬂz (v, A).

7) By the previous property, we have

Fgltn, ( )——210g<z H%(fﬁ))



31

T €2 T3

[=]
f2

Fig. 5: S-NFG Na.

In particular, it holds that

> e = V) -221) - (1) + V7 (2) - 72(2) - 15(2)

VAT n@ - (VRD B0+ VeD 60)
= V72(1) - 73(1) + V72(2) - 73(2)

< V(1) +72(2) - V(1) +13(2)

, Yo € BZ, e €&,

where step (a) follows from the fact that v1(1) and ~1(2) are non-negative. where step (b) follows from ~1 € Blz, ie.,
v (1) +71(2) = 1, where step (c) follows from the Cauchy-Schwarz inequality, and where step (d) follows from ~yo € 622 and
v3 € B e, v2(1) +72(2) = v3(1) + 43(2) = 1. It further implies

AS{E,NQ(’)’) > 0.

When

(71’72’73):((1, 0) . (1 o). (v 0)T> or ((o N (01) (o 1)T)7

we have Y \ () = 0, which implies
mﬂ}n BN, () =0, st. € ]:[ZS'EZ
8) For the S-NFG Ns considered in this section, the possible sequences {’y(m)}m defined in Item 2| in Definition |l7| are
(m) _(m) _(m) T T T T T T
(™, A, ) = (o). (o). (1o o (o 1), (0. 1), (0. 1) ), meEZs

9) For the S-NFG Nso considered in this section, the possible sequences {)\(”)}n defined in Item |3|in Definition |l7| are arbitrary

sequences satisfying

Z/\E”)(ml) =0, x1 € 2], n € Z>o.

VI. THE ANALYSIS OF A LOW-DENSITY PARITY-CHECK (LDPC) CODE EXAMPLE

In this section, we consider the example S-NFG Nj representing a (3, 4)-regular LDPC code based on the parity-check matrix

1
H=1]1
1

— = =
_ = =
_ =
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(a) S-NFG Nj. (b) S-NFG Nj.

Fig. 6: The S-NFGs in Definition

as shown in Fig. that is used for data transmission over a memoryless channel with input alphabet = € {0, 1}, output alphabet
y € {0,1}, and channel law W (y|z) with W (y|x) € R>¢ for all z,y and >° W (y|z) =1 for all z.

The S-NFG N, in Fig.[6(b)]is obtained from N3 by applying the closing-the-box (CTB) operation in N3. Consider the dashed boxes
in Fig. @ Its exterior function is defined to be the sum, over the internal variables, of the product of the internal local functions.
Replacing this dashed box by a single function node that represents this exterior function is known as the CTB operation [J3]. For

details of this operation in N3, see the definition in (98).

Definition 44. The details of N3 and N4 as shown in Figures and are given as follows.
1) The set of the edges in the S-NFG Ny is £ = [12].
2) The alphabet of the variables x. is set to be X, = {0,1} for e € £.
3) The variables y, . ..,ys take values in {0,1}.
4) The observed variables 91, ..., U4 take values in {0,1}.
5) The set of the function nodes on the LHS in Ny is given by {f;}icz with T = [4].

6) The channel law is defined to be an arbitrary function such that
W(ylr) € Rog, 2,y €{0,1}, > W(ylz) =1,z € {0,1}.
y
7) For each i € I, the conditional probability Py, x, is defined to be
Py, ix, (yilei) = W (yilx:), zi,y; € {0,1}.

8) The set of the function nodes on the RHS in Ny is given by {f;};es with J = {5,6,7}.
9) For each j € J, the alphabet for the parity-check node f; is given by

2 {0 wa) € {0,1)° ‘ 2142y =0 mod2) . 97)
10) For each i € T and fixed y., e € Of, the function f; is defined to be

fi(zay,) £ lall z., e € Ofi are equal) - H W (yel|xe), z. € {0,1}. (98)
eeaf,:
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Note that f;(x;) can be obtained by applying the CTB operation in Fig. for each i € T.

In the remaining part of this section, if there is no ambiguity, we use the shorthands >, [[., me‘, > i I ; and me, for ) ;.7
T J

Hi€I7 waie{0}1}7 Zjej’ H]‘GJ, and Zm.f’jeij 5 respectively.

Assumption 45. We assume the observed variables are fixed to be 1 = - - - = 34 = 0 and the channel law satisfies
W (0lz) = W(1|1—2), x € {0,1}, w(0]0) > W(0|1) > 0, (99)
4/3 1/3 2/3 4/3 .
(W(0]0)) > 1T W lz) " = 6(W(0]0) - W(0[1))™” + (W(0]1)) iel. (100)

7, €Xp,\{(0,...,0)} €0 f;

In the following, we will see that if the channel law satisfies Assumption [#3] then the location of the optimal value for the associated
primal formulation has a simple structure. In order to avoiding confusion, we will discuss only S-NFG N, in the remaining part of
this section. Note that the Bethe free energy functions for N3 and Ny are defined over different LMPs B(N3) and B(N4), respectively.

The Bethe free energy function Fi , n,(3), as defined in in (T0), is given by

Fgpn, (B ZZﬂfJ xy,) - log By, (xy,) ZZBf xy,) - log fi(xy,) —ZZZBf xy,) - log By, (xy,). (101)
J Ty Ty toTfy

The associated Bethe partition function Zf |, defined in (T2) is given by

Z% = F . 102
B,p,N4 exp( ﬁer%l(ll\lm B,p, N4(/3)) (102)
where the LMP B(Ny) is defined in (7).
We want to show that
(a) *
ZB~,P7N4 = ZB,d,N4 < HW(O‘0)7 (103)

where step (a) follows from Proposition Recall that Z§ ; \, defined in (I9) equals

Zﬁ,d,m = sup il)l‘f ZE,d,N4 (7, A)
Rl (104)

st. ve € BZ, A, € RIFl ecé,
where B_ is defined in (@) for each e € £, and where the functions Zg 4N, (v, A) and Zy, as defined in (I8) and (T6), respectively,

satisfies
ZB,d Ny (7 A) = (H Zfi('YBfi»)\afi)) : (H Zy, ('78fj>)‘8fj)>a (105)
i J
Zg.(Yosis Nagi) = Y [all @, e € Of; are equal] - T ((W(0l2e)) - exp(Ae(we)) - Vaelwe)),  i€Z,  (106)
zf, e€af;
Zy,(Yoy,;» Noy;) Z Z e =0 mod 2] - H (exp(—/\e(xe)) . ’ye(a:e)), jeJg. (107)
Ty, ecdf e€of;

For comparison, we also consider the function Zgltd*N defined in (1)), which is given by

alt,*

ZB dNg; — bUpmfZB d N4(’Y’)\)
(108)

st. Y €BZ, A R cce,

where BZ is defined in (6). By Proposition |15 to prove (T03), it is sufficent to show that

It,
Zg one = Zhang < Zian, < [JW(00).
i
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Lemma 46. Consider the S-NFG Ny specified in Definition 44| under Assumption It holds that

zatn, < T w o)),

alt,*

where Zy iy, is given in (T08).
Proof. See Appendix [M] [ |
Theorem 47. Consider the S-NFG Ny specified in Definition 44| under Assumption We have

Lo, = Zan, = 2%, = (WD)

where ZE,p,N4 and Zg,d,m are given in (102) and (104), respectively. Also the following set of beliefs corresponds to the location
of the optimal value Z3, . of the optimzation problem in (102).
1 z.=0 ) 1 xf =0 )
Be(ze) = By, (xe) = , 1€, e€f, By (xs,) = , xy, €Xp €. (109)
0 ze=1 0 Otherwise
Proof. By Propositions [13] and [T6] and Lemma #6] we know that
4
* * It,
ZB,d,N4 = ZB,p,N4 < Zg,td,m < (W(0|0)> .

Now we analyze the optimal value Z  for the primal formulation, which is given in (T02). If the belief 3 is as in (T09), then

we have
Fppn, (B) = —41og W(0[0),

which by the expression for Z  \ in (I02) implies

V

4
Zi o, = (WD) -
Then we have
4
* * alt, =
ZB,P,N4 = ZB7d,N4 = ZB,td,N4 = (W(0|O)) .

With this, we know that the beliefs in (T09) correspond to the locations of the optimal value Z% .. [ ]

Proposition 48. Consider the S-NFG Ny specified in Definition 44| under Assumption One of the locations for the optimal value

2§ pNy Corresponds to an SPA fixed point whose messages are given by

l«'fe%f:<1, o), cedf, feF.

Moreover; the beliefs evaluated at this SPA fixed point are given by (109). The SPA is specified in Definition 3]

Proof. Tt can be proven directly following the definition of the SPA in Definition [5] Assumption 43} and Theorem Thus the

details are omitted here. [ |

Definition 49. Based on Theorem we make the following definitions.
1) Consider the belief 3 given in (I09). For each e € &, we define the set S, to be

S. 2 {x e {0,1} ‘ Be(ze) = o} — {1}.
The complement of S, is defined to be

S¢E X \S. = {0}
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2) For each function node f € F, we define the associated function ' to be

0 =0
f'(xg) = f(zy) H [z €SS = 10) = , xy € Xf. (110)

ecdf 0 Otherwise

3) We define Ny to be the factor graph consisting of the same vertex set F, edge set &, and alphabet X as Ny4. However, for each

vertex [ € F, the associated local function is f' instead of f.

Proposition 50. Consider the S-NFG Ny specified in Definition under Assumption The associated S-NFG specified in
Definition 49| has the following properties.
1) The S-NFG N/, has only one SPA fixed point, which is the same as the SPA fixed point in Proposition and the beliefs
evaluated at the SPA fixed point equal the beliefs in (109). Recall that the SPA is specified in Definition
2) ZE,p,Ng1 = ZE,d,Nﬁl = Zg{tcing = (W(O\O)>4.
3) One of the locations of optimal value Z];,p,Nﬁl for the primal formulation is given in (109).

Proof. From the definition of f” in (T10), we know that there is only one configuration of (v¢)cee such that [ f'(zf) # 0, which
4
is z. = 0 for all e € £. Note that when z. = 0 for all e € £, we have [[ f'(z) = (W(O\O)) . Thus the above properties can be

proven straightforwardly and thus the details are omitted here. ]

VII. THE ANALYSIS OF GENERAL S-NFGS

In this section, we consider the S-NFGs N satisfying Assumption |4 and relate the locations of the optimal value Fglg’*N for the
optimization problem in (22) to SPA fixed points. The results in this section generalize the results in Section [[V] Here is the outline

of this section.

1) The first main result will be presented in Theorem 54}

tim  —log | TT 2 (457, o 25)) | = At (111

m,n,k— o0
f

where Z is defined in (I6).

2) The second main result is that the sequence {a®) - X()},, ;. converges to a stationary point of Fgfﬁl’N(’y, A) wrt. A, ie.,

i Fr(a B = lim (<0 @) + b (@) =0 e Xe=(fiuf) €6 (1)
n, 00 e\dLe A=a (k). \(n) n, o0

which will be stated in Lemma By the definition of %) - A() in Items [3| and |4| in Definition the above expression
obviously holds if the supremum of Fj3' \ w.r.t. X is obtained in RIXI.If the supremum is obtained in {R U {—o0, +o00}}1¥1,
we need more details of F§1,37N. Because of

0
Falt —
8)\6 (xe) B,d,N

and the expressions in (203) and (204), we know that the entries in the gradient and the Hessian of Fj§, \ w.r.t. A are finite.

*bfne(ze) + bfj,e(xe)a

Thus we can analyze the second-order Taylor series expansion of Fg{g,,\, w.r.t. A, which is also finite when some entries in
A g0 to infinity.
3) The third main result will be presented in Theorem 57

* _ * __ palt,x
FBA,p,N - FB,d,N - FB,d,N'

The main idea of the proof is given as follows.
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(m,n,k) . (m,n,k)

a) From the definition of b in (37), we know that each entry in by is bounded and there exists a subsequence

(m ni kl)

{bf o } such that all entries in b
ni,K1

(m ni, k‘l)

converge for all m € Z~¢ as ny and k; go to infinity. By (I12), we
know that

( Tim b(}”’"l’kl)>eBI(N),

ni,k1—00

which means that b m;nak1)

in ©).

b) In this proof, we consider the following Bethe free energy function:

) 8 = 33 s (a) log/jcf((wf; > Zﬂfi,em);ﬂfj,e(xe).bg(ﬂfi,e(xe);me(wa)

;owy LI em(figyee o

converges to an element in Bx(N) as ny and k1 go to infinity. The LMP Bx(N) is defined

which is defined in (TT). As shown in the definition of F}S;)),N’ we do not require B € Bx(N) here. By setting
B =by""M  feF,

we have

Fi (05 = < 1og H Zr(v57 o™ NG |+ Z oy (@s) - D ol Al (e )
7

ecof

(m)
fi,e 27e (gje)
+ E E 5 -log ) .
fise (

k
e=(fi,fi)EE gz, 4™ )( >0 l'e)+b(mn )(xe)

(113)

Then we have

(@)
lim  F N(bg_f’“”lv’“l)) > Fyon 2 Fian,  m € Zsg. (114)

ni, k}l — 00
where step (a) follows from the continuity of Fg’;,N w.r.t. 87 and the definitions of FY; | \ in (I3) and where step (b)
follows from Proposition [I6] Then, in order to prove that the above inequality is indeed an equality, we first need to show
that

n,k‘lgloozzb wf Z /\e,f (x&f) 0’ ( 5)

ecdf
which will be proven in Lemma [63] The main idea of the proof of Lemma [63]is as follows.
« To have (TT3), we need to define o) following the way in Item [4] in Definition

« Then we prove that () converges to the stationary point of F3% \ (v, - A) w.r.t. a, which proves (TT3).

From this, it follows that

lim sup lim FE(;; N (b(m,nhkl))

f
m—oo Mi1,k1—00

< limsup FE(3 I)) N (b(]f-n’n’k))

m,n,k—o0

< — liminf log HZf('yé?), aF) ~)\g})) + limsup ZZb mnk () Z al® xe )
f

m,n,k—o0 m,n,k— oo ccof

b(?n,n,k)(‘r ) + b(m,n,k) (l'e)

(m)
i e € e 2 e
+ limsup E E UL 5 = ~log<b(mnk) e (@) )
fise

(m,n,k)
m,n,k—o0 e=(fi,})EE .. ’Yé"L)(Ie)>O (xe) + bije (xe)
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b(m n,k) (.1‘ ) + b(m n,k) (l’ ) (m)

(a) i€ (= e € e

D S D el v v
m,n,k— o0 e=(fi.1;)€E . ’Y(m)(re)>0 bfi,e (Cﬁe) + b (l'e)

(116)
where step (a) follows from (TT1)) and (TT13). Using the fact that the Kullback-Leibler (K-L) divergence is nonnegative,
we have

limsup lim Fé g) N (bgf-n"m’kl)) < Rl (%) Fans
m—so00 M1,k1—00 ” ”
where step (a) follows from Proposition Combining with (I14), we have
tsup i F (0 ) = Filih = Foan = B
4) By @) and the third main result, we obtain the forth main result

b(ﬁ%nhkl) z +b(7ﬁx"17k1) I~ 9 (m)
lim Z Z fise (ze) fi.e (ze) og e ve (T (73” = —0.
2 ) ) 0 ()

m,ni,ki1—00
e=(fi,fi)€€ 2.7 (2)>0 fise

By Pinsker’s inequality (see, e.g., [20, Theorem 2.33].), we have

. b () + U ()
lim 2 >

fire
m,ni,ki—00 2
e=(fi,f;)€E zﬂ:'ygm)(rg)>0

A1 (e)| = 0.

(m,n1,k1)

Because the entries in b and (™) are bounded, there exists a subsequence {m;} of {m} such that all entries of

(plrmky s and {4™)},,, ez converge. Combining the above equality with (TT2), we have

lim B ()= lim B () = lim 4™ (z), e € X, e=(fi,f;) €E

mams ok —oo J0€ mamsk—o0 Ji0 m1—00
This result will be stated in (I32) in Theorem [57}

5) The last main result will be presented in Theorem We will show that there exists a sequence {~v("2) A("2) q(k2)}, ka€Zs0
such that the collection of messages u(’"?’”?”f?), which is defined based on 'y(m"‘), A(2) and q(k2), converges to SPA fixed-
point messages for a modified S-NFG N’ as ma, no, ko go to infinity. The details of N’ will be given in Definition The
proof technique is standard.

Before proving the main results in this paper, we wonder whether the functions specified in Definition [T7] for the dual formulation

is well defined. We answer this question by proving the following properties.

1) The optimal value Fgl,tf,*N of the optimization problem in (ZI) is real-valued.

2) Tt is sufficient to consider a sequence (™) such that the sequence {Fg{ng ('y(m))} converges to F]gl’fj’:k,\, as defined in (30)
and Fgl’g,,\, ('y(m)) is real-valued for each m € Z. "

(m)

3) For each m, n, and k, the function Z¢ ('Yaf ,alk) . )\g})) is positive-valued.

(m)

(m-nk)(24) in (87) for f € F. which is defined based on the sequences Yor s

4) Based on the previous property, the belief b

/\((9 7 and o), is nonnegative real-valued.
Proposition 51. Because the considered S-NFG N satisfies Assumption 4| then
3z’ = (2))cce € X such that g(z') > 0. (117)
It holds that

_Zlog<z fmaff> —log Z3i'y = Fiyqn < —logg(a') < oo, (118)

Zof,f
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- Zlog( > f@ory ) < Filan(y™,0) < As{&,N(%m)), m € Zso. (119)

Zof,f

Proof. See Appendix [ |

Proposition 52. We present some properties on the functions specified in Definitions [I2] and [I7} Some of the properties are stated
in the definition. Here we make a summary of them.

1) The function Fgld y evaluated at (v, a®) - X)) is given by

F (,y(m),a(k) .)\(”)) = —log HZf (Vénfl)7 o) )‘(87}))

—log | [T <Z f@orp)- TT (exo(@® A" e p) - vém)(xe,f))> . (120)

fEF \x®oy, ¢ ecof

2) It is sufficient to consider a sequence {"™},, such that Fg{g’,\, ('7(’")) is bounded:
FRian < Filhw (v(m)) < —logg(x),  Vm € Zso. 21)

3) The sequences {7}, {X™},, and {a®}; have the following properties

a) The function Zy evaluated at these sequences is positive-valued:
(m) (k) yx(n)
Z¢ Yor s )‘Df € R-o, m,n, k € Zso, f € F. (122)
b) With (122), there exists an xy € Xy such that
bgcm’"’k)(a:f) € Ry, m,n,k € Zso.

¢) The function Fg{fLN evaluated at (v™),0) is also bounded:

- Zlog< > flwoss ) FEin(™,0) < —logg(a),  m € Zso, (123)

zof,f
where g(x') is given in (117).
d) The sequence {'y(m)} satisfies

Tim FRly (7<m>) =N ER. (124)
e) For fixed 4™, it hold that
Jim Fglh (v, A7) = sup Fgli (v, 3) = Bl (+) € R (125)
f) For Fixed ™ and X", it holds that
Jim Fgl (7<m>,a<k> .w)) = max R, (7<m>,a : >\<”>) eR. (126)
a€RU{—oo,+o0}

Proof. See Appendix [ |
Now we move on to the proof of the first main result. From (30) and (32)), we know that

lim FBdN( (m)’)\(n)) FSIZ*N

m,n—r oo

However, if we replace A(™ with o(*) - A(")| then we want to know whether the sequence {Fg{fi’,\, (7(m)7a(’€) . )\(”))}

m,n,k
converges. To be more specific, we want to prove that

lim FB ('y(m), ok }\(")) = FEIZ’*N.

m,n,k— oo s
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To begin with, we prove that the associated sequence is a bounded sequence.

Proposition 53. For each ™), the following sequence is bounded:

{FE{E,N(’Y(W)» a® . )\("))}n . (127)

The following inequality also holds

I1 <f<waf,f>- [T (exp(@® - A" (e ) - vém)(:ve,f))> <ep(-Flin(™,0)) R, meZ..  (28)

fer ecdf

PIOOf: By @, the sequence {)\(n)} satisfies
ZABlfi N( )(m)) lim f Blfi N( )(m)7 )\(n)) = Sup I Blfj N( 7(m)7 A) € ]R,
™ n—oo ™ )ER'X‘ 7

where F3 \ is defined in (29). By (I26). the sequence {a(%)}; satisfies

Pt (7<m>7a<k> : >\<n>) — sup 3 (7<m>7 - A(n)) eR, AM ¢RI

lim
k—o0 acR

Thus

Pl (2,00 X < Al (v) €R, ke
where step (a) follows from the inequalities (I2ZI) in Proposition Then we have

Fa (,y<m>7 a®). >\<n>) ¢ Fal (v ,0) € R, ok € Zoo,

where step (a) follows from the definition of {«*)} in (34) and (33) and where step (b) follows from the property of FEEE’N('y(m), 0)
in (123). Thus the sequence in (I127) is bounded. By (120), the above inequality implies that

112 (’7((97?), alk). Ag})) =11 (Z f@arp) - [1 (eXp(a(k) : Ai?}(we,f)) : Vém)(xe,f))>
f

fEF \xoy, s ecdf
< exp(— S{E,N(’y(m)ao))
€ R, m e Z>0,

which proves (128). [ ]

Theorem 54. With fixed v, it holds that:

lim Fg{g“(y(m),a(k)-)\(”)) = lim —log[[Z;(v§}, a® - A5Y)

n,k— oo n,k— o0
!
rhal
= F§,§1,N (’Y(m))
S R, m € Z>0.

Proof. See Appendix [P} |

Corollary 55. It holds that
Ldm Rl (400 A =
Proof. Tt can be proven straightforwardly by Theorem [54| and the definition of {~v("} in (30). ]
It is natural to ask whether Fg{fi’f,\, and Fy 4\ are equal. By Propositions |15| and , we know that

alt,* * ok
FB,d,N < FB,d,N - FB,p,N'
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In the following, we show Fglfi *N = Iy , n by analyzing the function F]gll)) y for the primal formulation as specified in Deﬁnition

The main idea is listed as follows.

b(m n,k)

1) We consider the collection of beliefs , which is defined based on the sequences {v(™},,, {A(™},, and {a®},. We

want to show that F]glp L (B

converges to Fj | as m, n, and k go to infinity.
2) By the definition of F{j  \ in (T3) and Proposition EI, we know that it is related to the minimum of the alternative Bethe free
energy function Féll)) n over a constrained set Br(N). Thus we need to show that b(;-""n’k) converges to an element in Bz(N).

n,k)

By the definition of Bx(N) in (9), it means that we need to show that the elements in bgn’ satisfy the local consistency

constraints as m, n, and k£ go to infinity.
3) In the expression of Félz) N(b(fm’"’k)), we note that it consists of FEEE’N (»y(m)7 alk) . A(n)) and other terms. By Corollary
we know that Fgl,td,,\, ('y(m)7 alk) . )\(”)) converges to Fg{f{fr\n- If we can show that the remaining terms converge to some

. * alt
non-positive terms, then we have proven that Fyj | < Fg v

Lemma 56. It holds that

Em (b(men k)('re) - bg:-nén)k) ($e)) =0, Y= ,y(m)’ T € Xe, e €&,
n,k— o0 i v

where bgﬁ’n’k) is defined in (39).
Proof. See Appendix [ |
By setting
By =b{""M feF,
where b;m’n’k) is defined in (37), the function Flgr)),N defined in (TI) equals

F(l; <b<m m, k)) —log HZf (m) NON )\(n) +Zzb(mnk) Z NON /\(n) (Ze.s)

ecof

(m,n,k) m,n,k) m
+ Z Z bfi,e ( ) +bf e (l‘e) ~log 2’)/.5 )(xe) (129)
2 by ) + b7 ()

e=(fi, f;)EE Te 'y(m)(:xz)

where b(]f-”’"’k) = (bgcm’"’k))f as defined in (38).

Theorem 57. The function FE(;;’N has the following property:

lim_Timsuplim sup 1) (65" ) = Bl = Fian = Fipn (130)

m—00 nsoo  k—oo
where b(]_tn’"’k) is given in (38), the function Fé ) w is given in (129), the quantity F§ dn is defined in 22), the quantity Fy 4y
is defined in (20), and the quantity Fy§ N is the minimum of the constrained Bethe partition function defined in (T3). There exists
subsequences of {v™},, {IXM},,, and {a®)}y indexed by {my,n1,k1} such that

( lim b;’””“”“)) € Bx(N), (131)
mi,n1,Rk1 o0

lim b(ml’m’kl)(x )= lim b(m1 m’kl)(x )= lim y™(z,), z.€X.,e=(fif) €& (132)
miy,ny,k1—00 fise ¢ miy,n1,k1—00 fJ’ ¢ m1—00 € e ¢ € vJy ’

im R GO = B = B g = Fo s (133)

mi,ni,k;—o00

where Br(N) is defined in ().

Proof. See Appendix [R} [ |



41

As mentioned in the introduction section, we want to relate location to the global minimum of the Bethe free energy function to

an SPA fixed point. In Theorem we know that {bg’“’"l’kl)} converges to one of the locations of the minimum of the

mi,n1,k1

Bethe free energy function. We want to know that whether there is a collection of messages defined based on (™), (") and

a¥1) such that this collection of messages converges to SPA fixed-point messages.

Definition 58. Based on Theorem [57] we make the following definitions.

1y

2)

3)

4)

5)

We define b’ to be

br & {bp}, @) e lm o b)), epedy feF (134)

We define v* to be v* = {7} (xc)}s.cx, cce With entries given by

£ lim 'yé"“)(xe), r. € X, ecf. (135)

mi—r00

Ve (xe)
For each e € &, we define the set S, to be
5.2 {w. € X|yi(z) = 0}.
The complement of S, is defined to be
S¢E X\ Se. (136)
We define [’ to be

flap) 2 fag)- [] €S, mpeiy, feF.
ecdf

We define N’ to be the factor graph consisting of the same vertex set F, edge set £, and alphabet X as N. However, for each

vertex f, the associated local function is f' instead of f.

Proposition 59. The collection of vector b’ corresponds to one of the locations of the minimum of the Bethe free energy function

Jae)

BN (BF) over Br(N'), ie.,

Fson = Fipne = B3O\ (b%) = By W (b%),

where the function F]g_; N s given in (I29), and the quantity F}, p.N IS the minimum of the constrained Bethe partition function

defined in (13), and the set Br(N') is defined in (9).

Proof. In this proof, we consider FélI)) y defined in (TI), which is an alternative form of F , n defined in (I0). By (I31) and (132)
in Theorem [57] and the definition of b% in (TI34), we know that

b € Bx(N), b € B]:(N/).

It holds that

. (@ . 1 minLk)) 0) o1 «\ © L o @D
Fipn =  lim F{ (b; o )> = Fyn(br) = FL)  (05) 2 Fi s

mi,ni,k1—00

where step (a) follows from (T33)) in Theorem [57, where step (b) follows from the continuity of Fg;N(B r) w.rt. 37, where step
(c) follows from the definition of N’ in Item [5|in Definition and where step (d) follows from the definition of Fjj . in (T3).

Denote the location of Fy | . as

% . 1
{bf/}fe]-‘ S argmln{bf,}fgeg(,\l/) Fé’l)DvN/ ({bf/}fE]:)'
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We have
b e(ze) =0, 1. €Se,e€df, fEF,
which implies

Fsone = FSD ({033 7) = FS ({65} 5) = Fa

]
Definition 60. In this definition, for consistency with Definition 5| with a slight abuse of notation, we define
(k) . )\(”) . (m) Sc
X exp(a ’ (J:e)) Ye (xe) Te €
ey () & o ‘ (137)
0 otherwise
k
zimnk) 2 Nt (g,), e df, fe F. (138)
T €SS
For each e = (f;, fj) € &, we define
b(m,n,k)(xe) b('m,,'n,,k)(w )
1 L _dhe Sc 1 L _fise e z. € 8¢
i (m,m,k) B (o Te € O, ik oGk (m k) e e
N R e C () & § G R ) (139)
0 otherwise 0 otherwise
where normalization constants Céﬁ;lk) and Céﬁ;ik) are defined to be:
b(m’n’k)(m‘ ) plrmnik) (2.)
(m,n,k) a fi.e € (m,n,k) a fise e
Ce‘)fi - Z (jn,n,k:) ’ Ceﬁfj - Z (m,n,k) ' (140)
T €SS l’[’e—)fj (.’L’e) T €SS :U’e%fi (J"e)

For simplicity, we also define

m,n m,n,k m,n,k m,n,k
plmrh) £ (/ii—>f )(5”6)) ll’éPA = (:ug—n”,SIg’A(xE))

2. €X, e€Of, fEF 2 €EX,,e€Of, fEF

Theorem 61. There exists a subsequence of {m1,n1,k1}, denoted by {mao,no, ko}, satisfying the fixed-point message equations:

g )

: (ma2,n2,k2) _ : c o _ (1 f
mg,nlgl,kn}z%oo ‘LL€—>fi7SPA (Ie) - mg,nlgl,kInQ*)oo W € RZOa Te € ‘Sea €= (fmf]) S ga (141)
( ) ) ()
. ma,na,ka _ : e/ c —(f f.
mz,n121,krnzaoo He— f;.SPA (xe) o mz,nlzl,knéaoo Z,(;mQ’fnz’k?) € Rxo, Te €85, € (f“ f]) €¢, (142)
e—f;
lim F}gl’P))’N(bgrmz,ng,kz)) =Fj N= Fg{g;«N = F§ an> (143)
mz,ng,kz—)(x)
( lim b;m%"z”“?)) € Br(N). (144)
ma,na,ka—00
where the vector b}mz’m’b) is given in @37), M((:Ef’nz’b) is defined in (137), the constant Z, ,STj}n2’k2) is defined in (I38), ué?jfé%?)

is defined in (139), the function FE(;I)J’N is given in (129), the quantity Fy; | \ is defined in (13), the quantity Fg{g”*N is defined in (22)),
the quantity Ff  \ is defined in 20), and the set Bx(N) is defined in ©). It shows that p(m2nek2) & {u(mz’"z’kz)}eeaf,fe}-

e—f

converges to SPA fixed-point messages as ms,no, kg — 0.

Proof. See Appendix [5] [ |
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VIII. CONCLUSION

In this paper, we have considered a general S-NFG, where the local functions are nonnegative real-valued, and we have related
the global minimum of the associated Bethe free energy function to an SPA fixed point. Note that finding the minimum of the Bethe
free energy function for an S-NFG is equivalent to finding the associated Bethe partition function. We have developed two main
techniques to obtain the main results in this paper.

1) The first technique transforms the Bethe partition function into a maximin optimization problem that can be viewed as the dual

formulation of the Bethe partition function.

2) The second technique is used to study relationship between the sequence of the variables, i.e., {'y(m), )\("),a(’“)}m’n,kez>0
and the locations of the optimal value for the dual formulation, where the sequences in {’y(m), A a(k)}m7n7kez>o have been
defined to be the sequences that converge to one of the locations of the optimal value of the dual function. Because in the dual
formulation, the feasible sets of the collection of variables A and the variable « are the fields of real numbers R, which do not
contain {fo0o0}. We want to know whether the first-order necessary optimality condition still holds when some of the entries
in A(™ and a®) go to infinity as n — oo and k — co. We have studied the Taylor series expansion of the objective function
in the dual formulation in this case and have shown that the sequences {)\(")}nez>0 and {a(k)}kez>0 satisfy the generalized
first-order necessary optimality condition.

With these two techniques, we have shown the existence of a sequence of messages such that this sequence converges to SPA
fixed-point messages, and the associated sequence of beliefs obtained by this sequence of messages converges to one of the locations

of the minimum of the Bethe free energy function.

APPENDIX A

PROOF OF PROPOSITION [13]

The proof of the first statement is given as follows. Because

log <Zve(xe)> =0, Y €BZD elu), €k,

Te

we have

FliatrX) = Fliatr )+ Ylo (z% o) )

[ Zr(var, Aoy)

= —log
He (Ezc e (.’L‘e))
e(xe)
—1lo f( exp(Ae, f(xe)) - _JeiTe) > ,
s\ L2 Hf< POs ) 5, et

where step (a) follows from the definition of Z; in @]) and the fact that each edge connects two function nodes. With this, the

optimization problem (22)) is equivalent to the optimization problem

FEIE”;\' - 1nf&lp{}?]gldN 77 +Zlog <Z’Ye Te )}

8.t Ae(ze) €R, Ye(xe) € R>p, xe € X, Z%(xe) eRyp,e€l.

Te

Now we prove the second statement. Because the considered vector -, is in B, it satisfies v.(z.) > 0 for all z. € X,. Then the
partial derivatives of the objective function in w.r.t. v are given by
0 alt 1 @ bfelze) + bfjve(xe)

Do) BN TS0 272 (z2)

+1, ZEGGXG,GZ(fi,fj)GE
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where step (a) follows from the expression of by in (23) for e € Of and f € F and the fact that . € B, i.e., -, 7e(we) = 1
for all e € &£. Setting the above partial derivatives to zero, which is equivalent to using the condition B’Y%(IC)F]%EEJ\I +1 =20 as
mentioned in the proposition, we have

bs,e(we) + by, (e
re(we) = LB E0elE) o fagy e (145)

Also the partial derivatives of the objective function in (26) w.r.t. A are given by

0 alt

- F = —bs (z) + by o(ze), e €Xeye=(fi, f;) €E.
Ohu(ay) Bt = Pt Fhgpl) e € A e ) €

Setting the above partial derivatives to zero, which is equivalent to using the condition %(ace) Fg{td)N = 0 as mentioned in the

proposition, we have
by, e(Te) = by, e(Te), Te € Xe, e = (fi, fj) €E. (146)
At a stationary point of the objective function, i.e., when both (143) and (146) hold, we have
Ye(we) = bpe(we) =bpyel(we), @ € Xeye = (fir f;) € E. (147)

Because of A € RI*! we have exp(Ac(xe)) € Ry for all z, € X, and e € £ and

bfue(me) X eXp()‘&fi (Cb‘e)) Y ’Ye(xe) : Z fl(sz) ’ H (exp()‘e’,fi(ze’» : 'Ye'(ze’)); (148)

Zf, Ze=Tc e’'€dfi\{e}
bfj,e($e) X GXp()\ij (xe)) . \/m- Z fj(zfj) . H (exp()\e',fj (Ze')) . 'Ye’(Ze’))a (149)
2yt 2e=Te e’€dfi\{e}

where Ac y, and ). g, are defined in (T3). Then we have

exp(Ae. r, (xe)) - (2o (;) bfj,e(l'e)
P e exp(Ae, g, () - v/ 7e(we)

Y a I (90w varG).

Zf;ize=ae e’edfi\{e}

where step (a) follows from the expressions in (I47) and the definitions of Ay, and Ay, in (I3) and where step (b) follows
from (T49). Similarly, we have
eXp(Ae,fj (xe)) “Ve(ze) X Z f?(zfl) : H (eXp(/\e/,fi (Ze’)) : Ve’(ze/))-
Zf, i Ze=Te e’cdfi\{e}

By letting

,ue_)f(l'e) X exp()‘&f(xe)) vV 76(x6)7 Te € X67 ec afv f € ‘F7

we can obtain a collection of SPA fixed-point messages. The definition of SPA fixed-point messages is given in Definition [5]

APPENDIX B
PROOF OF THEOREM [14]

Because of F3'% (7, A) = Fan(y,A) as defined in (23), it is sufficient to prove the properties for 3" \ only. The proof for

each property for Fgl}td’N('y, A) is listed as follows.
1) [8 Section 4] For fixed v, € B.(N) for all e € &, the function Fgl’&N('y, A) is the negative of a “log-sum-exp” function w.r.t.

A and thus it is concave.
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2) Although it was proven in [16, Section 6.2], here we provide another approach to prove it. For fixed A and {7’ }eree\(e}» bY
the definition of Fg{g,,\, (v, A) in (23), it is sufficient to prove that —log Zy, (vays,, Aay,) and —log Zy, (vay,, Aay,) are convex
w.r.t. v, for e = (f;, f;). The function Zy, (var,, Aay,) defined in equals

Zmaf,;,xafi)—Zfi<wm~\/ve<xe,f-i>~(exp(Z Ae/,f,.(xe/,f,;)) 11 ve/f<xe~,fi>>.

xy, e'€dfi e’ €dfi\{e}

Because

« the function f(xy,) is nonnegative for x;, € X,
« the function /7. (z,s,) is concave w.r.t. Ve (ze,r, ).
« the vector \ is real-valued,

« the vector = is nonnegative,

the function Zy, is concave w.r.t. .. Due to the fact that the logarithm function is a concave and non-decreasing function for
positive real arguments, taking the logarithm of a concave function is again a concave function [21, Section 3.2.4]. Then we
know that the function log Z, is concave w.r.t. 7. as well. Thus —log Zy, (yas,, Aoy, ) is convex w.r.t. .. Similarly, we can
prove that —log Zy, (vay,, Aoy, ) is also convex w.r.t. .. Thus the function Fgl’g’N('y, A)=—>_;log Zs(var, Aoy) is convex
w.rt. v, for fixed X and {ve }erce fey-

APPENDIX C

PROOF OF PROPOSITION [L6]

In this section, we prove that the Bethe partition function Zg  \ defined in (T2) for an S-NFG N can be written as

Z5 pN = exp ( igf sup < Z log Z¢(vay, Aaf))) ;
f
st Ae(we) €R, Te € Xy Yo €EBS,e€E,
where Z; is defined in (I6) and B is defined in (6).

Lemma 62. For each (3, € BZ, where BZ is defined in (), we have

- Z Be(xe)log Be(xe) = i%f <_ Z Be(ze) - log 'Ye(xe)>

st e € B, (150)

Proof. 1t is well-known that (see, e.g., [21, page 222])
- ;,Be(m log fe(ze) = inf (— ;66(3:6) Ge(e) + log (Z exp(ce(m))) (151)
st Ce(me) ER, z, € X, (152)

where the location of the optimal value for the optimization problem defined on the RHS of the above expression is given by

M: x x
S ew(G(z) ek mesde

Thus it is sufficient to consider (c(z.) € R for all 7. € X, such that } exp(c(we)) = 1 in the above problem. Therefore, the

optimization problem (I52)) becomes

- Zﬁe(xe) IOgﬂe(fL‘e) = {Ce(lfclf;}z - Zﬁe(‘xe) : Ce(xe)

Ze Ze



st. Ce(ze) ER, z, € X, Zexp((e(a:e)) =1.

Te
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Substituting (. (x.) by logv.(z.) for all z. € X, yields (I50). Note that the constraints on (.(z.) € R for all z. € X, are equivalent

to Y. € B7.

By Lemma [62] and the fact that the local consistency constraints in B(N) are equivalent to

Be(xe) = ;(Bf,;,e(ze) +Bf_j,e(x(a))a Te € Xea €= (fz;fj) eé

(153)

where the marginals (3, .(z.) and 8y, .(z.) are given in (8), we can replace {8.}. with B, both in Fy;  \ defined in (I0) and the

constraints (7). Then we transform Z3; |\ defined in (IZ) into a constrained optimization problem w.r.t. the variables v and Br, i..,

i = - i )
s.t. e € 15’6>7 ecé,
By € By, feF,
Bruclee) = By, elad). me€ Xei<iie=(fif) €&
where By is defined in (@), and FS;’N is defined to be

2 X
FE  RE < [Ty =R
7

(v, BF) — ZZBf :l:f ) - log f( :Bf +ZZBJ£ iL’f logﬁf(il:f)

- Z Z IOg'Ve xe)) : (ﬂfi,e(xe) + ijxe(xe))'

The optimization problem (PT) is equivalent to the followmg optimization problem:
. . —
Zf pN = exp (— 13f %;n Fp N0, ﬁ;))

s.t. (T58)~(T56) hold.

Because

1) the constraints (I33) and (I36) form a compact set of 3r;
2) F[Efz)’N is continuous w.r.t. 3 in this set;

3) FéQI), n is bounded in this set for fixed -y,

we have, for fixed ~,

(IBIHFEg o (s ,8]:)) eR

s.t. (I33) and (156) hold, and v, € BS, e€ €.

(P1)

(154)
(155)

(156)

(157)

(158)

(159)

(160)

For fixed ~, the optimization problem (TI60) is convex in B, which means that the location of Z  \ can be obtained using the

method of Lagrange multipliers. The details of this method are given as follows. We note that the optimization problem in (I39) is

equivalent to the following optimization problem:
ZE oN = eXp(inf minsup L(v,Br, /\)>
” Y Br A
st Ae(we) €ER, w.€X., ve€B., e€&,

,BfEBf, fEJ:,
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where the Lagrangian function L is given by

Ly Br A 2 FE W Br) + Y D0 Awe) - (Brelae) = Brelen)), (161)
e:(_-iiv_fj)mee‘Xe
i<j

and the variables X are the Lagrange multipliers w.r.t. the local consistency constraints in (I56). By (I60), we know that the optimal

value of the following optimization problem is real-valued for fixed ~:
(Ig;n sgp L(Br,~, )\)) eR
st. Ae(ze) €ER, z € X, e€€, (162)
By By, felF.

Because

1) L is convex in Bx for fixed v and A;

2) L is concave w.r.t. A for fixed «v and Br,

by Sion’s minimax theorem (see, e.g., [21]]), we can further transform Zp , n into the following optimization problem
Zi o = exp(—infsupigin L(Br.7.3))
St Ae(ze) ER, 2o €Xo, ~.€BZ, ecé, 163
By € By, [eF.
Note that in (I63)), the constraints for 37 form a compact set, and L is continuous w.r.t. 3. Thus the minimum of L w.r.t. {3} rcr

for fixed v and A is attainable. By and Sion’s minimax theorem, we also know that the optimal value of the following

optimization is real-valued for fixed ~:
(sgp min L(87,7.A)) € R
st. Ae(ze) ER, 2. € X, e€E, (164)
Bfe By, feF.

Now we proceed to solve the optimization problem (T63) for fixed v and A. Because of the convexity of L w.rt. {B}rer
for fixed v and X and the fact that the constraints for 37 form a compact and convex set, the location of the optimal value for
the optimization problem in (I63)), denoted by ,BJ’E(:C g) for all xy € Xy and f € F, can be obtained by solving the following
inequalities [|19, Proposition 3.1.1]:

. 0
;(VﬁfL‘,@fzﬁ;‘)T (B =By) = ;; WL

(Bs(xy) — Bi(xy)) >0, (165)

Br=B;}

Vﬁf € Bf, fGE]:

where Vg, L is the gradient of L w.r.t. By, and the entries in the gradient are given by

0 1
————L = —log f(xy) + log By(xs) +1— ()\e, (xe,)—l-log'ye(a:&)), xs € Xys, f€F,
98, ;) ! 1@y e;:f 5 (@e.p) + 5 log (e (e, 1)) 1 € X
where the definition of {A¢ ¢}ecar fer is given in (13). If we set 3% to be
1
* = . A . X F 166
Bi(xy) 7 (vor. Mog) flap)- 1] (eXP( e.f (Te,r)) Ve(l’e,f)), xye Xy, [ €F, (166)

ecdf
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where Z(yos,Aoy) is the normalization factor defined in (T€), then the resulting {3} }; satisfies (I66) and is at the location of the
optimal value for the optimization problem (I63) for fixed v and A. Substituting the above expression (166) for {3y} sc + into (T6I),
we obtain

L(v,{B}}rA) = — Zlog Zg(vafs Nof),
f

which proves (27). Combining with (T64), we know that the optimal value of the following optimization problem is real-valued:
X
< sul‘) ‘ —Zlong(’yaf,)\af)> eR, v € R|>0|, Z%(xe) =1l,eef,
A€RI¥
) Te

which proves (28).

APPENDIX D

PROOF OF PROPOSITION[19]

The proof consists of two parts, where the first part analyzes the fixed points of the inner loop, and the second part analyzes the

fixed points of the outer loop.

1) By the update rule of )\((itllg(xe) in (46), at the fixed point of the inner loop, we have

DG (we) = b2 (), we € Xy e = (fi fy) €€ (167)

By the partial derivatives of Fgl,fi’,*l\ll in @0), we know that the fixed point corresponds to a stationary point of F§{37N2 with

respect to A.
2) At the fixed point of the outer loop, we have

1 a (a)
5o (O @ + o @) Dol @) = @) € Roo,  meeXee=(fuf) e (6Y)

where step (a) follows from and where step (b) follows from the fact that 4. € B7 for all e € £. Then we have

(tl,tz) (t17t2)

. T bary, e(we) +bg' s % (xe) t
(VvFitin,) =) = e () ) — e
A=A y= g e 2YdL.e (ze)
(@) t
2 (2 ) At
Te
=0, e€ &,y B (169)
where step (a) follows from (I68).
APPENDIX E

PROOF OF PROPOSITION 211

In Algorithm we can update exp()\((flfe)(xe» . ,/yéfg (x.) directly instead of updating exp()\((fﬁg(xe)) and / 7((132«5) (we),

respectively. After updating exp ()\étllg(xe)) . véﬁ) (z) for all z. € &, we increase both ¢; and 5 by one. Note that considering

exp ()\Eﬁlg(me)) : \/'yétfe) (z.) is equivalent to considering the message sequence defined in @4) and (@3). When we update p(*1:%2)

following the steps in Algorithm 2] the resulting update rules are given as follows.

(0)

©,0) by generating v, . (7.) and Aé??e(xe) following the uniform distributions in [0,1) and [—1,1],

1) We randomly generate ", 7

respectively, for all z. € X, and e € £.



2)

3)
4)
5)

6)
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(t1,t2)

For each ¢ =ty € Zs¢ and e = (f;, f;) € £, we update p by considering the normalization constraint in (@3) and the

e—f;
update rule of exp ()\((ﬂlc)(xe)) 7((11 G)(xe) as stated in {7), (30), and (BI):
t1,t2 t1—1,to—1
uiﬁf}@ce)cx Z fize) - T wS5 (e, (170)
1Ze=Te e’cdfi\{e}
Zﬂgg’;j) =1 (171)

The update rule of u(tj?) can be obtained similarly.

We increase ¢; and to by one, respectively.

The update of p(*1:t2)(z,) is stopped when some termination criterion is met.

Comparing the update rules in and with the update rule in (I) in the SPA in Definition [5] we know that Algorithm
is equivalent to the SPA in Definition [5]

Similar to the proof of Proposition [I9] we can show that each fixed point of Algorithm [2] corresponds to a stationary point of

alt
FB,d,N'

APPENDIX F

PROOF OF PROPOSITION 26]

We list the proof for each property in the following.

b
2)
3)
4)

5)
0)

Omitted.
Omitted.
Omitted.
Because the S-NFG N; is a single-cycle S-NFG, the SPA initialiaztion and update rules specified in Definition |5| for messages

ugl 7, and ,ugti 4, are equivalent to applying the power method for the matrix fir- f{ - (See, e.g. [22, Section 7.3.1].) Thus

at the SPA fixed point, messages u(li f and létl fa correspond to the eigenvectors associated with the eigenvalue with largest
magnitude, i.e., Apyax (7).

Based on the previous properties, we can prove this property straightforwardly.

By Proposition we have Zf |\, = Zf 4y, Because the S-NFG N is a single-cycle S-NFG and the local functions are
all positive-valued, by Proposition the local minima of the Bethe free energy function correspond to the SPA fixed points.

Note that the considered S-NFG N; has a single SPA fixed point, which means that the collection of beliefs in (66) and

evaluated at this fixed point is at the location of the optimal value for the primal formulation. One can verify that

—1og(Amax (7)) = F pnN, (B) s.t. B € B(Ny), where 3y, satisfies and By, satisfies (67).

APPENDIX G

PROOF OF PROPOSITION 27]

The proof for each property is listed as follows.

1y

The eigenvalue Ap.x(7) equals

Go(r)  calr) | 6i(r)-ds(r)
22 +12 L 23 .

where §;(r) is defined in and for i € [3], and ¢ (r) is defined in (63). The associated eigenvectors equal

82(r) =01 (r)-B3(r)+er(r) ¢ (’1) EA 52(r) =81 (r)-8s () Fer(r) 1 (a) |2, |
VL X ( 2(63(r)+1) ) R>0 y, VR X 2(51(r)+52(r)) R>O y (173)

Amax(r) =14

172)




where step (a) follows from the property of ¢;(r) in (63)). Taking the limit r | O completes the proof.

2) By Proposition [26] the SPA fixed-point messages are given by some eigenvectors:

t e
uglfl xX V1, € RLO‘,

XE:
/’l’glfz X VR € R‘>0|»

-
(t) 51 (r)-63(r)—82(r)+e1 (1) (@) x|
Koty X ( 2(51(r)+62() 1> € Ry,

(t) 91 (1)-05(r) =2 (r)+ca (1) (a) EA
Paz gy & ( 2(83(r)+1) ) SRS

where step (a) follows from the property of ¢;(r) in (63). Taking the limit r | O completes the proof.
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(174)

(175)

(176)

(177)

3) As stated in Proposition @ the location of Fy |\, is given by the SPA fixed point and satisfies (66). By the SPA fixed-point

messages given in (I74)—(I77), there exists a scalar ¢y, € C s.t.

By (1) = ¢, - 210) +202(0) + 5atr >2( 1(r) +(62 <)>)) = 01(r) - 52(r) - 5(r)
o, 200+ 205(r) +0(r) - <> (32(r)" = 61(r) - 82(r) - 3a(r)  8a(r) — b1(r) - 85(r) + e (1)
/Bfl (172) =Cf - 2( +52 ) .

(r)
51(r).(51(r).§3(r)+cl(r)> (62

r)) ~(263(r) +1) 01(r) - (203(r) + 1

1) =cs 2(61(r) + 02(r)) " 2

B (2,2) = B, (1,1),

which proves (69). The proof of (70) is similar and thus it is omitted here.

APPENDIX H

PROOF OF PROPOSITION 28]

The proof for each property is listed as follows.

1) The function Zy, defined in (I6) can be written as
Zp, (7 A) = exp(M(1) + 2(1)) - V(D) 2(0)
+exp (M) +22(2)) - V(1) 72 (2)
+01(r) - exp (M (2) + 22(1)) - V1(2) - 72(1)
+exp(M(2) +22(2)) - V()2 (2),
where step (a) follows from the definition of A, ; in (I3). The function Z;, can be written as
Zpa (7, A) = exp (= (A1) + 22(1) ) - V(1) - 72(1)
+63(r) - exp(— (M (1) + 22(2)) ) - V(D) 22(2)
+d3(r) - exp(—(M(2) + A2(1)) ) - V31(2) 22 (D)
+exp(—(M(2) + X2(2))) - VA (2) 222
If we consider (v, A) given in (7I)—(72), then we have

Ziy (40 N) - Zp (5 A) = Aoy 2 Zhan

(178)

(179)
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where step (a) follows from Proposition [26] By the SPA fixed-point messages p given in (I74)—(T77) and the property of d;(r)

in (6I) and (62) for ¢ € [3], we can prove (73)-(73).
2) We first prove that as for «, the location for Zglf(i’*,\,l satisfies . € B for all e € £. There are various cases that need to be

discussed.

a) We first suppose that v;(1) = 0, which implies 71 (2) =1 by v; € Blz. If we set

exp(A1(2)) = exp(A2(2)) =1, exp(Xe(1)) =

then we have

Zr (1 A) = Zp, (7, A)
=/61(r) - 63(r) - 12(1) + v/72(2)
(a)

< Vou(r) - 03(r) + 1,

where step (a) follows from the Cauchy-Schwarz inequality and the fact that v € BQZ. Based on the above derivations,

we have

; : (@ ®
Wof Zpan(yA) = inf Zp (v, A) - Zp (7, A) 0100 83(r) +1 < Ammax = Zhan,-

where step (a) follows from the expression of A,y in (I72) and the property of ¢1(r) in (63) and where step (b) follows
from (68).
b) The proofs for other cases where at least one of the entries in < equals zero, are similar and thus they are omitted here.

Consequently, we know that if at least one of the entries in « equals zero, we have

inf ZB7d,N("Y, >\) < Amax = ZE d,Ny -
AeRI¥| .d,

Because of the above derivations and

(@) .
AmaX = Z}?d,N1 = sup inf ZB7d,N(7a A)a
~EBT x By AERIYI

where step (a) follows from the definition of Z3 ; y, in (I9), we have

sup in|f2<\ ZB,d,N('Y, )\) = Amax = ZE,d,Nl'
76812 ><822 AER

By Proposition , we know that for the considered S-NFG N;, we have Zglf(le = ZE, AN, = Apax.

APPENDIX [

PROOF OF PROPOSITION [33]

We prove each property separately.

1) Recall that we consider ~. € BZ for all e € £. By the expressions of Zy, in (83) and Zy, in (84), we have
(a)

+ (exp (Z(Ae(l) - /\6(2))> + exp <Z(>\e(1) - /\e(2))>> V(1) 1 (2) - 72(1) - 2(2)

€ €

®)
>

(VD@ + Vi) -72(2))2, (180)
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where step (a) follows from the fact that the terms in Zy, ('y, )\) Ly, ('y, )\) are nonnegative, where step (b) follows from the
fact that z + 1/x > 2 for z € Ry, i.e.,

exp (Z(Ae(m — Ae<2))> +exp (— > (A1) - Ae<2))> > 2.

€ €

By the expression of F3' \ (v,A) in (34) and the inequality in (T80), we have

Flan, (7, A) < —210g(\/71(1) 72(1) + V71 (2) -72(2)), AeRM. (181)

Also by the definition of A in Definition [33| we have

lim Fg g, (4, A™) = Tim —log(Zp, (. A") - Zp, (%, A™) ) = =2log (v (D) -22(1) + V1(2) - 5(2)).  (182)

n—oo

Then we can prove the first property:

210 (V1) 92(1) + V@) 12@) < tim By, (3, AO)

< sup Flgn, (1, A)
AERIX|

(b)) a
= FBl,fi,N1 (v)

(2 —210g(\/71(1) v (1) + /71(2) - 72(2)),

where step (a) follows from the expressions in (T82), where step (b) follows from the definition of F3' \ (v) in @9) for Ny,
and where step (c) follows from the inequality in (I8T).
2) By the expression of Fﬁ{gle(y) in (86), for all v € [[_BZ, we have

() = ~2log (VD B0 + V@ 5@) 2 ~2log(1 (1) + (@) ~ 2108 (re(1) +12(2)

Do (183)

where step (a) follows from the Cauchy-Schwarz inequality and where step (b) follows from the fact that y;,~v, € BY as
defined in (T4), i.e.,
71(1) +7(2) =1, 72(1) +1(2) = 1.

Then by the definition of FS{E”*Nl in 22), we get Fglg’j‘,\,l = 0. Then it holds that

e @ O e @ fa
FB;Z>N1 - FBava = FB7d7N1 = Bl,zl,Nl('Y(l)) =0.

where step (a) follows from (82), where step (b) follows from Proposition and where step (c) follows from the definition
of () in Definition [33 and the expression of ﬁ’g{g’,\,l(v(l)) in (T83).

APPENDIX J

PROOF OF LEMMA [36]

We only prove for function node f;. The proof for f5 is similar and thus it is omitted here.

By the expression of bg’") in (37) and the definition of 4") and A in Definition , we have

1 1 1
B _ L 1) exp(=n) - /17 (1)1 (2)
f1 - (1)
(1) +exp(—n) /1P (1) V@) 440 2) |0 m (2
Taking the limit n — oo, we have
1 1
1 w0\ @ (Ha o

lim b = =
n—oo f 1 1 5
e e ) ek ) L W (R Y ) 0o M@
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where step (a) follows from the property v; € B; as stated in (53). Because

lim b(1 )( e) = lim bt ")( ) =7 (x,), xe € Xe,e € [2], (184)

n—00 n—oo J2:€

the beliefs b%’”) and b%’") satisfy the local consistency constraints and so (88) follows.

APPENDIX K
PROOF OF LEMMA [37]

By the definition of v(*) in Definition [33[and the definition of B2 in (6), we have 'y£ ) € R‘ 1‘ . Following the definition of A(™)

given in Definition [33] we have

Zp, (YD, AM) > dim Zy, (70, X)) = 410 (1) + 417 (2) € Rso. (185)

n—o0

By the definition of bg’") in (33), we have

. ,n n (@) ,n n
Tim Y G (@) - A (1) + A5 () = lim b (1,2) - A7 (1)
x1,T2

# ()
= 2, Ay oP) - ()

= ()7
where step (a) follows from the definition of A(™) in Deﬁnition and where at step (b) follows from the fact that lim,,_,, exp(—n)-

(—n) = 0, and (I83), i.e., a product of a sequence that converges to zero and a bounded sequence is again a sequence that converges

to zero. Similarly, we obtain

Jim 70 (@, wa) - (A (@) + A5 (2) = 0.

APPENDIX L

PROOF OF THEOREM [3§]

By Lemma [36] the continuity of the Kullback—Leibler (K-L) divergence function, and the definition of the marginals by, . and
bs,.e in (38), we have

b (z,) + b0 (z,) 24V
Gm YN h1, f2, log e ((1)n)( | -0, meZy. (186)

2 (1,n)
e€[2] xei’}’gl)(l'e)>0 bfl,e ( ) + bfg e

By the fact that the limit of a finite sum of sequences equals the finite sum of the limits of the sequences, provided that the limit of

each sequence exists in R, we have

lim A, (00) = Tim —log(Z, (v, A™) - Zp, (v, )\(")))

n—00 n—oo
1, n n
+ nh_)n;(}(Z b( ) (z1,22) - ()\g )(acl) +)\( Z b 371,.’L‘2 (/\§ )(xl) —l—)\; )(scg)))
Z1,T2 1,T2

pLm) (z.) + pds n)( ) 91

fi,e \7€ fa,e ve (z )
‘zﬁ'yi)( e)>0 fle f2€ Te

(@) 0,

where step (a) follows from the property in (87), i.e.,

nh_)ngo — 1og(Zf1 (7(1), )\(")) -2y, (7(1)7 A(n))) = FEEE,NI(’YU)) =0
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and Lemma [37] and the equality in (I86). By (87), we have

(1) 1,n)\ __ * _ * _ alt,*
nh_}rrgo Fy N1 (b( )) =Fgpn, = IBan, = FB,d,N1 =0.

APPENDIX M

PROOF OF LEMMA [46]

We consider the following A:

~1/3
exp(Ae(ze)) = (W(0|xe)> . wzeeX.={0,1}, ec&. (187)

Then the functions in (I06) and (I07) become

Zs, (Yo, Naf) = Z [all z,, e € Of; are equal] - H v/ velzy,), i €T, . € B2, ecdfi,

zf; e€of;

Zs (Yo, Aog,) =Y | D we=0 mod 2| - [] ((W(om))l/?’- ’ye(xe)>, JET, Y € BZ, e € Of;.

zf; ecof e€df;

Then we can find the upper bounds of the above local functions. The proof for each ¢ € Z and each j € J is similar. Thus we only

provide the proof for f; and f5.

1y

2)

For f, because of 0 < ~;(z1) <1 for all ; € X} and i € {1,2,3}, we have

Zs (Yor: Xor) = Y. V(@) (1) - ys(z)
z1€4{0,1}

< V71(0) - 72(0) + /71 (1) - 32(1)

< V(0) +92(0) - V(1) +72(1

Wi,y eBZ ecofy, (188)

where step (a) follows from ~;(0) +v;(1) = 1 for ¢ € {1,2}. The proof for other local functions in {f;};cz is similar. Based

on that, we have

Zfi(’Yafm)\afi) <1, = (189)

For f5, we have

Zilvosedor) = (W010) " [T vA@+ Y H((W(0|:ce))l/3~ %(m)- (190)

e€dfs @, €X5\{(0,...,0)} € f5

where X, defined in (97) is given by
s ={mp, | o1 +24a+27+20=0 mod2}.
In particular, we define {z}}ccay, to be
(h)ecass € argmaxy cx; \((0,...0)} H Ye(ze), e € BZ, e € Ofs, (191)

Clearly, the Hamming weight of (2})ccay, is larger than or equal to 2. It holds that

> I (o)™ vae)

mf5€Xf5\{(0 ,,,,, 0)} e€dfs

1/3
< > [T (wok.) gy €45\ (000} II voeeo

meGXfE)\{(O,...,O)} e€dfs e€0fs
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@ 3 [T (wle) ) I Voen

mf:)est\{(O’ ) eeafo e€dfs
®) 4/3
< w0)* T[ vaeled). v eBZ. ccdfs,
e€dfs

where step (a) follows from (191) and where step (b) follows from the assumption about the channel law in (T00). Note that
(2%)eceoy, as defined in (T9T) contains at least two components, denoted by x} and z,, such that # # 0 and 7, # 0. Then

the expression in (T90) satisfies

Zts(Yofss Mofs) < ( 0|O) <H V7(0) + H \/7>

e€dfs e€dfs

@ (W(O\O))4/3 : ( Yer (0) - e, (0) + \/vel (@%,) - Yes ($22)>

(b) 4/3
< (W) ", veBzecedfs,

where step (a) follows from ~y, € BZ for all e € dfs:
Ye(ze) <1, z. € {0,1}, e € Ofs,

where step (b) follows from the similar considerations as in (I88) and thus the details are omitted here. The proof for other

elements in 7 is similar. Therefore, we have

4/3
Zg,(vos; Aogf,) < (W(0|0)> ., JjedJ. (192)

When we consider A in (I87), the function Zg qn, (7, A) given in (I03) satisfies

(a) 4
ZBaNs (7, A) < (W(0|0)) ,

where step (a) follows from the inequalities in (I89) and (192). By the expression of Zgl’tcifm in (T04), we have
alt, 4
Zi, < (W)

APPENDIX N

PROOF OF PROPOSITION [31]

If we set v to be

L1 ifze=a
,76(‘%.6) = ’ Te € Xey ec 57 (193)
0  otherwise
where @’ = (2,)cce is given in (II7), then we have
(a)
Zgan(v,A) > g(x') >0,  AeR?, (194)

where step (a) follows from the definition of Zg an in (I8), the definition of F3"  in @23), and the definition of Z; in (T8, i.e.,

Znan(rX) = op(-FlinrN) = 30 T (#(eors) TT (0(steen) - uleen) )

{zos.s}r FEF ecdf

The inequalities in (194) also imply

(a)

alt,* a. (b)

F§,E{,N < FB“&N( ) = )\SE‘pMFBdN('W)‘) < —logg(zx') < o0,
€
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where step (a) follows from the definition of Fglfl *N in Item [5| in Definition |12| and where step (b) follows from the definition of
Fg \(v) in @9). With this, we have

thz{,*N (;) mlgnoo F}g{td,N('7(m)) (:) lim SUP Falt (’Y(m),A)’ (195)

m—00
where step (a) follows from (B0) and where step (b) follows from the definition of F§1’E’N('y) in (29). Then we have

(a)
Falt (,Y(m)) _ Sup Falt (V(m)yA) > Falt (,Y(m) 0) Zlog< Z f( Ty ¢ ) m € Zy, (196)

Tof,f

where step (a) follows from (31)) and where step (b) follows from 'yém)(xe) €[0,1] for all z. € X. and e € € and f(xayf ) € R>o

for all x5,y € X as defined in Definition [3} i.e.,

Fit v ™, 0) = —log | T] (Z Forg)- ] \/vé””(xe,f)) > —log [ [] (Z f(waf,f>>

fEF \@ay,s ecof FeF \zoys
Combining (T93) with (196), we get
alt,« . alt (m)
Fp dn Tr}gnoosupF N A) Zlog(Z flxay,y )
Tof.f
APPENDIX O
PROOF OF PROPOSITION [52]
We prove the claims in this proposition item by item.

1) This follows from the definitions of F'%  and Z; in (23) and (T6), respectively.
2) It can be proven by (T18) in Proposition [51| and the property of (™) in (30).
3) We prove each property separately.

a) We prove it by contradiction. Suppose that there exists an f’ € F such that

(m

For fixed n and k, because e ) e BZ as defined in Item [2|in Definition [2| the function Z; is bounded and we have

I1 /(57 a® - 25) =0

feF

By the definition of F}3", \ in (Z9), we have

Fgn (™) —10g<HZf b7 04(“'*%?)) = 00,

which is a contradiction of the inequalities in (T21).

b) It can proven by the property in (I22) and the definition of b}m’n’k) in (7).

¢) It can be proven by combining the inequalities in (I2I) with the inequalities in (TT9) as stated in Proposition [51]

d) The proof of convergence follows from the definition of the sequence {~(™) }mez., in Item |2)in Definition The proof
of Fgl dn € R follows from (II8) in Proposition

e) By inequalities in (I2I), we have

FSIB n(Y™) ER.
By the definition of the sequence {)\(")}nez>o in Item |3[ in Definition we can prove that

Tim Bl (7™, A0) = By (™),
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f) By the definition of {a(®)} in Item 4| in Definition we can prove the equality in (I26). The proof of the property

max Ft (v ™ a - Ay e R
a€RU{—o0,+00} v

follows from
ND pare oy D pare om0 ey D pate (o m)
—logg(z') > Fgan(¥'"™) = FRan(y"™, 0™ - X)) > FR 4 (v, 0) € R,

where step (a) follows from the inequalities in (I21), where step (b) follows from (29), and where step (c) follows from
the definition of the sequence {a®)}, in (33) in Definition

APPENDIX P

PROOF OF THEOREM [34]

By the definition of F‘g{g,N('y(m)) in (29) and property (I121) in Proposition , we know that

F§121 n (Y (m )aa(k) : )‘(n)) < AEEE,N(’Y(M)) € R, n,k € Z~g.

By the property of a*) in (126), we have
Jim. Fa n (™, a® XMy — (v M) >0, ne Zs,. (197)

As shown in (T23), the sequence { Fi3'% \ (v(™), (™)} converges in R, which means that this sequence is a bounded sequence.

n€Zso
Then we know that the following sequences are bounded as well:

{Jim Fglhy (70,0 A0
—00 n€Zxso

{hm FE (v, a® M) — Flt | (y ), A(m)}

n€Z>o

1) It holds that

lim Sup< hm FdIlt (’y(m) (k) . )\(”)) — Fgf‘fi’,\,(*y(m), )\("))>

n—oo
< hrrljup khm Falfi (v, a®) . X)) — hm mf Falt N (Y™ AM)
@ lim sup hm Fa”lt ('y(m), alk) . )\(")) - Fﬁl’gﬁ,\,('y(m))
n— o0
(b)
< 0,

alt

where step (a) follows from the property of A(™ in (T23) and where step (b) follows from the definition of F33 d, (™)
in (29).
2) By (197), we have
0 < lim inf( hrn Fglfi v ™, a® Ay F§17E7N(’y(m), )\(”))

n—oo

Dlimint lim Fgl (7, ) AM) — Bl (),

n—oo k—oo
where step (a) again follows from the property of A in (T23).
3) Thus we have

F‘Bilt N(’)/(m)) < lim inf hm F‘llt (7(’”)70[(’0 ) )‘(n))

n—oo k—oo

< lim sup khm Falt ,N(’Y(m), alk) . A

n—oo

< Falt (,y(m))
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APPENDIX Q

PROOF OF LEMMA [56]

For arbitrarily small 7 € R+ such that |r| < 1, we define 65 € RI*! such that ||6x[l2 = 1 and 8x = (0x,(zc))s.ex,, cce. For
each e = (f;, f;) such that ¢ < j, we define

Oxey, = Oxcs Ox..;; = —Oxc

which is consistent with the signs in the definition of A, ; in (I3). We first prove that the following sequence is bounded:

alt (o (m) (k) \() |
{F e A 4 JA)}M%O. (198)
It holds that
0< ) (k) . \(m) 5 (m)
< fxy) exp(a ep(@e) +1-0x, () - /7" (we)
feF ecof
(a) m
< H(f(wf)~ [T (exp(a™ - A1) (o)) - exp(1) - /4 w))
feF ecdf
O)
< exp(—Fgg’N('y(m%O)+2|5|), x; € Xy, f € F,Vn,k € Zsy, (199)

where step (a) follows from

\r~§>\eyf(xe)|:\r~6>\e(xe)\Sl, Te € X, e €&,

where step (b) follows from inequality (I28) in Proposition [53[and 37, > ;1 = 2|€|. Then by (120) we get

Fa (™, a®) A0 5y ) = 10g< > H< Toy.f) H(eXP(a(k)'Af;?(xe,f)+7“'5Ac,f($e,f))' Vém)(weﬂ)))

{zos s}ty fEF ecdf

(a)

> —log | S 1x5] | + F (7™, 0) —208],  nk € Zoo,
f

where step (a) follows from ([99) and }°,, = 1=3",|X;|. Note that by inequalities (I23) in Proposition [52} we have
Fn('™,0)eR,  me Zso.
By the definition of Fﬁj{&N in (29) and the property Fﬁ{gy,\,('y(’”)) € R as proven in (I23), we know that
Falt (’y(m) &)X 4 ) < Aﬁ{fi,,\,('y(m)) € R, n,k € Zsgp-

Now we know that the sequence in (T98) is bounded. Combining with Theorem [54} we know that the following limits exist

lim inf lim inf (Falt METURICIND () g Fgl’ﬁi’,\,('y(m), a®) A 6,\))7

n—oo k—oo

limsuplimsunglgN( (M) a®) XM e gy).

n—00 k—o0

Then we want to use the Taylor series expansion of Fgl an to prove this lemma. It holds that

lim inf hkm inf (FB MEIURIFMIND (O} g FSEE’N('y(m), a® XM (’)}))

n— oo

> lim inf hm inf FB v, a® A — lim sup lim sup F3 4 alt (’y(m), B XM L gy)

n— oo n—00 k—o0

= B7d,N(7(m)) — lim sup lim sup FB N( (m),a(k) A 4 ox)

n—00 k—o0

>0, (200)
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where step (a) follows Theorem |54| and where step (b) follows from the definition of FS{B)N in (29). The Taylor series expansion of
Ft (v, a®) - XM 47 8y ) wrt. 7 at r = 0 is given by

T
FEEE,N("/("L)7OZU€) A +r- 5A) = FS{E,N(’Y(W)@(H : >‘(n)) T <VAF§{3,N’)\—a(k).,\("),‘r_'Y(M)> e

2
r T 2 pralt
+ 2 2 (v)‘FBvdwN|)\—a(’€).)\(n)+7"»5>\,’Y—"r’(m)) ~Ox, (201)
where 1’ € [0, 7] is suitably chosen, the vector V AF}%{E,N is the gradient of F]%{&,N w.r.t. A with entries given by
0
—— FAt = —br (x) + by o (20), (202)
3/\e($e) B,d,N fi, ( ) fis ( )

the function by . is given in (23), and the matrix V3 F3',  is the Hessian matrix of F3'% \ w.r.t. A. By the entries of the gradient
VAFgY \ in (202), the entries in the Hessian matrix V3 Fjg'"; \ are given by

0 0 alt B 0 1o}
Oe, (mez) (8/\61 (xh) FBAN) B OAe, (x62) i (Te2) + Oe, (xez) bfj “ (@),

€1 = (fi»fj)a 1< j7 Te, € Xew €2 = (fkafl)v k< & Te, € Xez»
bfi-,{61762}(x617$52) - bfi,el (‘rel) : bfk,ez (‘Tez) €1 7é ez, k=1

0 ) .
mbﬁ,el(%l) =[ie{k,¢}]- bfier(Tey) = bfpes(Tey) = by, fer,e0} (Tey s Tey) e1# ey, L=1,, (203)

[xel :xez] : bfi,,el (1'61) - bfi761 (xﬁl) : bfk7€2(x62) €1 = €2,

bfj7{€1’62}(x61’x62) - bfj7€1 (me1) : bfk;52(x€2) e1 # ez, k=7,

0 .

oA bfj’el (Iel) - [j €{k7£}] ’ bfi,el (xel) ’ bf17€2 (xez) - bf' {e1 €2}(x617$€2) €1 7é ez, L = j, (204)
€2 (x62) k J» )

_[mel :xez] : bfj,@l (‘rel) + bfi,el (xel) : bfk,ez (mez) €1 = €2,
where the marginals of by are defined in (39). The above expressions and the fact that 0 < by(xy) < 1 for all xy € Xy, f € F,

imply that the following sequences are bounded for ||dx |2 = 1:

T

T 2 rralt alt
{5>\ ’ (VAFB,d,N ’A=a<k>~>\<n>+w.5>\,-y:-,<m>> ’ ‘SA} ) {_ (VAFB,d,N |>\=a<k>.>\(n>,-,=.,<m>> ’ 5*} :
n,k n,k

)

Thus we have

(a) 1
0 < lim inf lim inf lim inf ~ (FgfgyN@(m), o)AMY — Ft (0 o)A 5A))

rl0 n—oo k—oo T

(1) 1. e e pe It I ol
= liminf lim inf liminf [ — V\F%& 20\ — = -0y - | VSFS )
710 n—oo  k—oo A B,d,N|>\:a<k>.>\(n>,7:.,<m> A 9 A A B,d7N’)\:a(’v).)\(")+r/.5)\77:7(m) A

r
< liminf lim inf — V5 F3" -8 — limsup = - limsup limsup 8 - | V3 Fal R
= RSee koo B’d’N’A:a(’“”A‘"’,'r:'y(m) vl p ”_mp k_mp A P B,d’N!)\:a(k)‘A(n)-',-'r'/.&)”'y:y(m)

is bounded Vr > 0.

© Jim inf lim inf — VAF3"

n—oo k—oo |>‘:0‘(k)')\(")7"/:"/(m) 2N (205)

where step (a) follows from (200) and r € Ry, where step (b) follows from (20I), where step (c) follows from the fact that

a product of a real-valued number and a sequence that converges to zero is again a sequence converging to zero. Note that the

inequalities in (2Z03) hold for any 8y € RI*! such that ||dx] = 1. We have

lim VA

alt —
JHm VAFE 4N a0, gy = 0



which by (202), implies

lim (—b%’fé”’k)( o)+ (@ e)) =0, ~y=~™ s eX., e=(fi,f)€E

n,k— o0

APPENDIX R

PROOF OF THEOREM [37]

Before proving this theorem, we prove two lemmas.

Lemma 63. It holds that

len;Oa ZZW”’“) (ZA@”}xef> 0, m,né€Zsg,

ecof
where b;’n’"’k) is defined in (37).

Proof. If we can prove that

. o .
Ji o SR

a=ak k—oco

T
. k 1t B
= lim o® . (V)\Fg,d,N})\a(k),)\(n)’,yﬁy(m)> A — 0, m,n € Zso,
where VF3l  is the gradient of F3! \ w.rt. A, and the entries in the gradient are given in (202). Then we have
T
1 dlt y(n)
klggoa (VA B,d N|>\ a®) A(M) | 4= 7<m>> A

= lim a® 3™ N A (@) - (<0 @) + 0 ()

k—o00
e= (f71f7) Te
(@) k mnk (n)
Y im —a®
fi o0 S ) T 3o
e€cdf
=0, n,m € Zsg,

where step (a) follows from the definition of {A. f}ccas, rer in (I3). Then we prove the lemma.

In the following, we prove (206). There are various cases that need to be discussed.
1) Suppose that a* = oo for some m and n, if

H{LEafyf}f such that H <f($3f’f) . H \/’yém) (:ce’f)> > 0, Z (A(")(xe fl) )\gn) (fe,fj)) > 0,

feF ecof e=(fi,f;)
then we have

sy

Jim B (v, ol - A)
— lim — (m) (k) . y\(n)
kl;ngo log l;lZf('yaf , ’\8f)

< Jim —log 37 H( wor)- ] (exwla® A7) (o) vé’”)@evf)))

{zos,s}r FEF ecdf
= lim —log | (H f(@or.s) - H\/vémkze,f))-exp(a““) > (M (@es) - Aé’”(sce,fj)))
{zos.sts \fEF e€df e=(fi,f5)

= —00

(b) m
—log HZf('yéf),O)
f

60

(206)
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9 Rl (™, 0),
where step (a) follows from (T20), where step (b) follows from the inequalities in (T23)), i.e.,

Fa v (v, 0) = —log HZf 753),0) | €R,

and where step (c) follows from the definition of Fg{ﬁLN in (Z3). The above inequalities contradict the properties of {a(*)}

in (33) and (126). Thus we only need to consider the following terms in [, Zy:

H (f(m3f7f) : H \/’yém) (Ie,f)> >0, Z ()\gn) (1‘€7f1.) — /\é”)(xe,fj)) <0, =mo5r € Xy, ferF. (207)

ferF ecdf e:(f“fj)
By (126), we know that there exists {x} ;} such that
11 (f(ir%f, A 1T Vs, f)> >0, 3 (Ag’}i (a% g) = A (a2, fj)) — 0. (208)
fer e€of e=(fi,f;)

Otherwise, by (T20), we have sup,cp Fi3'% \(v™, a - A() = oo, which is a contradiction of (T26). Then it holds that

m ((l) m n (b) * m *
12657, 0) = T] 2 (5 o™ A5 = ] (f(maf,f)~ IT ’(ze,f)> >0, k€ Zso,
f f

feF ecdf
where step (a) follows from the definitions of F3" \ and o) in (23) and (33), respectively and where step (b) follows from
the expression of —log[]; Z; in (I20) and the expressions in (208). Then for each n, there exists M; € R such that the
following inequalities hold for fixed 4(™ and A(™):

f(@osf) Ilecoy W™ (e 1)

¢ . (n) _)\(n)

o< S T] o A > (A (@es) = X (xe,fj)) <M,  keZs,
{zor.sts | . e=(fi,f;)

Then by lim 00 a®) - exp(c- al¥)) = 0 for ¢ < 0 and the expression Fj'% \ in (T20), we have

(m)
Tos,s) Heeaf( e (xe,f))
: (k) . 9 palt — T . (n) ) — ()
s o da BN i Z H A (k) )\(n)) Z <>\C (@e.fi) = e (xe’fj)>
a=a {zosstr f REYA of e=(fi,f;)
is bounded for fixed k&
a(k) " eXp (a(k) Z ()\gn) (:I:emf’i) - /\gn) ("L‘evfj))>
e=(fi,fj)
=0.

Suppose that a* = —oo for some n, similar to the proof in the previous case, we have

0
lim %) . — patt N

=0.
k—o0 Oa B.d

a=a(k)

Suppose that a* € R, we have a®) = o* for all k. The location of the optimal value for the optimization problem in 33D

satisfies

Lemma 64. For fixed v, the following sequence is bounded

(1) (m7n7k)
{FB,p,N(bf )}n,kez>o’
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where b(}n’"’k) = (b}m’n’k))f as defined in (38).

Proof. As defined in (37), we have 0 < bgcm’”’k) (xy) <1forall zy € Xy and f € F. It holds that

b(m,n,k) (.T ) + b(m,n,k) ((E )
fire ¢ fi.e ¢
> > o dog M (x)| <Y > )logvém)(me) <oo,  mk€Zs.
e=(fi.f;)€E zﬁz'yém)(rc)>() € mcz'yém)(xe)>()
Because the entropy function is finite for probability distributions with finite support, it holds that
plmn.k) (x )+b(m=n7k)(z ) b(mﬂhk)(x )+ plmn.k) (2.)
fise ¢ fise ¢ fie ¢ fi-e €
> > 5 +log 5 <D log|Xel, ik € Zso.
e=(fi,f;)€E :L'e:'yém)(:l;e)>0 €

Combining with Theorem [54] and Lemma [63] we know that the first two terms in (I29) are bounded and thus the function
Fél) (b(]f-n’n’k)) given in (129) is bounded. -

PN
In the remaining part of this appendix, we turn to prove Theorem [57] The proof of (I30) is divided into three parts.
1) By Lemma [64] we know that the following limit exists

lim sup lim sup F]gl’]))’N (bgrm’"’k)).

n—00 k— o0

By the expression of Félz) n in (I29) and the proof of Lemma , we know that each term in F}") (bg_-m’"’k)) is bounded for

B,p,N
all n, k € Z, where bgn’"’k) = (b;m’"’k))f as defined in (38). Then we have

(B )

lim sup lim sup F](Blp N

n— 00 k—o0

< lim sup lim sup — log H Zy ('yg}l), alk) . )\g}))

n—00 k—o0 f
+ lim sup lim sup o® - ZZ b;m,n,k) (xy) - Z Ainf) (@e,r)
n— oo k—o0
oz ecdf
m,n,k m,n,k m
b (o) + BT () 270 ()

+ lim sup lim sup Z Z . 2

g
(n) (n)
n—o00  k—oo e=(fi.1;)€E we:“/gm)(we)>0 bfi (xe) +bfj ($e)

9 4 B () + 6 (0 2
(:) glg N(’Y(m)) + lim sup lim sup Z Z fise ( 6) fi.e ( e) IOg - Ve (Ie) -
h e kT (i) 2 O (o) 4 0 (o)
e=(fi,f;)EE Ze:’yém)(:ve)>0 fie € fi-e e
(209)
() .
< Fglan(™), (210)

where step (a) follows from Theorem [54] and Lemma [63| and where step (b) follows from the following conditions:
o ™ € BZ for e € £, where BZ is defined in (3);
it holds that

bt e By, fe @11)

(1/2) - 3, (05" (we) + 6" () = 1 for all e = (fi, f;) € &;
if 7™ (z,) = 0, then both b(f:'fén’k)(xe) and b(f?’:’k)(aje) are zero;

« the Kullback—Leibler (K-L) divergence is nonnegative.

By (121) in Proposition , we know that Fg{g’,\,(v(m)) eR,ie, Fg{g’,\l(y(m)) is bounded for fixed m.
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2) By (2T1), we know that {bgcm’"’k) (xf)}n kez., is a bounded sequence. By the Bolzano—Weierstrass theorem [23, Theorem

(m,n1,k1)

3.4.8], we can find a subsequence {n1,k1} of {n,k} such that the subsequence {b; (@f)}ny, kicz, converges for all
xy, f € F. By Lemma [56] we know that
. . (m,nl,kl) _ . . (m,’n17k1) _ . . (m,nl,kl) _ (m,nl,kl)
n}ll)noo k}inw bf]»,e (we) = n}gnoo klhinoo by, e (we) n}gnoo klh_r)noo(bfi,e (ze) bfj,e (ze))
= lim lim b\ (),  z € X, e=(fi,f;) €E. 212)

ny—00 koo 1€
Combining with 2T1), we know that {bgcm’m’kl)}nl,klez>0 converges to a point in Bx(N). It holds that

(@)

(®)
< P tim tim pne)

ni1—00 k1 —00

(b(m,nl,kl))

) : (1)
= lim lim F, i

n1—00 ki—oo  BPN

< lim sup lim sup Félz) N(b(}[n,n,k))
n—oo  k—soo P
(d) .
S ]%{:i,N(’y(m))a (213)

=

where step (a) follows from Proposition where step () follows from the definition of Fy; , \ in (I3) and the fact that
{bg_-m’"l’kl)}nl,klez>O converges to a point in Bx(N), where step (c) follows from the continuity of F](glg n(bF) wrt. by for
each by € By and f € F, and where step (d) follows from (ZI0).

3) By the property of v(™) in (124), we have
N (a)
. " alt,* *
Jim P (™) = Fid < Fhan,

where step (a) follows from Proposition [15] Inequalities in (Z13) imply

Fpan < lim Fél’l))vN(bSTm,nl,kl))

m,ni,k1—00

< lim limsup limsup F$Y (b
~ m—oo 7’L—><>op k%oop B,p,N( F )

< lim Fgan("™)

m— 00
alt,*
= FB,d,N
< F§7d,N~ 214)
Thus we have
. 1 m,ni,k . . . 1 m,n,k alt,* * (a)
lim F]é,;,m(b(}' ! 1)) = lim limsup limsup FE(B,;)),N(b(}' )) = FE’E,N =Fgan = BN (215)

m,n1,k;—o00 m—o0 psoco  k—oo

where step (a) follows from Proposition

Then we have

(m7n1,k1)($ )+b(m7"17k1)(m ) (m)
a . e N e 2 € €
0 @ lim lim sup lim sup Z Z fie fs: -log Yo (@)
M= ny—oo  ky—oo 2 b(m’nl’kl)@;‘ )-l—b(m’m’kl)(x )
! e=(fi,f1)€E £,: 7™ (2,)>0 fire e fie e
m,ni,k m,ni,k1 m
( 1 1)(15@) + bgfj ’ 1 )(-Te) Q’Yé )(xe)

(i) lim Z Z fire . ’ -log b(m,n1,k1) ,

m,n17k14)00 . .
e=(fi,f;)€E zez'yém)(rc)>0 fise

where step (a) follows from the inequalities in (210) and similar derivations in (214) and 213):

() + b (2,

alt,x . 1 m,n1,k
FB;LN_ lim Fé7r))7N(b(]_- ! 1))

m,ni,ki1—00
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< lim B8l (™)

DM () + b () 2™
+ lim lim sup lim sup Z Z fi, fi, log . Ve () _
M ni—oo ki—oo , 2 (m,n1, 1)(1, )+b(m7n1) 1)(33 )
e=(fi,f;)€E a:e:'yém)(a:c)>0 fise e fi.e e
< 1 fralt (m)
—mlgnooFB,d,N(’Y )
_ pralt,x
- " B,d,N

and where step (b) follows from the fact that the subsequence {b;m’m’kl)(:nf)}nhk1€Z>O converges in Bx(N) for all ¢, f € F,

and the K-L divergence is continuous. By Pinsker’s inequality (see, e.g., [20, Theorem 2.33]), we have

_— m,n1, m,ni, m,ni,k
- 1 ;i’e 1 kl)(xe) + b;ﬁ@ 1 kl)(xe) o bgci,e 1 k1)($e) + b;”j,e 1 1)(336)

_ m,nl}}g}_)oo Z } : 5 g 27(m)(x )

e=(fi,f;)€EE we:’yém)(we)>0 ) e
(m,n1,k1) (m,mn1,k1) 2
1 bf' e () + bf' e (we)
> — li - - - ‘
2 3 i 2 ( 2 ’ o
e=(fi:f5)€E \go: 4™ (2,)>0
. (216)

By the definition of 4(™) in Item [2|in Definition the sequence {~(™},, is bounded. Thus there exists a subsequence of {v("™},,,

denoted by {7(™1)},,,, such that the following limits exist

lim ’ygml)(xe)a Te € Xea ec 57
mi1—00
lim o\ (), e Xy, fEE

mi,ni,k1—00

By the equalities in (212) and the inequalities in (216)), we have

lim ™ (z) = lim b (@) = G (@), aoe X e=(fif) €E,

ise ie
mi—00 mi,ni,k1—00 fis my,n1,k1—>00 3>

which implies

(lim el e Br(N).

mi,n1,k1—00

By (213), we have

lim Flgl,;,N(bgfmlynhkl)) = Fgl,g’jﬁN =Fan = Ih

N-
ml,n17k1—)oo Ps

APPENDIX S
PROOF OF THEOREM [61]

In this proof, we only consider the variable z. € S¢, i.e.,
vi(ze) € Rso, Vo, € 8¢,

where S¢ and v* are defined in (I36) and (T33), respectively. The proof of (T43) and (I44) can be obtained by Theorem [57] and
the fact that {bgf.”%"%kz)}

proving (I41)) and (142).

By Theorem the subsequence (mq,n1, k1) has the following property: for any small enough €, ¢ € R~g, such that

b(ml,nl,kl)

is a subsequence of . In the remaining part of the proof, we focus on
q F gp p

}m2,’ﬂ2,k2

ma,na,ka

0<e+ec</y(ze), ze €SS, e €&, (217)
there exist integers M;, Ny (M), and K7 (M, N7) satisfying

VA @) = Vi)

<egc, z. €S8, e€é, my > My, (218)
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miy,ni,k
bgfi,l 1 1)(-Te) )

Ye ( )SE

; T, €S8;,e€é, my > My, ny > Ny(My), ki > K1(My, Ny). (219)

"™ ()

This implies that for all z. € S¢, e € £, m1 > My, nqy > N1(My), k1 > K1(N1, My), it holds that

Véml) (CEE) > 67

b(mhnlakl)(xp)

0< ,y(m1)(x€) —e< fi.e (m1)

< Ve () e
"™ (we)

in (T37) and the above inequalities, we have
(e -

(m1,n1,k1) (m1)
e € b Te e + €
gt < e (ze) < VY (e

exp(a(kl) . )\(n;)(xe)) - Héﬁlffhkl)(ze) - eXp(a(kl) . )\(n;)(xe))a

(m1 ni, k‘l)

By the definition of p,_,

(m1) (m1,n1,k1) (m1)
Ye ( ) mi,n1,k b i€ (.1?5) e (.Qfe) te mi,n1,k
T ) < s S S e T (00), (220)
Yo (Te) e—fi (ze) Ye ! (xe)
(m1) (m1,n1,k1) (m1)
Ye 6) (ma, nl’kl)(xe) < Z fi,; 1oL (.’I,‘e) < Ye (l’e) + € (m1,m1,k1)

W <y e ) o5 VL TS mmik ),
Te Sg \/ygml ’ T, €SS /‘S:lfim 1)(336) T €SS 'yéml)(;ce) ’

(m1 ni, kl)( ) ( )

a

€
— m - - (mhnl,kl) fn
(1 2 ea‘S}‘(C (m1) ) He—f; < Z (ml,nl k1)
€8¢ e (2e)

(m1 ni,k1) (
T, €SS e—>fl

™ oy 1+ max — )Z(ml’”l”“) (221)
Te

2. €8¢ (ml)(ze) He—f

where the inequalities in (220) follow from the definition of A, s in (I3) and the definition of ,u(m k) where the inequalities in (221)

follow from the definition of ngf; *) in (I38), and where step (a) follows from the definition of C’(m %) in (T40). We define

€ €
€% max — = — - . (222)
z €8¢, e€€ Vi (2e) —c  min. ese cce Vi (2e) —c

Then by (217) and 218), we have

0<e <1, €> max c - ¢ my > M. (223)

N . )
2. €8S, e€E ,yéml)(ze) min,_ese, cee ”Yéml)(ze)

It holds that

(m1,n1,k1)
(m17n1,7€1)( ) (a) 1 bfi,e e (.’te)
He—st; SPA (Te) = Cér_n)lf,]nl,kl) uiﬁyf“’“)(xe)
N (m1) zlzle%(c (ml)(z ) Z(m1 n1,k1)
e ( ) < e Neafj
m mi,n1,k
B (m1) Z(m17n1 k1)
Ve ( ) He—f;

(m1,m1,k1)

where step (a) follows from the definition of 1, " "<p )" in (I39), where step (b) follows from the inequalities in 220) and (221,
and where step (c) follows from (223). Similarly, we obtain

(mhnhkl)(x )

(m1,n1, k1) ( ) 'Y(Sml)( )+ € (1 . )-1 ,ue—>f
el isba (¢ Ty =) z.

ERACOL A

(m1,m1,k1)
Zueafj

2™ (i)
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where step (a) follows from the inequalities in (220) and (221) and where step (b) follows from (223). The above inequalities imply

(mlanhkl)(x )

fYc'(zml)(x)—E.(1+6/)l_l .Me—>fj e
Z(mhnlakl)

A (2) Heos s

(m1,m1,k1)
< (ml,nl,h)( 6) e—f; (l‘e)

S Moy g SPA T _W
(m1) (m1,m1,k1)
Vi@ e oy N e )
s(w-(l—e) —) @29
Ye (ze) He— 1

In particular, we have

(v“”(:)* (140)" —1) 2<(1—5?355m) () ‘1)

Ve ' (we)
(@) 1 —¢
> _
T 1+€
2¢
=10 (225)
where step (a) follows from the property of ¢ in (223)). Similarly, we obtain
(m1)
e Te) t+€ -1 —1
(Ot (1) 1) < (1 mag i) (10) )
V™) (z,) OO e (ze)
(a) !
2 1+e 1
T 1-—¢
2¢'
where step (a) again follows from the property of €' in (223). By the fact that uiﬁlgl’kl)(me) > 0 for all z,. as defined in (137),
we have
(ml,nhkl)(x )
OS%SL 2. €85 e€ €. (227)
Zﬂcﬁfj
Then by the inequalities in (224)-(227), it holds that
( 1,n1,k,1) (7n17 1,k1) (mh 1,k’1)
C2 2 () | (magny ko) () oty () 2¢ MU (@) o 2¢ (228)
1+€¢ =~ 1+¢€  glmmk) = He g spa (Te glminuk) =1 ¢ glminuk) T ] — ¢’
Heﬂfj Me%fj He%fj
For any small ¢’ € R+, because of
’7;(1’e)>0, 1’668‘?,6657
we further require that € and c satisfiy
. 6//
O<es (zeeglcl,neoee Ve (ze) = C) 24 (229)
Then by the definition of ¢ in (222)), we have
1" !
PR O ) (230)

T 2+¢€ ~ 1—-¢€¢ —
where step (a) follows from 0 < €’ < 1 as stated in (223). To sum up, we require that e and ¢ satisfy (217) and (229). There exists
(My, Ny(My), K1 (M, Ny)) satisfying (2T8) and (Z19) for these scalars € and c¢. Because of the inequalities (228) and (230) and
2¢’ 2¢’
> T,
1—-¢ ~ 14¢
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we know that

(ml,nl,kl)(we)

my,ni,k —fj P
iafj,lspfs)( e)—eZ(,ilW <, e €Sg, e = (fi, fj) €€, my > My, n1 > Ni(M), kv > Ki(My, Nv),
He—f;
which means that
(m1,m1,k1)
. (m1,n1,k1) o /'Le—>fj (1’6) _ c _ . .
m1,n111,/€rn1~>oo Me—>fj,SPA (.’Ee) Z/Sml’fnl,kl) =0, Te € 867 €= (fl?f]) et (231)
e—fj

Similarly, we obtain

(ml’nhkl)(l'e)

. (m1,n1,k1) _ e—fi _ c _ ) )
mhnlll,krrnl—»oo lueﬁfi,SPA (‘7"9) Z;(LTj’fnhkl) =0, Te © Se’ €= (f“fj) eg. (232)
As defined in (I39), the vector ugﬁlf%ﬁgil)(xe) satisfies
0< 'U’iﬁljg:nslf’il)(xe) < 1? Te € Sga €€ 8f7 f € ]:7 nlakl € Z>07

i.e., it is bounded. By the Bolzano—Weierstrass theorem [23, Theorem 3.4.8], we can find a subsequence {ma, na, ka} of {mq,n1,k1}
such that the subsequences { uiﬁzjéns}’,’f) (xe)} and { ugfff’”%k?) (ze)/ Z;(Zf }na,kz) converge for all z, € S¢,
’ ma,n2,k2€Z>0

e € df, f € F. Combining with (23T)) and (232), we have

}mz,nmk2€z>o

(m2,n27k’2) (l'e)

. L kg) . 6—)fj c
lim (mama.ka) ) ) lim —_— v, €SS, e=(f;, i) €&
ma,na,ko—00 /ie_”cj’SPA ( e) ma,na,ks—>00 Zlgm2}n2,k2) ? € e’ (f“ fj) ?
e—f;

(ma2,n2,k2) (xe)

. (mz,ng,kg) . . 6—)fi c o i i
o Hempispa (Te) =ty e €She=(hf) €L
’ He—f;
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