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Abstract

Quantum mass functions (QMFs), which are tightly related to decoherence functionals, were introduced by Loeliger and

Vontobel [IEEE Trans. Inf. Theory, 2017, 2020] as a generalization of probability mass functions toward modeling quantum

information processing setups in terms of factor graphs.

Simple quantum mass functions (SQMFs) are a special class of QMFs that do not explicitly model classical random variables.

Nevertheless, classical random variables appear implicitly in an SQMF if some marginals of the SQMF satisfy some conditions;

variables of the SQMF corresponding to these “emerging” random variables are called classicable variables. Of particular interest

are jointly classicable variables.

In this paper we initiate the characterization of the set of marginals given by the collection of jointly classicable variables of

a graphical model and compare them with other concepts associated with graphical models like the sets of realizable marginals

and the local marginal polytope.

In order to further characterize this set of marginals given by the collection of jointly classicable variables, we generalize the

CHSH inequality based on the Pearson correlation coefficients, and thereby prove a conjecture by Pozsgay et al. A crucial feature

of this inequality is its nonlinearity, which poses difficulties in the proof.

I. INTRODUCTION

Graphical models like factor graphs [1]–[3] have been used to represent various statistical models. In the following, we will

call a factor graph consisting only of non-negative real-valued local functions a standard factor graph (S-FG). S-FGs have many

applications, in particular in communications and coding theory (see, e.g., [4], [5]) and statistical mechanics (see, e.g., [6]). In

these applications, factor graphs frequently represent the factorization of the joint probability mass functions (PMFs) of all the

relevant random variables. Quantities of interest can then be obtained by exactly or approximately computing marginals of this

joint PMF and suitably processing these marginals.

Factor graphs have also been used to represent quantum-mechanical probabilities [7], [8]. In contrast to S-FGs, these factor

graphs consist of complex-valued local functions satisfying some constraints. In the following, we will call such factor graphs

quantum-probability factor graphs (Q-FGs). A Q-FG is typically used to represent the factorization of the joint quantum mass

function (QMF) as introduced in [7].

In this paper, we first discuss similarities and differences between PMFs and QMFs. Some of the features of QMFs will then

motivate the study that is carried out in the rest of this paper.

This is an extended version of a paper that was submitted to ISIT 2021 using the same title. This work has been supported in part by the Research Grants

Council of the Hong Kong Special Administrative Region, China, under Project CUHK 14209317 and Project CUHK 14207518.
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II. PMFS VS. QMFS

In this section we highlight some similarities and crucial differences between PMFs and QMFs. First, we consider a classical

setup. In particular, we assume that we are interested in a graphical model that represents the joint PMF PY1,...,Yn
(y1, . . . , yn),

where Y1, . . . , Yn are some random variables of interest taking value in some alphabets Y1, . . . ,Yn.1 (In a typical application,

we might have observed Y1 = y1, . . . , Yn−1 = yn−1 and would like to estimate Yn based on these observations.) In most

applications, the PMF PY1,...,Yn
(y1, . . . , yn) does not have a “nice” factorization in terms of simple factors. However, frequently,

with the introduction of suitable auxiliary variables x1, . . . , xm taking values in some alphabets X1, . . . ,Xm, respectively, there

is a function p(x,y), where x := (x1, . . . , xm) and y := (y1, . . . , yn), such that

p(x,y) ∈ R≥0 (for all x,y) ,∑
x,y

p(x,y) = 1 ,

∑
x

p(x,y) = PY (y) (for all y) ,

and such that p(x,y) has a “nice” factorization. (For example, in a hidden Markov model, the joint PMF of the observations

does not have a “nice” factorization, but the joint PMF of the hidden state process and the observations has a “nice”

factorization.) Note that the function p(x,y) can, thanks to its properties, be considered as a joint PMF of some random

variables X1, . . . , Xm, Y1, . . . , Yn.

Second, we consider a quantum-mechanical setup. We assume, again, that we are interested in a graphical model that represents

the joint PMF PY1,...,Yn
(y1, . . . , yn), where Y1, . . . , Yn are some random variables of interest taking values in some alphabets

Y1, . . . ,Yn. Such random variables can, for example, represent the measurements obtained when running some quantum-

mechanical experiment, and we might be interested in estimating Yn based on the observations Y1 = y1, . . . , Yn−1 = yn−1.

As in the classical case, the PMF PY1,...,Yn(y1, . . . , yn) usually does not have a “nice” factorization in terms of simple factors.

Moreover, standard physical modeling of quantum-mechanical systems shows that introducing a function p(x,y) as defined

above does usually not help toward obtaining a function with a “nice” factorization. However, in many quantum-mechanical

setups of interest, with the introduction of suitable auxiliary variables x1, . . . , xm, x′1, . . . , x
′
m taking values in some alphabets

X1, . . . ,Xm, X ′1, . . . ,X ′m (with X ′i = Xi, i ∈ {1, . . . ,m}), there is a function q(x,x′,y), called quantum mass function

(QMF) [7], such that

q(x,x′,y) ∈ C (for all x,x,y) ,∑
x,x′,y

q(x,x′,y) = 1 ,

q(x,x′,y) is a PSD kernel in (x,x′) for every y ,∑
x,x′

q(x,x′,y) = PY (y) (for all y) ,

and such that q(x,x′,y) has a “nice” factorization. The major difference between p(x,y) and q(x,x′,y) is the fact that the

former takes value in R≥0, whereas the latter takes value in C. In particular,
∑

y q(x,x
′,y) is in general not a PMF over

(x,x′), thereby showing that x,x′ cannot be considered as random variables. (See [7] for more details.)

In [8], the authors discussed an approach to QMFs where y does not appear explicitly anymore, but “emerges” from a QMF.

More precisely, they first introduced a simple quantum mass function (SQMF) q(x,x′) that satisfies

q(x,x′) ∈ C≥0 (for all x,x′) ,

1For simplicity, in the following all alphabets will be finite.
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∑
x,x′

q(x,x′) = 1 ,

q(x,x′) is a PSD kernel in (x,x′) .

Afterwards, they defined “classicable” variables.

Definition 1. Let I be a subset of {1, . . . ,m} and let Ic := {1, . . . ,m} \ I be its complement. The variables xI are called

jointly classicable if the function

q(xI ,x
′
I) :=

∑
xIc ,x′

Ic

q(x,x′)

is zero for all (xI ,x
′
I) satisfying xI 6= x′I .2

Note that if xI are jointly classicable, then one can define the function p(xI) := q(xI ,xI), for which it is straightforward,

thanks to the properties of SQMFs, to show that it is a PMF. It is in this sense that random variables y1, . . . , yn that were

omitted when going from QMFs to SQMFs can “emerge” again.3

Definition 2. Let K be a collection of subsets I of {1, . . . ,m} such that xI is classicable.

Example 3. Consider the Q-FG N4 in Fig. 4, whose global function is an SQMF. In that Q-FG, ρ represents a PSD matrix

and U1, U2 are unitary matrices. One can show that for all choices of ρ, U1, and U2, the collection K can be chosen to contain

the sets {1, 2}, {1, 4}, {2, 3}, and {3, 4}.4

Thoughout this paper, we consider

K = {{1, 2}, {1, 4}, {2, 3}, {3, 4}}. (1)

Interestingly enough, the collection of functions
{
p(xI)

}
I∈K is usually such that there is no PMF p(x) such that for every

I ∈ K, the function p(xI) can be obtained as a marginal of p(x).5 In general, we can only guarantee that for two sets

I1, I2 ∈ K the following consistency constraint holds:∑
xI1\I2

p(xI1) =
∑

xI1\I2
,x′

I1\I2

q(xI1 ,x
′
I1)

(a)
=

∑
x,x′:xI1∩I2

,x′
I1∩I2

fixed

q(x,x′)

=
∑

xI2\I1
,x′

I2\I1

q(xI2 ,x
′
I2)

=
∑

xI2\I1

p(xI2) (for all xI1∩I2 ), (2)

where at step (a) we have used Definition 1.

Let us comment on these special properties of
{
p(xI)

}
I∈K:

• It turns out that these special properties of
{
p(xI)

}
I∈K are at the heart of quantum mechanical phenomena like Hardy’s

paradox [12] and the Frauchiger–Renner paradox [13].6 In fact, the Q-FG N4 in Fig. 4 can be used to analyze Hardy’s

paradox. On the side, note that the Q-FG in Fig. 4 also captures the essence of Bell’s game [14].

2It would be more precise to call this function qI . However, for conciseness, we drop the index I as it can be inferred from the arguments.
3Note that there is a strong connection of SQMFs to the so-called decoherence functional [9], [10], and via this also to the consistent-histories approach to

quantum mechanics [11]. However, the starting point of our investigations is quite different.
4For special ρ, the set K contains more elements.
5A similar observation is at the origin of the so-called “single-framework” rule in the consistent-histories approach to quantum mechanics.
6For a discussion of the latter in terms of SQMFs, see [8].
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• Interestingly, these special properties of
{
p(xI)

}
I∈K are very similar to the properties of beliefs in the local marginal

polytope of an S-FG (see, e.g., [15]).7

The above observations motivate the systematic study of the collection
{
p(xI)

}
I∈K for a given SQMF. Indeed, one key

contribution of this paper is to study this collection for the Q-FG in Fig. 4 and compare it with other objects that can be

associated with this Q-FG.

III. MOTIVATION AND CONTRIBUTIONS

Bell inequalities [18] derived by the Bell theorem are useful tools for studying classical variables for PMFs and classicable

variables for QMFs. Linear Bell inequalities provide a characterization of joint PMFs [19]–[21], which indicates the Bell

inequalities’ application in characterizing sets of marginals. The simplest and most well-known Bell inequality is the Clauster-

Horne-Shimony-Holt (CHSH) [22] inequality, i.e.,

|E(Z1 · Z2) + E(Z1 · Z4) + E(Z3 · Z2)− E(Z1 · Z2)| ≤ 2,

where Z1, . . . , Z4 are binary random variables in {−1, 1}. In [23], the authors considered the CHSH inequality in terms of the

covariance and the Pearson correlation coefficients (PCCs), i.e.,

|Cov(Z1, Z2) + Cov(Z1, Z4) + Cov(Z3, Z2)− Cov(Z1, Z2)| ≤ 16

7
, (3)

|Corr(Z1, Z2) + Corr(Z1, Z4) + Corr(Z3, Z2)− Corr(Z1, Z2)| ≤ 5

2
, (4)

where Cov(Zi, Zj) and Corr(Zi, Zj) are covariance and PCC for binary random variables Zi, Zj ∈ [−1, 1] and {i, j} ∈ K,

respectively. Note that these inequalities are non-linear for the PMF of Z1, . . . , Z4. The authors in [23, Appendix A] proved (3)

and conjected (4). They also proved Tsirelson’s bound [24] for the covariance measure in [23, Appendix B.1]. The proposed

conjecture and the proving techniques they used partially motivate our work.

To better understand classicable variables’ marginals, we define the set M(N4), which is the set of the marginals created by

the classicable variables in the two-qubit system N4 in Fig. 4. One of our paper’s main topics is to fully characterize M(N4).

For comparison, we introduce LM(K) (the local marginal polytope of the S-FG N1 in Fig. 1), M(N1) (the set of realizable

marginals of N1), M(N2) (the set of realizable marginals of the Markov chain N2 in Fig. 2), and M(N3) (the set of realizable

marginals of N3 in Fig. 3). We derive the following results.

• We prove the Venn diagram in Fig. 7 by showing that each part in the diagram is non-empty. We can see that the sets

of realizable marginals M(N3) and M(N4) are strict subsets of LM(K). In particular, both M(N1) and M(N2) have

marginals that are not in M(N4); the set M(N4) consists of marginals that are not compatible with any joint PMF.

• We generalize the Clauser-Horne-Shimony-Holt (CHSH) inequality [22] for Pearson correlation coefficients (PCCs), which

resolves a conjecture proposed in [23]. Because PCCs are non-linear functions with respect to marginals, the inequality

has a non-trivial proof. We suspect that the proof approach is applicable for proving other non-linear Bell inequalities. A

violation of this inequality indicates that the associated marginals are not in M(N3).

• We illustrate Hardy’s paradox, Bell’s game, and the maximum quantum violation of the PCC-based CHSH inequality by

the classical variables in N4.

Besides these specific results, our paper is, more generally, about leveraging tools from factor graphs to understand certain

quantities of interest in quantum information processing. In particular, given that factor graphs have been proven very useful in

classical information processing, but can also be used for doing quantum information processing, they allow one to understand

and appreciate the similarities and the differences between classical and quantum information processing.

7Local marginal polytopes are of relevance, for example, when characterizing locally operating message-passing iterative algorithms like the sum-product

algorithm [16], [17].
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ρ

U1

UH
1

x1

x′
1

x3

x′
3

U2

UH
2

x2

x′
2

x4

x′
4

I

I

Fig. 4: The Q-NFG N4.
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Fig. 5: The NFG representation of βi,j(xi, xj).
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Fig. 6: The DE-NFG N5.
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M(N2)
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Fig. 7: The Venn diagram for M(N2), M(N1), M(N3), M(N4), and

LM(K).

The rest of this paper is structured as follows. Section IV reviews some basics of S-FGs. Section IV-A discusses some

properties for N3 in Fig. 3. In particular, Section IV-A proves the PCC-based CHSH inequality and discusses the Markov chain

in Fig. 2. Section V introduces the factor graphs N4 and N5 depicted in Figs. 4 and 6, respectively. Section VI proves the Venn

diagram in Fig. 7.

A. Basic Notations and Definitions

The sets Z, Z≥0, Z>0, R, R≥0, R>0, and C denote the ring of integers, the set of nonnegative integers, the set of positive

integers, the field of real numbers, the set of nonnegative real numbers, the set of positive real numbers, and the field of

complex numbers, respectively. An overline denotes complex conjugation. Square brackets are used in two different ways.
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Namely, for any L ∈ Z>0, the function [L] is defined to be the set [L] := {1, . . . , L} with cardinality L and for any statement

S, by the Iverson’s convention, the function [S] is defined to be [S] := 1 if S is true and [S] := 0 otherwise. For any vector

v :=
(
v1 . . . vN

)
∈ CN , we define

diag(v) :=


v1 0 · · · 0

0 v2 · · · 0
...

...
. . .

...

0 0 · · · vN

 .

For any matrix M ∈ CN×N , N ∈ Z>0, and i, j ∈ [N ], the vector M(i, :) represents the i-th row of M and M(:, j) represents

the j-th column of M . The matrix M(i1 : i2, j1 : j2) represents the submatrix of M s.t.

M(i1 : i2, j1 : j2) :=


M(i1, j1) · · · M(i1, j2)

...
. . .

...

M(i2, j1) · · · M(i2, j2)

 , i1 < i2, j1 < j2.

IV. STANDARD NORMAL FACTOR GRAPHS (S-NFGS)

In this section, we review some basic concepts and properties of an S-NFG. The word “normal” refers to the fact that

variables are arguments of only one or two local functions. We use an example to introduce the fundamental concepts of an

S-NFG first.

Example 4. [1], [3] Consider the multivariate function

gN1
(x1, . . . , x4) := f1,2(x1, x2) · f1,4(x1, x4) · f3,2(x3, x2) · f3,4(x3, x4)

where gN1
, the so-called global function, is defined to be the product of the so-called local functions f1,2, f1,4, f3,2 and f3,4.

We can visualize the factorization of g with the help of the S-FG N1 in Fig. 1. Note that the S-FG N1 consists of four function

nodes f1,2, . . . , f3,4 and four (full) edges with associated variables x1, . . . , x4.

For an S-NFG, a half edge is an edge incident on one function node and a full edge is an edge incident on two function

nodes.

Definition 5. The S-NFG N(F(N), E(N),X (N)) consists of:

1) The graph (F(N), E(N)) with vertex set F(N) and edge set E(N), where E(N) consists of all full edges and half edges

in N. With some slight abuse of notation, an f ∈ F(N) will denote a function node and the corresponding local function.

2) The alphabet X (N) :=
∏
e∈E(N) Xe, where Xe is the alphabet associated with edge e ∈ E(N).

Definition 6. Given N(F(N), E(N),X (N)), we make the following definitions:

1) For every function node f ∈ F(N), the set ∂f is the set of edges incident on f . The degree of f is defined to be |∂f |.

2) An assignment x := (xe)e∈E(N) ∈ X (N) is called a configuration of the S-FG. For each f ∈ F(N), a configuration

x ∈ X (N) induces the vector x∂f with components x∂f := (xe)e∈∂f ∈
∏
e∈∂f Xe.

3) The local function f associated with function node f ∈ F(N) denotes an arbitrary mapping

f :
∏
e∈∂f

Xe → R≥0.

4) The global function is defined to be

gN(x) :=
∏

f∈F(N)

f(x∂f ).
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5) A configuration x with gN(x) 6= 0 is called a valid configuration. The set of all valid configurations, i.e.

C(N) := {x|gN(x) 6= 0} ,

is called the global behavior of N, the full behavior of N, or the edge-based code realized by N.

6) The partition function is defined to be

Z(N) :=
∑
x

gN(x),

where
∑

x denotes
∑

x∈X (N).

7) The probability mass function (PMF) induced on N is defined to be the function

pN(x) :=
gN(x)

Z(N)
.

8) Let I be a subset of E(N) and let Ic := E(N) \ I be its complement. The marginal pN,I(xI) is defined to be

pN,I(xI) :=
∑
xIc

pN(x), xI ∈ X |I|e .

Definition 7. Considering K given in (1) and N ∈ {N1,N2,N3}, we make the following definitions:

1) The alphabet Xe is Xe := {0, 1} for all e ∈ E(N).

2) The matrices pN,i,j and pN,i are defined to be

pN,i,j :=

pN,i,j(0, 0) pN,i,j(0, 1)

pN,i,j(1, 0) pN,i,j(1, 1)

 , {i, j} ∈ K,

pN,i :=

pN,i(0) 0

0 pN,i(1)

 , i ∈ E(N).

3) The set of matrices β is defined to be β :=
(
(βi,j){i,j}∈K, (βi)i∈E(N)

)
, where the matrices βi,j and βi are defined to be

βi,j :=

βi,j(0, 0) βi,j(0, 1)

βi,j(1, 0) βi,j(1, 1)

 ∈ R2×2
≥0 , {i, j} ∈ K,

βi :=

βi(0) 0

0 βi(1)

 ∈ R2×2
≥0 , i ∈ E(N).

4) The set of realizable marginals M(N) is defined to be

M(N) :=
{
β
∣∣there exists (pN,i,j)i,j∈K and (pN,i)i∈E(N) such that (6) holds

}
, (5)

where

βi,j = pN,i,j , βi = pN,i, βj = pN,j , {i, j} ∈ K. (6)

5) The set LM(K) is defined to be

LM(K) := {β |(7)–(8) hold} ,

where

0 ≤ βf (xi, xj) ≤ 1,
∑
xj∈Xe

βi,j(xi, xj) = βi(xi),
∑
xi∈Xe

βi,j(xi, xj) = βj(xj), xi, xj ∈ Xe, {i, j} ∈ K, (7)

∑
xi∈Xe

βi(xi) = 1, i ∈ E(N). (8)

The set LM(K) contains β such that (s.t.) for each (i, j) ∈ K, the matrix βi,j satisfies the normalization condition (8)

and the marginalization constraints (7), i.e., (βi,j)i,j are locally consistent PMFs. The set LM(K) is called the local
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marginal polytope of the S-NFG N1 in Fig. 1. The definition of the local marginal polytope of an S-NFG is given in [15,

Section 4.1.1].

6) For each β ∈ LM(K) and {i, j} ∈ K, each marginal βi,j can be used to represent the PMF for two random variables

Y1 and Y2 in Xe s.t.

Pr(Y1 = xi, Y2 = xj) = βi,j(xi, xj), xi, xj ∈ Xe.

The covariance of Y1 and Y2 equals

Cov(βi,j) := E
((
Y1 − E(Y1)

)
·
(
Y2 − E(Y2)

))
=
∑
xi,xj

xi · xj · βi,j(xi, xj)−

( ∑
xi∈Xe

βi(xi) · xi

)( ∑
xj∈Xe

βj(xj) · xj

)
(9)

The variances of Y1 and Y2 equal

Var(βi) := Var(Y1) = E
(
(Y1 − E(Y1))

)2
=
∑
xi∈Xe

βi(xi) · xi −

( ∑
xi∈Xe

βi(xi) · xi

)2

, (10)

Var(βj) := Var(Y2) = E
(
(Y2 − E(Y2))

)2
=
∑
xj∈Xe

βj(xj) · xj −

( ∑
xj∈Xe

βj(xj) · xj

)2

. (11)

When Var(Y1),Var(Y2) > 0, the Pearson correlation coefficient of Y1 and Y2 is defined to be

Corr(βi,j) :=
Cov(Y1, Y2)√

Var(Y1) ·Var(Y2)
. (12)

Note that E(N1) = E(N2) = E(N3). In the rest of this paper, we use E(N1) instead of E(N) when N ∈ {N1,N2,N3}. For

any {i, j} ∈ K, we use
∑
xi,xj

and
∑
xi

instead of
∑
xi,xj∈Xe

and
∑
xi∈Xe

when there is no ambiguity. We also use {·}i,j ,

(·)i,j , (·)i, and {·}x for {·}{i,j}∈K, (·){i,j}∈K, (·)i∈E(N1), and {·}x∈X (N1) respectively.

Because LM(K) is a convex set by its definition, Carathéodory’s theorem [25, Proposition B.6] implies that each element in

LM(K) can be written as a linear combination of the vertices of LM(K). The vertices of LM(K) following modulo cyclic

symmetries are listed as follows:

β1,4 β1,2 β3,2 β3,4 β1,4 β1,2 β3,2 β3,4

v1

1 0

0 0

 1 0

0 0

 0 0

1 0

 0 0

1 0

 v5

1 0

0 0

 0 1

0 0

 0 0

0 1

 0 0

1 0


v9

0 0

1 0

 0 0

1 0

 0 0

1 0

 0 0

1 0

 v10

0 1

0 0

 0 1

0 0

 0 1

0 0

 0 1

0 0


v15

1 0

0 0

 1 0

0 0

 1 0

0 0

 1 0

0 0

 v16

0 0

0 1

 0 0

0 1

 0 0

0 1

 0 0

0 1


v11

0 0

1 0

 0 0

0 1

 0 0

0 1

 0 0

1 0

 v17
1
2

0 1

1 0

 1
2

1 0

0 1

 1
2

1 0

0 1

 1
2

1 0

0 1


v21

1
2

1 0

0 1

 1
2

0 1

1 0

 1
2

0 1

1 0

 1
2

0 1

1 0


Modulo cyclic symmetries means that by tranpose and circular shifts of each marginal in (βi,j)i,j for each vertex listed in the

above table, we can obtain all the vertices of LM(K). The full list of the vertices is in Appendix A.

Lemma 8. It holds that

Var(βi) =
∑
xi∈Xe

βi(xi) · xi −

( ∑
xi∈Xe

βi(xi) · xi

)2

= det(βi), i ∈ {1, 3},
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Var(βj) =
∑
xj∈Xe

βj(xj) · xj −

( ∑
xj∈Xe

βj(xj) · xj

)2

= det(βj), j ∈ {2, 4},

Cov(βi,j) =
∑
xi,xj

xi · xj · βi,j(xi, xj)−

( ∑
xi∈Xe

βi(xi) · xi

)( ∑
xj∈Xe

βj(xj) · xj

)
= det(βi,j), {i, j} ∈ K. (13)

Recall that the definitions of K is given in (1).

Proof. See Appendix B. �

Corollary 9. For {i, j} ∈ K and 0 < βi(0), βj(0) < 1, the PCC Corr(βi,j) satisfies

Cov(βi,j) = det(βi,j), Corr(βi,j) =
det(βi,j)√

det(βi) · det(βj)
=
βi,j(0, 0) · βi,j(1, 1)− βi,j(0, 1) · βi,j(1, 0)√

βi(0) · βi(1) · βj(0) · βj(1)
. (14)

Proof. It can be proven by Lemma 8. �

Proposition 10. For Cov(βi,j) and Corr(βi,j) defined in (9) and (12), we have

|Cov(βi,j)| ≤
1

4
, |Corr(βi,j)| ≤ 1.

Proof. The inequality on the LHS can be obtain by

|Cov(βi,j)| ≤
√

Var(Y1) ·Var(Y2)
(a)
=
√

det(βi) · det(βj) =
√
βi(0)(1− βi(0))βj(0)(1− βj(0)) ≤ 1

4
.

where at step (a) we have used Lemma 8. One can prove the inequality on the RHS by the Cauchy-Schwarz inequality. �

Definition 11. Suppose that β ∈ LM(K), we define two expressions:

CovCHSH(β) := Cov(β1,2) + Cov(β1,4) + Cov(β3,2)− Cov(β3,4), β ∈ LM(K),

CorrCHSH(β) := Corr(β1,2) + Corr(β1,4) + Corr(β3,2)− Corr(β3,4), 0 < βi(0) < 1, i ∈ E(N1), β ∈ LM(K), (15)

where Cov(βi,j) and Corr(βi,j) for {i, j} ∈ K are given in (14).

The constraint 0 < βi(0), βj(0) < 1 ensures that Corr(βi,j) for {i, j} ∈ K is well-defined.

A. Properties for N3

In this subsection, we prove inequalities with respect to CorrCHSH(β) for β ∈ M(N3). These inequalities genuinely are

(nonlinear) Bell inequalities [26] in the usual sense. By definition, one can verify that

M(N1) ⊆M(N3), M(N2) ⊆M(N3),

which means that any property that holds for β ∈M(N3) also holds for β ∈M(N1) ∪M(N2). The set M(N3) contains the

set of marginals that can be realized by joint PMFs for four random variables.

Theorem 12. For any β ∈M(N3) s.t. 0 < βi(0) < 1 for all i ∈ E(N1), we have

|CorrCHSH(β)| < 2
√

2.

Proof. See Appendix C. �

The main idea in the proof of Theorem 12 can be used to verify whether a proposed bound for a function of PMFs is

achievable. In particular, we prove it by contradiction. On the one hand, the set M(N3) defined in (5) consists of marginals

for binary random variables. On the other hand, to have CorrCHSH(β) = 2
√

2 for β ∈ M(N3), the associated PMF has to

be the joint PMF for ternary random variables. It is different from the idea in the proof of the upcoming Theorem 14.
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Proposition 13. There exists a β ∈M(N3) s.t. CorrCHSH(β) = 5/2.

Proof. See Appendix D. �

Theorem 14. For any β ∈M(N3) s.t. 0 < βi(0) < 1 for all i ∈ E(N1), we have

|CorrCHSH(β)| ≤ 5

2
.

Proof. See Appendix E. �

Theorem 14 proves the conjecture stated in [23]. The key idea of the proof is that we consider β ∈ LMCHSH(K) instead of

β ∈M(N3). Suppose that we want to prove CorrCHSH(β) ≤ 5/2 for β ∈M(N3) directly. For any β ∈M(N3), the marginal

βi,j can be written as a convex combination of some joint PMF for X1, . . . , X4, i.e., {pN3
(x)}x, which makes the expression

of CorrCHSH(β) non-trivial. By considering a superset of M(N3), i.e., LMCHSH(K), we can simplify CorrCHSH(β). We

suspect that this idea can be generalized in the proof of other non-linear Bell inequalities.

Corollary 15. For any β ∈M(N3), we have

|CovCHSH(β)| ≤ 4

7
, β ∈M(N3).

Given that∑
xi,xj

βi,j(xi, xj) · (−1)xi+xj −
(∑

xi

βi(xi) · (−1)xi

)
·
(∑
xj

βj(xj) · (−1)xj

)
= 4 · Cov(βi,j), {i, j} ∈ K,

we also prove the inequality:∣∣∣∣∣ ∑
i,j∈K

(−1){i,j}={3,4} ·

(∑
xi,xj

βi,j(xi, xj) · (−1)xi+xj −
(∑

xi

βi(xi) · (−1)xi

)
·
(∑
xj

βj(xj) · (−1)xj

))∣∣∣∣∣ ≤ 16

7
.

Proof. The proof is similar to the proof of Theorem 14 and thus is omitted here. �

B. Markov Chain N2 in Fig. 2

In this subsection, we study the Markov chain N2 in Fig. 2. In particular, we prove some inequalities w.r.t. the correlation

coefficients for (βi,j)i,j .

Definition 16. We make the following definitions for N2 in Fig. 2.

1) The matrix MX1,X2 is defined to be

MX1,X2
:=

MX1,X2(0, 0) MX1,X2(0, 1)

MX1,X2
(1, 0) MX1,X2

(1, 1)

 , (16)

where

MX1,X2
(x1, x2) ∈ R≥0, x1, x2 ∈ Xe,

∑
x1,x2∈Xe

MX1,X2
(x1, x2) = 1

2) For {i, j} ∈ {{1, 4}, {2, 3}}, the matrix MXj |Xi
is defined to be

MXj |Xi
:=

MXj |Xi
(0, 0) MXj |Xi

(0, 1)

MXj |Xi
(1, 0) MXj |Xi

(1, 1)

 , (17)

where

MXj |Xi
(xj , xi) ∈ R≥0,

∑
xj∈Xe

MXj |Xi
(xj , xi) = 1, xi, xj ∈ Xe. (18)
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3) For i ∈ E(N2), the diagonal matrix MXi
is defined to be

MXi
:=

MXi(0) 0

0 MXi
(1)

 ,

where

MXi
(xi) := pN2,i(xi), xi ∈ Xe. (19)

Proposition 17. The set M(N2) equals

M(N2) = {β |there exists F(N2) s.t. (20)–(22) hold} ,

where

β1,2 = MX1,X2
, β3,2 = MX3|X2

·MX2
, (20)

β1,4 = MX1
·
(
MX4|X1

)T
, β3,4 = MX3|X2

· (MX4|X1
·MX1,X2

)T, (21)

βi = MXi
, i ∈ E(N1). (22)

Proof. It can proven directly by the definition of M(N2) in (5) and thus it is omitted here. �

Theorem 18. For the Markov chain N2 in Fig. 2, we have

Corr(β3,4) = Corr(β3,2) · Corr(β1,2) · Corr(β1,4).

Proof. See [27, Corollary 19]. �

Corollary 19. For the Markov chain N2 in Fig. 2, it holds that

|Corr(β3,4)| ≤ |Corr(β1,2)| ≤ 1.

Proof. It can be proven using Theorem 18 and Proposition 10. �

We prove another variation of the CHSH inequality [22] for the Markov chain N2 in Fig. 2.

Proposition 20. For the Markov chain N2 in Fig. 2, we have

|Cov(β1,2) + Cov(β2,4) + Cov(β1,3)− Cov(β3,4)| ≤ 1

2
. (23)

|Corr(β1,2) + Corr(β2,4) + Corr(β1,3)− Corr(β3,4)| ≤ 2, (24)

Proof. Concerning the inequality (23), we have

Cov(β1,3)
(a)
= det(MX1,X2

) · det
(
MX3|X2

)
, Cov(β2,4)

(a)
= det(MX1,X2

) · det
(
MX4|X1

)
, Cov(β3,4)

(a)
= det(MX1,X2

) · det
(
MX4|X1

)
· det

(
MX3|X2

)
.

where at step (a) we have used (20) and (21). By the property of MXj |Xi
for {i, j} ∈ {{1, 4}, {2, 3}} in (18), we have

det
(
MXj |Xi

)
= MXj |Xi

(0, 0) ·MXj |Xi
(1, 1)− (1−MXj |Xi

(0, 0)) · (1−MXj |Xi
(1, 1)) = MXj |Xi

(0, 0) +MXj |Xi
(1, 1)− 1 ≤ 1.

Then we have ∣∣∣∣Cov(β1,2) ·
(

1 + Cov(β1,4) + Cov(β2,3) ·
(

1− Cov(β1,4)
))∣∣∣∣

(a)

≤ 1

4

∣∣∣1 + Cov(β1,4)
∣∣∣+

1

4

∣∣∣1− Cov(β1,4)
∣∣∣

≤ 1

2
.

where at step (a) we have used Proposition 10.
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Now we turn to prove the inequality (24). Similar to the proof of [27, Corollary 19], the Markov property shown in Fig. 2

implies

Corr(β1,3) = Corr(β1,2) · Corr(β2,3), Corr(β2,4) = Corr(β1,2) · Corr(β1,4).

Then we have ∣∣∣∣Corr(β1,2) ·
(

1 + Corr(β1,4) + Corr(β2,3) ·
(

1− Corr(β1,4)
))∣∣∣∣

(a)

≤
∣∣∣1 + Corr(β1,4)

∣∣∣+
∣∣∣1− Corr(β1,4)

∣∣∣
≤ 2.

where at step (a) we have used Proposition 10.

�

V. QUANTUM-PROBABILITY NORMAL FACTOR GRAPHS (Q-NFGS)

This section considers a quantum system represented by the Q-NFG N4 in Fig. 4. Such Q-NFGs have been discussed

thoroughly in [7], [8]. For each degree-2 function node in NFGs, we can associate it with a matrix. In quantum information

processing systems, the degree of function nodes is usually 2. If a function node has degree more than 2, we can associated

it with a collection of matrices by setting extra variables to be the indices of matrices (see, e.g., the collections of matrices

{Ai,xi}i,xi and {Bj,xj}j,xj in Fig. 5). In Figs. 4, and 5, the row index of a matrix is marked by a ciliation. Recall that the

definitions of QMFs and the associated classicable variables are given in Definitions 1 and 2. We present the details of N4 in

the following for completeness.

Definition 21. For N4, we make the following definitions.

1) The set of edges is defined to be the set E(N4) := E(N1).

2) The alphabet for N4 is X (N4) :=
∏
i∈E(N1)

X 2
i , where X 2

i := {0, 1}2 is the alphabet for the variable x̃i := (xi, x
′
i).

3) An assignment x̃ := (x̃i)i ∈ X (N4) is called a configuration of N4.

4) The matrix ρ with row index (x1, x2) and column index (x′1, x
′
2) is defined to be

ρ :=


ρ1,1 ρ1,2 ρ1,3 ρ1,4

ρ2,1 ρ2,2 ρ2,3 ρ2,4

ρ3,1 ρ3,2 ρ3,3 ρ3,4

ρ4,1 ρ4,2 ρ4,3 ρ4,4

 ,

where the first row of ρ is indexed by (0, 0), the second row of ρ is indexed by (0, 1), the third row of ρ is indexed by

(1, 0), and the forth row of ρ is indexed by (1, 1). The columns of ρ are indexed similarly. We require that the matrix ρ

is a Hermitian, positive semi-definite (PSD) matrix with trace 1, i.e., a density matrix, which means that

ρ =


ρ1,1 ρ2,1 ρ3,1 ρ4,1

ρ2,1 ρ2,2 ρ3,2 ρ4,2

ρ3,1 ρ3,2 ρ3,3 ρ4,3

ρ4,1 ρ4,2 ρ4,3 ρ4,4

 , ρi,j = ρj,i, i, j ∈ []. (25)

5) For i ∈ {1, 2}, the 2-by-2 unitary matrix Ui is defined to be

Ui :=

 Ui(0, 0) Ui(0, 1)

− exp(ιϕi)Ui(0, 1) exp(ιϕi)Ui(0, 0)

 , |Ui(0, 0)|2 + |Ui(0, 1)|2 = 1, Ui(0, 0), Ui(0, 1) ∈ C, ϕi ∈ R,

where ι is the imaginary unit. In particular, the row indices of U1 and U2 are x3 and x4, respectively; the column indices

of U1 and U2 are x1 and x2, respectively.
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6) The global function for N4 is defined to be

gN4(x̃) := ρ
(
(x1, x2), (x′1, x

′
2)
)
· U1(x3, x1) · U1(x′3, x

′
1) · U2(x4, x2) · U2(x′4, x

′
2) · [x3 = x′3, x4 = x′4].

7) The partition function of N4 is defined to be

Z(N4) :=
∑
x̃

gN4(x̃), (26)

where
∑

x̃ denotes
∑

x̃∈X (N4)
.

8) The QMF8 induce on N4 is

qN4(x̃) :=
gN4(x̃)

Z(N4)
.

9) Let I be a subset of {1, . . . ,m} and let Ic := {1, . . . ,m} \ I be its complement. The marginal qI(x̃I) is defined to be

qI(x̃I) :=
∑
x̃Ic

qN4
(x̃), x̃I ∈

|I|∏
i=1

X 2
i .

Proposition 22. The partition function Z(N4) defined in (26) satisfies Z(N4) = 1. Therefore, we have qN4
(x̃) = gN4

(x̃).

Proof. This can be proven directly using the definitions of Z(N4) and gN4
(x̃). �

Proposition 23. For any {i, j} ∈ K and x̃i, x̃j ∈ X 2
e , the marginals qi,j(x̃i, x̃j) and qi(x̃i) are non-negative real numbers.

Proof. This can be proven directly using the definitions of K and qN4
(x̃). �

Then we define the set of marginals of N4 that can be realized by varying ρ, U1, and U2 in N4.

Definition 24. With 0̃ := (0, 0), 1̃ := (1, 1), the matrices qi,j and qi induced by qN4 are

qi,j :=

qi,j(0̃, 0̃) qi,j(0̃, 1̃)

qi,j(1̃, 0̃) qi,j(1̃, 1̃)

 , qi :=

qi(0̃) 0

0 qi(1̃)

 .

The set of realizable marginals M(N4) is defined to be the set

M(N4) := {β |There exists (qi,j)i,j and (qi)i for N4 s.t. βi,j = qi,j , βi = qi, {i, j} ∈ K} .

For any β ∈M(N4), there exist ρ, U1, and U2 s.t.

βi,j(xi, xj) = Tr
(
(Ai,xi ⊗Bj,xj ) · ρ · (Ai,xi ⊗Bj,xj )H

)
, xi, xj ∈ Xe, {i, j} ∈ K, (27)

where

Ai,xi := Exi · U
[i=3]
1 , Bj,xj := Exj · U

[j=4]
2 , {i, j} ∈ K, (28)

E0 :=

1 0

0 0

 , E1 :=

0 0

0 1

 . (29)

Note that the set {Exi
}xi

is a set of projection matrices, i.e.,

Exi
· EH

xi
= E2

xi
= Exi

, xi ∈ Xe, (30)

and also denotes the measurement of a single qubit in the computational basis. Then we have∑
xi∈Xe

AH
i,xi
·Ai,xi

=
∑
xj∈Xe

BH
j,xj
·Bj,xj

= I, {i, j} ∈ K.

8The general definition of QMFs is given in [8, Definition 1].
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which means that both {Ai,xi
}xi

and {Bj,xj
}xj

are sets of measurement matrices with outcomes xi and xj , respectively. It

holds that

Ai,xi
·AH

i,xi
= Exi

, Bj,xj
·BH

j,xj
= Exj

, xi, xj ∈ Xe, {i, j} ∈ K, (31)

AH
i,xi
·Ai,xi

(a)
=
(
U

[i=3]
1

)H
· Exi · U

[i=3]
1 =

(
AH
i,xi
·Ai,xi

)H
, xi ∈ Xe, i ∈ {1, 3}

BH
j,xj
·Bj,xj

(a)
=
(
U

[j=4]
2

)H
· ExJ

· U [j=4]
2 =

(
BH
j,xj
·Bj,xj

)H
, xj ∈ Xe, j ∈ {2, 4},

where at step (a) we have used (30). Then we have

AH
i,xi
·Ai,xi · (AH

i,xi
·Ai,xi

)H
(a)
= AH

i,xi
· Exi

·Ai,xi

(b)
= AH

i,xi
·Ai,xi

, (32)

BH
j,xj
·Bj,xj

· (BH
j,xj
·Bj,xj

)H
(a)
= BH

j,xj
· Exj

·Bj,xj

(b)
= BH

j,xj
·Bj,xj

, (33)

where at step (a) we have used (31) and at step (b) we have used (30). The above equations imply that {Ai,xi · AH
i,xi
}xi ,

{AH
i,xi
·Ai,xi

}xi
, {Bj,xj

·BH
j,xj
}xj

, and {BH
j,xj
·Bj,xj

}xj
are sets of projection matrices for all {i, j} ∈ K.

Fig. 5 illustrates (27). Namely, after closing the dashed box in Fig. 5, i.e., summing over the variables inside the box, we

obtain (27). Therefore, the marginals βi,j in Fig. 5 represent the probabilities of the outcomes in the following experiment:

• Alice and Bob share two particles whose density matrix is denoted by ρ. They can do some processing and measurements

on their own qubits.

• Alice’s i-th measurement on her qubit is described by the set of measurement matrices {Ai,xi}xi for i ∈ {1, 3}.

• Alice does not know which measurement she shall perform. Instead, when she receives the particle, she uses some random

method (e.g., a coin flip) to decide which measurement to perform.

• If i = 1, only outcome x1 is accessible for Alice. If i = 3, only outcome x3 is accessible for Alice.

• Bob’s j-th measurement on his qubit is described by the set of measurement matrices {Bj,xj}xj for j ∈ {2, 4}.

• Similarly, Bob measures his qubit based on some random method.

• When Alice chooses i and Bob chooses j, the probability of getting outcome xi, xj is βi,j(xi, xj).

The setup of this experiment is similar to that in Hardy’s paradox and Bell’s game, which indicates that we can realize Hardy’s

paradox and Bell’s game in Fig. 5, or equivalently, Fig. 4.

Proposition 25. For any β ∈M(N4), there exist ρ, U1, and U2 s.t.

β1,2 = diag(ρ), β3,2 = diag
(
(U1 ⊗ I) · ρ · (U1 ⊗ I)H

)
, (34)

β1,4 = diag
(
(I ⊗ U2) · ρ · (I ⊗ U2)H

)
, β3,4 = diag

(
(U1 ⊗ U2) · ρ · (U1 ⊗ U2)H

)
. (35)

Proof. This can be proven directly using the definitions of ρ, U1, and U2. �

Equation (2) and Proposition 23 implyM(N4) ⊆ LM(K). Thus for any {i, j} ∈ K, the functions Cov(βi,j) and Corr(βi,j)

defined in Definition 11 are well-defined for βi,j s.t. the associated β is in M(N4).

Proposition 26. There exists a β ∈M(N4) s.t. |Corr(β3,4)| > |Corr(β1,2)|.

Proof. Let us consider the following setting.

U1 = H, U2 =

1 0

0 1

 , ρ =
1

4

(
1 1 1 −1

)
·
(

1 1 1 −1
)T

.

The set of matrices (βi,j)i,j obtained by in (34) and (35) satisfies

β1,2 =
1

4

1 1

1 1

 , β1,4 =
1

4

1 1

1 1

 , β3,2 =
1

2

1 0

0 1

 , β3,4 =
1

2

1 0

0 1

 .
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Then the correlation coefficients are

Corr(β1,2) = 0, Corr(β3,4) = 1.

�

Proposition 27. For the set X̃e with arbitrary size, it holds that

|CorrCHSH(β)| ≤ 2
√

2, 0 < βi(0), βj(0) < 1, {i, j} ∈ K, β ∈M(N4), (36)

|CovCHSH(β)| ≤
√

2

2
, β ∈M(N4), (37)

which are PCC-based and covariance-based Tsirelon bounds, respctively.

Proof. The proof of (36) can be found in [23, Appendix B]. For the proof of (37), see Appendix F. �

For comparison, we note that Tsirelson’s bound is∣∣∣ ∑
{i,j}∈K

(−1)[i=3,j=4] ·
(
βi,j(0, 0) + βi,j(1, 1)− βi,j(0, 1)− βi,j(1, 0)

)∣∣∣ ≤ 2
√

2, β ∈M(N4),

which is a linear inequality w.r.t. β.

Let us make some comments on Proposition 27:

• The proof approaches of Proposition 27 work for X̃e with arbitrary size, i.e., arbitrary finite-dimensional quantum systems.

• For any {i, j} ∈ K, the matrices
∑
xi
xi ·AH

i,xi
·Ai,xi and

∑
xi
xj ·BH

i,xi
·Bi,xi represent the observables with eigenvalues

0 and 1, which are different from the observables in [23, Appendix B]. In [23], they considered more general observables

with eigenvalues in [−1, 1]. This is the reason why we obtain a stricter covariance-based Tsirelson’s bound, compared

with the bound derived in [23, Appendix B].

• We suspect that the proof approach for Proposition 27 is applicable for proving the maximum quantum violations of other

Bell inequalities for both covariance and PCCs.

Proposition 28. It holds that

|Corr(β1,2) · Corr(β1,4)− Corr(β3,2) · Corr(β3,4)|

≤
√

1−
(
Corr(β1,2)

)2 ·√1− (Corr(β1,4))2 +
√

1− (Corr(β3,2))2 ·
√

1− (Corr(β3,4))2, β ∈M(N4), (38)

16 · |Cov(β1,2) · Cov(β1,4)− Cov(β3,2) · Cov(β3,4)|

≤
√

1− (4Cov(β1,2))2 ·
√

1− (4Cov(β1,4))2 +
√

1− (4Cov(β3,2))2 ·
√

1− (4Cov(β3,4))2, β ∈M(N4). (39)

Proof. We prove (38) first. By the definitions of α̌`,i in (87) and γ̌`,j in (88) for k ∈ E(N1) and {i, j} ∈ K, we have∑
`

(
α̌`,1 α̌`,3 γ̌`,2 γ̌`,4

)H
·
(
α̌`,1 α̌`,3 γ̌`,2 γ̌`,4

)

(a)
=


1

∑
`(α̌1,`)

H · α̌3,` Corr(β1,2) Corr(β1,4)∑
`(α̌3,`)

H · α̌1,` 1 Corr(β3,2) Corr(β3,4)

Corr(β1,2) Corr(β3,2) 1
∑
`(γ̌2,`)

H · γ̌4,`
Corr(β1,4) Corr(β3,4)

∑
`(γ̌4,`)

H · γ̌2,` 1

 � 0.

where at step (a) we have used (90). The author in [28] proved that the positive semi-definiteness of the above matrix

implies (38).

The proof of (39) is similar and thus is omitted here. Note that to prove (39), we need Proposition 10, i.e. |4Cov(βi,j)| ≤ 1

for all {i, j} ∈ K.
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Corollary 29. For {i, j} ∈ K, we define θi,j ∈ [0, π] s.t. cos(θi,j) = Corr(βi,j) and sin(θi,j) ≥ 0. We have

cos(θ1,2 + θ1,4) ≤ cos(θ3,2 − θ3,4), cos(θ3,2 + θ3,4) ≤ cos(θ1,2 − θ1,4).

Proof. It can be proven directly by Proposition 28. �

Example 30. Hardy’s Paradox Hardy’s paradox [12] states that there is no β ∈M(N3) s.t.

β1,2(1, 1) = 0, β3,2(1, 0) = 0, β1,4(0, 1) = 0, β3,4(1, 1) > 0. (40)

We consider the following matrices for the Q-NFG N4 in Fig. 4:

H :=
1√
2

1 1

1 −1

 , U1 = H, U2 = H, ρ =
1

3
·
(

1 1 1 0
)
·
(

1 1 1 0
)T

,

where H is called the Hadamard gate. The collection of matrices β ∈M(N4) obtained via (34) and (35) satisfies

β1,2 =
1

3

1 1

1 0

 , β1,4 =
1

6

4 0

1 1

 , β3,2 =
1

6

4 1

0 1

 , β3,4 =
1

12

9 1

1 1

 .

The above marginals satisfy Hardy’s paradox in (40).

A. Bell’s Game

In this subsection, we illustrate Bell’s game [14] in terms of the classicable variables of the QMF qN4
(x̃). One way to win

Bell’s game is to let β satisfy

β1,2 = β1,4 = β3,2 =
1

8

2 +
√

2 2−
√

2

2−
√

2 2 +
√

2

 , β3,4 =
1

8

2−
√

2 2 +
√

2

2 +
√

2 2−
√

2

 , (41)

By Corr(βi,j) in (14) for {i, j} ∈ K, we have

Corr(β1,4) = Corr(β1,2) = Corr(β3,2) =

√
2

2
, Corr(β3,4) = −

√
2

2
,

which implies

CorrCHSH(β) =

√
2

2
+

√
2

2
+

√
2

2
+

√
2

2
= 2
√

2.

Proposition 31. The collection of matrices β satisfying (41) is in M(N4).

Proof. See Appendix G. �

B. The Double-Edge Normal Factor Graph (DE-NFG) N5

Note that the upper half and the lower half of N4 in Fig. 4 are mirror images of each other, which makes the factor

graph redundant in some sense. This redundancy is eliminated in a more compact factor graph namely DE-NFG [29]. In this

subsection, we present the details of the DE-NFG N5 in Fig. 6, which is defined based on N4.

Definition 32. Based on N4 in Fig. 4, we make the following definitions for the DE-NFG N5 in Fig. 6.

• The matrix ρL with row index x̃1 and column index x̃2 is defined to be the Liouville-superoperator representation of ρ,

which means

ρL
(
x̃1, x̃2

)
:= ρ

(
(x1, x2), (x′1, x

′
2)
)
, x1, x

′
1, x2, x

′
2 ∈ Xe.
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Then we have

ρL =


ρ1,1 ρ1,2 ρ2,1 ρ2,2

ρ1,3 ρ1,4 ρ2,3 ρ2,4

ρ3,1 ρ3,2 ρ4,1 ρ4,2

ρ3,3 ρ3,4 ρ4,3 ρ4,4


(a)
=


ρ1,1 ρ2,1 ρ2,1 ρ2,2

ρ3,1 ρ4,1 ρ3,2 ρ4,2

ρ3,1 ρ3,2 ρ4,1 ρ4,2

ρ3,3 ρ4,3 ρ4,3 ρ4,4

 ,

where at step (a) we have used (25).

• The entry in the matrix Ũi with row index x̃i1 and column index x̃i2 is defined to be

Ũi(x̃i1 , x̃i2) := U1(xi1 , xi2) · U1(x′i1 , x
′
i2

), x̃i1 , x̃i2 ∈ X̃e, i ∈ {1, 2}. (42)

where i1 = 3 and i2 = 1 when i1 = 4 and i2 = 2. The matrix Ũi can be written as

Ũi = Ui ⊗ Ui.

In N4 and N5, we require xi2 = x′i2 . By item 5) in Definition 21, the matrix Ũi can be written as

Ũi =


|Ui(0, 0)|2 Ui(0, 0) · Ui(0, 1) Ui(0, 1) · Ui(0, 0) |Ui(0, 1)|2

× × × ×

× × × ×

|Ui(0, 1)|2 −Ui(0, 0) · Ui(0, 1) −Ui(0, 1) · Ui(0, 0) |Ui(0, 0)|2

 , (43)

where the entries marked × are irrelevant.

• The set of realizable marginals M(N5) is defined to be the set

M(N5) :=
{
β ∈ LM(K)

∣∣∣ there exist ρL, Ũ1, and Ũ2 s.t. (44)–(47) hold
}
,

where

β1,2 =

ρL(0̃, 0̃) ρL(0̃, 1̃)

ρL(1̃, 0̃) ρL(1̃, 1̃)

 , (44)

β3,2 =

Ũ1

(
0̃, :
)
· ρL
(
:, 0̃
)

Ũ1

(
0̃, :) · ρL

(
:, 1̃
)

Ũ1

(
1̃, :) · ρL

(
:, 0̃
)

Ũ1

(
1̃, :) · ρL

(
:, 1̃
)
 , (45)

β1,4 =

ρL
(
0̃, :
)
·
(
Ũ2

(
0̃,
))T

ρL
(
0̃, :
)
·
(
Ũ2

(
:, 1̃
))T

ρL
(
1̃, :
)
·
(
Ũ2

(
:, 0̃
))T

ρL
(
1̃, :
)
·
(
Ũ2

(
:, 1̃
))T
 , (46)

β3,4 =

Ũ1

(
0̃, :
)
· ρL ·

(
Ũ2

(
:, 0̃
))T

Ũ1

(
0̃, :
)
· ρL ·

(
Ũ2

(
:, 1̃
))T

Ũ1

(
1̃, :
)
· ρL ·

(
Ũ2

(
:, 0̃
))T

Ũ1

(
1̃, :
)
· ρL ·

(
Ũ2

(
:, 1̃
))T
 . (47)

Proposition 33. It holds that M(N5) =M(N4).

Proof. By the definitions of M(N5) and M(N4), there is a bijection between the elements of M(N5) and M(N4). �

Proposition 26 and Proposition 33 imply that there exists β ∈ M(N5) s.t. |Corr(β3,4)| > |Corr(β1,2)|. Combining with

Corollary 19, we can see that although N2 has a topology similar to N5, the DE-NFG N5 provides extra marginals by varying

ρL, Ũ1, and Ũ2.

VI. RELATIONSHIP AMONG THE SETS

In this section, we prove that that the Venn diagram in Fig. 7 holds by proving that each part in the Venn diagram is

non-mepty.

We prove that M(N3) and M(N4) are strict subsets of LM(K) first.



18

Lemma 34. It holds that

M(N3) ( LM(K).

Proof. See Appendix H. �

Corollary 35. The vertices v17, . . . ,v24 of LM(K) (see Appendix A) are not in M(N3).

Proof. The proof is similar to the proof of Lemma 34 and thus is omitted here. �

Then we study the relationship between M(N4) and LM(K).

Lemma 36. For a β ∈M(N4) satisfying

β1,2 =

 0 α

1− α 0

 , α ∈ R, 0 ≤ α ≤ 1,

the associated matrix ρ equals

ρ =


0 0 0 0

0 α ρ3,2 0

0 ρ3,2 1− α 0

0 0 0 0

 |ρ3,2| ≤
√
α · (1− α).

Proof. See Appendix I �

Similar to the proof of Lemma 34, we prove that there are points in LM(K) that are not in M(N4).

Lemma 37. The vertex v18 of LM(K) (see Appendix A) is not in M(N4).

Proof. See Appendix J. �

Lemma 38. The vertices v17, . . . ,v24 of LM(K) (see Appendix A) are not in M(N4).

Proof. The proof is similar to the proof of Lemma 37 and thus is omitted here. �

We can further prove that there are sets in LM(K) that are not in M(N4).

Lemma 39. It holds that

S3,4,7,10,18,22(N1) :=

v ∈ LM(K)

∣∣∣∣∣∣∣∣∣
v = α3v3 + α4v4 + α7v7 + α10v10 + α18v18 + α23v23,

α3, . . . , α23 ∈ R≥0, α3 + α4 + α7 + α10 + α18 + α23 = 1,

0 < α3 + α7 < 1, 0 < α4 + α10 < 1

 *M(N4).

where v3, . . . ,v23 are given in Appendix A.

Proof. See Appendix K. �

Lemma 40. It holds that

S5,9,12,13,18,23(N1) :=

β ∈ LM(K)

∣∣∣∣∣∣∣∣∣
β = α5v5 + α9v9 + α12v12 + α13v13 + α18v18 + α23v23,

α5, . . . , α23 ∈ R≥0, α5 + α9 + α12 + α13 + α18 + α23 = 1,

0 < α5 + α12 < 1, 0 < α8 + α13 < 1

 *M(N4),

S2,8,14,15,17,20(N1) :=

β ∈ LM(K)

∣∣∣∣∣∣∣∣∣
β = α2v2 + α8v8 + α14v14 + α15v15 + α17v17 + α20v20

α2, . . . , α20 ∈ R≥0, α2 + α8 + α14 + α15 + α17 + α20 = 1,

0 < α2 + α14 < 1, 0 < α8 + α15 < 1

 *M(N4),
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M(N3)

M(N1)

M(N2)

M(N4)

Fig. 8: The Venn diagram of M(N1), M(N2), M(N3) and M(N4).

S1,6,11,16,17,20(N1) :=

β ∈ LM(K)

∣∣∣∣∣∣∣∣∣
β = α1v1 + α6v6 + α11v11 + α16v16 + α17v17 + α20v20,

α1, . . . , α20 ∈ R≥0, α1 + α6 + α11 + α16 + α17 + α20 = 1

0 < α1 + α11 < 1, 0 < α6 + α16 < 1

 *M(N4),

where v2, . . . ,v23 are given in Appendix A.

Proof. The proof is similar to the proof of Lemma 39 and thus is omitted here. �

Corollary 41. It holds that

M(N4) ( LM(K).

Proof. It can be proven by Lemmas 37–40. �

A. Proof of the Venn diagram in Fig. 8

In this subsection, we show that the Venn diagram in Fig. 8 holds.

It is easy to verify that

M(N1) ⊆M(N3), M(N2) ∩M(N4) 6= ∅.

Lemma 42. It holds that

M(N3) \
(
(M(N1) ∪M(N4)) ∩M(N3)

)
6= ∅.

Proof. See Appendix L. �

Lemma 43. It holds that

(M(N3) ∩M(N4)) \
(
M(N1) ∩M(N4)

)
6= ∅.

Proof. See Appendix M. �

Lemma 44. It holds that

M(N4) \ (M(N4) ∩M(N3)) 6= ∅.

Proof. In Example 30, we show that there exists a β ∈M(N4) satisfying

β1,2 =
1

3

1 1

1 0

 , β1,4 =
1

6

4 0

1 1

 , β3,2 =
1

6

4 1

0 1

 , β3,4 =
1

12

9 1

1 1

 .

On one hand, we have β3,4(1, 1) = 1
12 > 0. On the other hand, we have

β1,2(1, 1) = 0, β3,2(1, 0) = 0, β1,4(0, 1) = 0.
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If such β is in M(N3), there exists a joint PMF {pN3
(x)}x s.t.

pN3(1, 1, 1, 1) =
∑
x2

pN3(0, x2, 1, 1) =
∑
x1

pN3(x1, 0, 1, 1) = 0,

∑
x1,x2

pN3
(x1, x2, 1, 1) > 0,

which is a contradiction. �

Lemma 45. We consider the following vector and matrices for the Q-FG N4 in Fig. 4.

U1 = H, U2 = H, ρ = 1
3 ·
(
−1 1 1 0

)H
·
(
−1 1 1 0

)
.

The collection of matrices β obtained via (34)–(35) are not in M(N3).

Proof. The setup above is similar to the setup in Hardy’s paradox (see Example 30) except that ρ is different. The collection

of matrices β ∈M(N4) obtained via (34) and (35) satisfies

β1,2 =
1

3

1 1

1 0

 , β1,4 =
1

6

0 4

1 1

 , β3,2 =
1

6

0 1

4 1

 , β3,4 =
1

12

1 1

1 9

 .

Similar to the proof of Lemma 44, we can show that such β /∈M(N3). �

Lemma 46. It holds that

M(N2) \ (M(N4) ∩M(N2)) 6= ∅.

Proof. See Appendix P. �

Lemma 47. It holds that

M(N1) \
(
(M(N4) ∪M(N2)) ∩M(N1)

)
6= ∅.

Proof. See Appendix N. �

Lemma 48. It holds that

M(N2) (M(N1), M(N1) ∩M(N4) \ (M(N2) ∩M(N1) ∩M(N4)) 6= ∅.

Proof. See Appendix O. �

Theorem 49. The Venn diagram in Fig. 7 holds.

Proof. It can be proven by combining Lemmas 34–46. �

We make some remarks on the Venn diagram in Fig. 7:

• On the one hand, the set of realizable marginalsM(N4) provides extra marginals that are not inM(N3). For example, by

introducing entanglement in the quantum system, one can obtain a set of incompatible marginals (see, e.g., Lemmas 44

and 45).

• On the other hand, the sets M(N1), M(N2), and M(N3) also consist of marginals that are not in M(N4).

APPENDIX A

VERTICES OF LM(K)

Given (βi,j)i,j for β ∈ LM(K), the matrix βi can be obtained via∑
xj∈Xe

βi,j(xi, xj) = βi(xi), xi ∈ Xe, {i, j} ∈ K.
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It is sufficient to provide the values of (βi,j)i,j to determine a β ∈ LM(K). Note that LM(K) is a convex set and using

the lrs algorithm [35], a revised version of the reverse search vertex enumeration algorithm proposed in [36], we can find the

vertices of LM(K), which are listed as follows.

β1,4 β1,2 β3,2 β3,4 β1,4 β1,2 β3,2 β3,4

v1

1 0

0 0

 1 0

0 0

 0 0

1 0

 0 0

1 0

 v2

0 1

0 0

 1 0

0 0

 1 0

0 0

 0 1

0 0


v3

0 0

1 0

 0 0

1 0

 1 0

0 0

 1 0

0 0

 v4

1 0

0 0

 0 1

0 0

 0 1

0 0

 1 0

0 0


v5

1 0

0 0

 0 1

0 0

 0 0

0 1

 0 0

1 0

 v6

0 1

0 0

 1 0

0 0

 0 0

1 0

 0 0

0 1


v7

0 0

0 1

 0 0

1 0

 1 0

0 0

 0 1

0 0

 v8

0 0

1 0

 0 0

0 1

 0 1

0 0

 1 0

0 0


v9

0 0

1 0

 0 0

1 0

 0 0

1 0

 0 0

1 0

 v10

0 1

0 0

 0 1

0 0

 0 1

0 0

 0 1

0 0


v11

0 0

1 0

 0 0

0 1

 0 0

0 1

 0 0

1 0

 v12

0 1

0 0

 0 1

0 0

 0 0

0 1

 0 0

0 1


v13

0 0

0 1

 0 0

1 0

 0 0

1 0

 0 0

0 1

 v14

0 0

0 1

 0 0

0 1

 0 1

0 0

 0 1

0 0


v15

1 0

0 0

 1 0

0 0

 1 0

0 0

 1 0

0 0

 v16

0 0

0 1

 0 0

0 1

 0 0

0 1

 0 0

0 1


v17

1
2

0 1

1 0

 1
2

1 0

0 1

 1
2

1 0

0 1

 1
2

1 0

0 1

 v18
1
2

1 0

0 1

 1
2

0 1

1 0

 1
2

1 0

0 1

 1
2

1 0

0 1


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1
2

1 0

0 1

 1
2

1 0

0 1

 1
2

0 1

1 0

 1
2

1 0

0 1

 v20
1
2

1 0

0 1

 1
2

1 0

0 1

 1
2

1 0

0 1

 1
2

0 1

1 0


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1
2

1 0

0 1

 1
2

0 1

1 0

 1
2

0 1

1 0

 1
2

0 1

1 0

 v22
1
2

0 1

1 0

 1
2

1 0

0 1

 1
2

0 1

1 0

 1
2

0 1

1 0


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1
2

0 1

1 0

 1
2

0 1

1 0

 1
2

1 0

0 1

 1
2

0 1

1 0

 v24
1
2

0 1

1 0

 1
2

0 1

1 0

 1
2

0 1

1 0

 1
2

1 0

0 1


APPENDIX B

PROOF OF LEMMA 8

In this appendix, we prove that

∑
xi∈Xe

βi(xi) · xi −

( ∑
xi∈Xe

βi(xi) · xi

)2

= det(βi), i ∈ {1, 3}, (48)

∑
xj∈Xe

βj(xj) · xj −

( ∑
xj∈Xe

βj(xj) · xj

)2

= det(βj), j ∈ {2, 4},

∑
xi,xj

xi · xj · βi,j(xi, xj)−

( ∑
xi∈Xe

βi(xi) · xi

)( ∑
xj∈Xe

βj(xj) · xj

)
= det(βi,j), {i, j} ∈ K. (49)
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We prove (48) first. By the definition of Var(Y1) in (11), we have

∑
xi∈Xe

βi(xi) · xi −

( ∑
xi∈Xe

βi(xi) · xi

)2
(a)
= βi(1)−

(
βi(1)

)2
= βi(0) · βi(1) = det(βi).

where at step (a) we have used Xe = {0, 1}. The proof w.r.t. det(βj) is similar and thus is omitted here.

In the rest of this proof, we prove (49). Because of Xe = {0, 1}, we have∑
xi,xj

xi · xj · βi,j(xi, xj)−

( ∑
xi∈Xe

βi(xi) · xi

)( ∑
xj∈Xe

βj(xj) · xj

)
= βi,j(1, 1)− (βi,j(1, 0) + βi,j(1, 1)) · (βi,j(0, 1) + βi,j(1, 1))

(a)
= βi,j(0, 0) · βi,j(1, 1)− βi,j · βi,j(1, 0)

= det(βi,j),

where at step (a) we have used
∑
xi,xj

βi,j(xi, xj) = 1.

APPENDIX C

PROOF OF THEOREM 12

In this appendix, we prove

CorrCHSH(β) < 2
√

2,

assuming that

0 < βi(0) < 1, i ∈ E(N1), β ∈M(N3).

The proof of CorrCHSH(β) > −2
√

2 for the same setup is similar and thus is omitted here.

Note that there is a bijection between the set of all possible joint PMFs of random variables X1, . . . , X4 ∈ {0, 1} and pN3
(x).

It means that for any joint PMFs of random variables X1, . . . , X4, there is an S-NFG N3 s.t.

Pr(X1 = x1, . . . , X4 = x4) = pN3(x), x ∈ X |Xe|
e .

The other direction also holds. Thus it is equaivalent to prove that for any joint PMF of random variables X1, . . . , X4 ∈ Xe
s.t. 0 < Pr(Xi = 0) < 1, i ∈ E(N1), we have

Corr(X1, X2) + Corr(X1, X4) + Corr(X3, X2)− Corr(X3, X4) < 2
√

2,

where Corr(Xi, Xj) is the Pearson correlation coefficient of Xi and Xj for {i, j} ∈ K. For simplicity, we define

X̌i :=
Xi − E(Xi)√

Var(Xi)
, i ∈ E(N1).

It follows that

E
(
(X̌i)

2
)

= 1, i ∈ E(N1), (50)

Corr(X1, X2) + Corr(X1, X4) + Corr(X3, X2)− Corr(X3, X4) = E
(
X̌2(X̌1 + X̌3)

)
+ E

(
X̌4(X̌3 − X̌1)

)
. (51)

By the Cauchy-Schwarz inequality, we have

E
(
X̌2(X̌1 + X̌3)

)
≤
√
E
(
(X̌2)2

)
·
√
E
(
(X̌1 + X̌3)2

) (a)
=
√
E
(
(X̌1 + X̌3)2

)
,

E
(
X̌4(X̌3 − X̌1)

)
≤
√
E
(
(X̌4)2

)
·
√
E
(
(X̌3 − X̌1)2

) (a)
=
√
E
(
(X̌3 − X̌1)2

)
,

where at step (a) we have used (50). Then the expression (51) is bounded by

E
(
X̌2(X̌1 + X̌3)

)
+ E

(
X̌4(X̌3 − X̌1)

)
≤
√
E
(
(X̌1 + X̌3)2

)
+
√

E
(
(X̌3 − X̌1)2

)
. (52)
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Let us focus on the RHS of the inequality (52). We have

E
(
(X̌1 + X̌3)2

)
+ E

(
(X̌3 − X̌1)2

)
= 2E

(
(X̌1)2 + (X̌3)2

) (a)
= 4,

where at step (a) we have used (50). Note that

2
√

2 = max
0≤a≤4

√
a+
√

4− a.

Then we have √
E
(
(X̌1 + X̌3)2

)
+
√

E
(
(X̌3 − X̌1)2

)
≤ 2
√

2. (53)

In the rest of this proof, we prove that the equality in (53) cannot be achieved. In particular, the Cauchy-Schwarz inequality

in (52) holds with equality iff

X̌1 + X̌3 = E
((
X̌1 + X̌3

)
· X̌2

)
· X̌2, with probability 1, (54)

X̌3 − X̌1 = E
((
X̌3 − X̌1

)
· X̌4

)
· X̌4, with probability 1. (55)

In particular, we have X̌3 + X̌1 ∈ X1 and X̌3 − X̌1 ∈ X2, where

X1 :=

{
x3 − E(X3)√

Var(X3)
+
x1 − E(X1)√

Var(X1)

}
x1,x3∈Xe

, X2 :=

{
x3 − E(X1)√

Var(X1)
− x1 − E(X3)√

Var(X3)

}
x1,x3∈Xe

.

The random variables X̌2 and X̌4 have binary alphabet, which means that we need |X1| = 2 and |X2| = 2 in order to have (54)

and (55). There are five conditions w.r.t. X1 and X3 that we need to analyse.

1) X1 = 0 with probability 1. In this case we have

E
(
X̌2(X̌1 + X̌3) + X̌4(X̌3 − X̌1)

)
= E

(
X̌3X̌2 + X̌3X̌4

)
≤ 2.

2) X1 = 1 with probability 1, X3 = 0 with probability 1, or X3 = 1 with probability 1. The analysis of these cases is

similar to the analysis of the previous case and thus is omitted here.

3) Pr((X1, X3) = (1, 0)) = 0 and Pr((X1, X3) = (0, 1)) = 0. In this case, we have X3 = X1 with probability 1, which

implies X̌3 = X̌1 with probability 1. Then the LHS of the inequality (53) equals√
4 · E

(
(X̌1)2

) (a)
= 2 < 2

√
2,

where at step (a) we have used (50).

4) Pr((X1, X3) = (0, 0)) = 0 and Pr((X1, X3) = (1, 1)) = 0. The analysis of this case is similar to the analysis of the

previous case and thus is omitted here.

5) The support size of Pr((X1, X3) = (x1, x3)) is larger than or equal to 3. In this case, we cannot have |X1| = |X2| = 2.

APPENDIX D

PROOF OF PROPOSITION 13

In this appendix, we prove that there exists {pN3
(x)}x s.t. the marginals (βi,j)i,j computed in (6) for N3 satisfies

CorrCHSH(β) =
5

2
, 0 < βi(0) < 1, i ∈ E(N1).

We consider a PMF of X1, . . . , X4.

(x) (0, 0, 0, 1) (1, 1, 0, 1) (0, 1, 1, 0) Otherwise

pN3
(x) 1

3
1
3

1
3 0

(56)

Then the marginals computed in (6) are

β1,2 =

 1
3

1
3

0 1
3

 , β3,2 =

 1
3

1
3

0 1
3

 , β1,4 =

 1
3

1
3

0 1
3

 , β3,4 =

0 2
3

1
3 0

 , (57)
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β1 =

 2
3 0

0 1
3

 , β2 =

 1
3 0

0 2
3

 , β3 =

 2
3 0

0 1
3

 , β4 =

 1
3 0

0 2
3

 .

The resulting correlation coefficients are

Corr(β1,2) = Corr(β3,2) = Corr(β1,4) =
1

2
, Corr(β3,4) = −1,

which implies

CorrCHSH(β) =
1

2
+

1

2
+

1

2
+ 1 =

5

2
.

APPENDIX E

PROOF OF THEOREM 14

In this appendix, we prove that

CorrCHSH(β) ≤ 5

2
, 0 < βi(0) < 1, i ∈ E(N1), β ∈M(N3). (58)

The proof for the inequality CorrCHSH(β) ≥ − 5
2 in the same setup is similar and thus is omitted here.

Definition 50. The set LMCHSH(K) is defined to be

LMCHSH(K) := {β ∈ LM(K) |(59) and (60) hold} ,

where

βi(0) · βi(1) > 0, i ∈ E(N1), (59)∑
{i,j}∈K

(−1)[i=3,j=4] ·
(
βi,j(0, 0) + βi,j(1, 1)− βi,j(0, 1)− βi,j(1, 0)

)
≤ 2. (60)

The inequality (60) ensures that β satisfies the CHSH inequality [22]. We will discuss the details in the proof of Lemma 51.

Lemma 51. It holds that for any β ∈ M(N3) s.t. βi(0) · βi(1) > 0 , i ∈ E(N1), we have β ∈ LMCHSH(K). Recall that

M(N3) is defined in (5).

Proof. By the definition of M(N3), a set of matrices β in M(N3) is also in LM(K). We need to prove that β ∈ M(N3)

satisfies (60) as well.

When a β is inM(N3), there exists a joint PMF
{
pN3(x)

}
x

and the associated marginals {βi,j}i,j and {βi}i s.t. (6) holds.

For any joint PMF of random variables X1, . . . , X4 ∈ Xe, there is a set of PMFs
{
pN3(x)

}
x

realizing it, i.e.,

Pr(X1 = x1, . . . X4 = x4) = pN3
(x), x1, . . . , x4 ∈ Xe. (61)

Suppose that we obtain the joint PMF of X1, . . . , X4, the well-known CHSH inequality [22] implies that

E
(

(−1)X1 · (−1)X2

)
+ E

(
(−1)X3 · (−1)X2

)
+ E

(
(−1)X1 · (−1)X4

)
− E

(
(−1)X3 · (−1)X4

)
≤ 2. (62)

By (61) and (6), inequality (62) implies that (60) holds for β ∈M(N3). �

Proposition 52. It holds that

LMCHSH(K)\M(N3) 6= ∅.

Proof. Let us consider β ∈ LMCHSH(K) s.t.

β1,2(x1, x2) =
1

2
· [x1 = x2], x1, x2 ∈ Xe, β3,2(x3, x2) =

1

2
· [x2 6= x3], x2, x3 ∈ Xe,

β1,4(x1, x4) =
1

2
· [x1 = x4], x1, x4 ∈ Xe, β3,4(x3, x4) =

1

2
· [x3 = x4], x3, x4 ∈ Xe.
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If the above set of marginals is in ∈ M(N3), there exists a joint PMF
{
pN3

(x)
}
x

s.t. β in (6) for N3 satisfies the above

expressions. In order to have such joint PMF, the valid configurations in C(N3) satisfy

x1 = x2 = x3 = x4, x2 6= x3.

which is a contradiction. Such a β is not in M(N3). �

If we prove

CorrCHSH(β) ≤ 5

2
, β ∈ LMCHSH(K), (63)

then we can prove (58) with the help of Lemma 51. Recall that the definition of CorrCHSH(β) is given in (15). We prove (63)

for some special cases first and then we generalize the proof. The proof strategy is shown as follows:

1) We formulate an optimization problem where the CorrCHSH(β) is maximized over β ∈ LMCHSH(K) s.t. β has a

similar structure as (βi,j)i,j in (57), i.e., having the same number of zero entries as in (βi,j)i,j . Note that (βi,j)i,j in (57)

has four zero entries. This problem is an optimization problem with linear constraints only, which helps determine the

optimal solution. We prove CorrCHSH(β) ≤ 5/2 in this case.

2) Then we consider another optimization problem where the CorrCHSH(β) is maximized over β ∈ LMCHSH(K) s.t.

the number of zero entries in (βi,j)i,j is three. We need to prove that to maximize CorrCHSH(β), the optimal β ∈

LMCHSH(K) needs to have four zero entries in (βi,j)i,j . Then we have CorrCHSH(β) ≤ 5/2 in this case.

3) By repeating the similar procedure, we prove CorrCHSH(β) ≤ 5/2 for all β ∈ LMCHSH(K).

A. Four Zeros

In the proof of Proposition 13 we show that the PMF in (56) achieves the equality in (63). Based on this observation, in

this subsection, we prove (63) for β s.t.

β ∈ LMCHSH(K), β1,2(1, 0) = 0, β1,4(1, 0) = 0, β3,2(1, 0) = 0, β3,4(0, 0) = 0. (64)

We define β(p1, . . . , p4) ∈ LMCHSH(K) to be the set of matrices satisfying (64) s.t.

β1,2 =

p1 1− p1 − p2
0 p2

 , β1,4 =

p3 1− p2 − p3
0 p2

 , β3,2 =

p1 1− p1 − p4
0 p4

 , β3,4 =

 0 1− p4
p3 p4 − p3

 ,

(65)

β1 = diag
(

1− p2 p2

)
, β2 = diag

(
p1 1− p1

)
, β3 = diag

(
1− p4 p4

)
, β4 = diag

(
p3 1− p3

)
,

p1 + p2 ≤ 1, p2 + p3 ≤ 1, p1 + p4 ≤ 1, p3 ≤ p4, 0 < p1, . . . , p4 < 1. (66)

Lemma 53. If β(p1, . . . , p4) is in LMCHSH(K), we have

p1 + p2 + p3 ≤ 1.

Proof. The function β(p1, . . . , p4) ∈ LM(K) satisfies (59). To ensure that β satisfies (60) as well, we need

p1 + p2 − 1 + p1 + p2 + p3 + p2 − 1 + p3 + p2 + p1 + p4 − 1 + p1 + p4 + p3 + 1− p4 − p4 + p3 = 4(p1 + p2 + p3)− 2 ≤ 2.

�

The correlation coefficients for β(p1, . . . , p4) are

Corr
(
β1,2

)
=

√
p1

1− p1
·
√

p2
1− p2

, Corr
(
β1,4

)
=

√
p2

1− p2
·
√

p3
1− p3

,

Corr
(
β3,2

)
=

√
p1

1− p1
·
√

p4
1− p4

, Corr
(
β3,4

)
= −

√
p3

1− p3
·
√

1− p4
p4

,



26

We then define an optimization problem:

F1 := sup
p1,p2,p3,p4

f1(p1, p2, p3, p4)

s.t. p1 + p4 ≤ 1, p3 ≤ p4, p1 + p2 + p3 ≤ 1, 0 < p1, p2, p3, p4 < 1, (67)

where

f1(p1, p2, p3, p4) :=

√
p1

1− p1
·
√

p2
1− p2

+

√
p2

1− p2
·
√

p3
1− p3

+

√
p1

1− p1
·
√

p4
1− p4

+

√
p3

1− p3
·
√

1− p4
p4

.

If we prove F1 ≤ 5/2, then we prove (63) for β satisfying (64).

Lemma 54. In order to find F1, we can set at least one of the following inequalities

p3 ≤ p4, p1 + p2 + p3 ≤ 1, (68)

to be an equality.

Proof. The function f1 is non-decreasing w.r.t. p3, which means that at least one of the inequalities w.r.t. the upper bound of

p3 can be an equality to maximize f1. �

With the help of Lemma 54, we can solve the problem (67) by considering two cases w.r.t. p3, respectively. In each case,

one of the inequalities in (68) is an equality. The first case is p4 = p3.

Lemma 55. It holds that F1 = 5/2 when p4 = p3.

Proof. When we let p1 = p2 = p3 = 1/3, we have f1(p1, p2, p3, p3) = 5/2. It is sufficient to prove F1 ≤ 5/2.

Because f1 is non-decreasing w.r.t. p3, we set p1 + p2 + p3 = 1 in order to maximize f1. We have

f1(p1, p2, 1− p1 − p2, 1− p1 − p2) =

√
p2

1− p1
·
√

p1
1− p2

+

√
p2

p1 + p2
·
√

1− p1 − p2
1− p2

+

√
p1

p1 + p2
·
√

1− p1 − p2
1− p1

+ 1

(a)

≤
√

p2
1− p1

·
√

p1
1− p2

+

√∣∣∣∣1− p1
1− p2

∣∣∣∣+

∣∣∣∣1− p2
1− p1

∣∣∣∣+ 1

(b)
=

√
p2

1− p1
·
√

p1
1− p2

+

√
2− p1

1− p2
− p2

1− p1
+ 1

where at step (a) we have used the Cauchy-Schwarz inequality, i.e.,√
p2

p1 + p2
·
√

1− p1 − p2
1− p2

+

√
p1

p1 + p2
·
√

1− p1 − p2
1− p1

≤

√∣∣∣∣√ p2
p1 + p2

∣∣∣∣2 +

∣∣∣∣√ p1
p1 + p2

∣∣∣∣2︸ ︷︷ ︸
=1

·

√∣∣∣∣√1− p1
1− p2

∣∣∣∣2 +

∣∣∣∣√1− p2
1− p1

∣∣∣∣2

and at step (b) we have used p1 + p2 + p3 = 1. Considering an optimization problem

sup
x,y

√
xy +

√
2− x− y + 1

s.t. 0 ≤ x, y ≤ 1,

we have
√
xy +

√
2− x− y + 1 ≤

√
2 + 1 when x = 0, y = 0, x = 1, or y = 1. When x, y > 0 and x+ y < 2, we have

∂

∂x

(√
xy +

√
2− x− y

)
=

1

2

(√
y

x
− 1√

2− x− y

)
,

∂

∂y

(√
xy +

√
2− x− y

)
=

1

2

(√
x

y
− 1√

2− x− y

)
.

Setting the above expressions equal to zeros, which is the necessary condition for x and y to be the optimal solutions, we have

x = y = 1/2 and the associated optimal value is 5/2. Then we prove that F1 = 5/2. �

The second case is p3 = 1− p1 − p2. We obtain the following lemma.

Lemma 56. When p3 = 1− p1 − p2, we have F1 ≤ 5/2.
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Proof. The proof is similar to the proof of Lemma 55 and thus is omitted here. �

Lemma 57. Suppose that β ∈ LMCHSH(K) and for all {i, j} ∈ K, at least one of the entries in βi,j is zero, we obtain (63).

Proof. In this subsection, we prove (63) for β satisfying (64). The proof for other cases is similar and thus is omitted here. �

B. Three Zeros

In this subsection, we prove (63) for β s.t.

β ∈ LMCHSH(K), β1,2(1, 0) = 0, β3,2(1, 0) = 0, β3,4(0, 0) = 0. (69)

We define β(p1, . . . , p5) ∈ LMCHSH(K) to be the set of matrices s.t.

β1,2 =

p1 1− p1 − p2
0 p2

 , β1,4 =

 p3 1− p2 − p3
p2 − p4 p4

 , (70)

β3,2 =

p1 1− p1 − p5
0 p5

 , β3,4 =

 0 1− p5
p2 + p3 − p4 p4 + p5 − p2 − p3

 , (71)

β1 = diag
(

1− p2 p2

)
, β2 = diag

(
p1 1− p1

)
, β3 = diag

(
1− p5 p5

)
, β4 = diag

(
p2 + p3 − p4 1 + p4 − p2 − p3

)
,

p1 + p2 ≤ 1, p2 + p3 ≤ 1, p4 ≤ p2, p1 + p5 ≤ 1, p4 < p2 + p3 ≤ p4 + p5, p3, p4 ≥ 0, p1, p2, p5 > 0, p1, . . . , p5 < 1.

(72)

Lemma 58. If β(p1, . . . , p5) is in LMCHSH(K), we have

p1 + p2 + p3 ≤ 1.

Proof. It is similar to the proof of Lemma 53 and thus is omitted here. �

The correlation coefficients for β(p1, . . . , p5) are

Corr
(
β1,2

)
=

√
p1

1− p1
·
√

p2
1− p2

, Corr
(
β1,4

)
=

p4(1− p2)− p2(1− p2 − p3)√
p2(1− p2)(p2 + p3 − p4)(1 + p4 − p2 − p3)

,

Corr
(
β3,2

)
=

√
p1

1− p1
·
√

p5
1− p5

, Corr
(
β3,4

)
= −

√
p2 + p3 − p4

1 + p4 − p2 − p3
·
√

1− p5
p5

.

We consider an optimization problem:

F2 := sup
p1,...,p5

f2(p1, . . . , p5)

s.t. p1 + p2 + p3 ≤ 1, p4 ≤ p2, p1 + p5 ≤ 1, p4 < p2 + p3 ≤ p4 + p5, p3, p4 ≥ 0, p1, p2, p5 > 0, p1, . . . , p5 < 1.

(73)

where

f2(p1, . . . , p5) :=

√
p1

1− p1
·
√

p2
1− p2

+
p4(1− p2)− p2(1− p2 − p3)√

p2(1− p2)(p2 + p3 − p4)(1 + p4 − p2 − p3)
+

√
p1

1− p1
·
√

p5
1− p5

+

√
p2 + p3 − p4

1 + p4 − p2 − p3
·
√

1− p5
p5

.

If we prove F2 ≤ 5/2, then we prove (63) for β satisfying (69).

Lemma 59. It holds that F2 ≤ 5/2.

Proof. The proof is similar to the proof in Section E-A and thus is omitted here. �
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Lemma 60. Suppose that β ∈ LMCHSH(K) and there are (at least) three of the matrices in (βi,j)i,j s.t. each of these three

matrices contains at least one zero entry, we obtain (63).

Proof. In this subsection, we prove (63) for β satisfying (69). The proof for other cases is similar and thus is omitted here. �

C. Two Zeros

In this subsection, we prove (63) for β s.t.

β ∈ LMCHSH(K), β3,2(1, 0) = 0, β3,4(0, 0) = 0. (74)

We define β(p1, . . . , p6) ∈ LMCHSH(K) to be the set of matrices s.t.

β1,2 =

 p6 1 + p4 − p1 − p5 − p6
p3 − p6 p1 + p5 + p6 − p3 − p4

 , β1,4 =

 p4 1− p1 − p5
p1 − p4 p5

 , (75)

β3,2 =

p3 p2 − p3
0 1− p2

 , β3,4 =

 0 p2

p1 1− p1 − p2

 , (76)

β1 = diag
(

1 + p4 − p1 − p5 p1 + p5 − p4
)
, β2 = diag

(
p3 1− p3

)
, β3 = diag

(
p2 1− p2

)
, β4 = diag

(
p1 1− p1

)
,

p6 ≤ p3, p3 + p4 ≤ p1 + p5 + p6 ≤ 1 + p4, p4 ≤ p1, p1 + p5 ≤ 1, p3 ≤ p2, p1 + p2 ≤ 1, p1 + p5 < 1 + p4, p1 + p5 > p4,

p1, . . . , p6 < 1, p1, p2, p3 > 0, p4, p5, p6 ≥ 0.

Lemma 61. If β(p1, . . . , p6) is in LMCHSH(K), we have

p1 + p5 + p6 ≤ 1.

Proof. It is similar to the proof of Lemma 53 and thus is omitted here. �

The correlation coefficients for β(p1, . . . , p6) are

Corr
(
β1,2

)
=

p6 − p3(1 + p4 − p1 − p5)√
p3(1− p3)(p1 + p5 − p4)(1 + p4 − p1 − p5)

, Corr
(
β1,4

)
=

p4 − p1(1 + p4 − p1 − p5)√
p1(1− p1)(p1 + p5 − p4)(1 + p4 − p1 − p5)

,

Corr
(
β3,2

)
=

√
p3

1− p3
·
√

1− p2
p2

, Corr
(
β3,4

)
= −

√
p1

1− p1
·
√

p2
1− p2

.

We consider an optimization problem:

F3 := sup
p1,...,p6

f3(p1, . . . , p6)

s.t. p6 ≤ p3, p3 + p4 ≤ p1 + p5 + p6 ≤ 1, p4 ≤ p1, p1 + p5 ≤ 1, p3 ≤ p2, p1 + p2 ≤ 1, p1 + p5 < 1 + p4,

p1 + p5 > p4, p1, . . . , p6 < 1, p1, p2, p3 > 0, p4, p5, p6 ≥ 0, (77)

where

f3(p1, . . . , p6) :=
p6 − p3(1 + p4 − p1 − p5)√

p3(1− p3)(p1 + p5 − p4)(1 + p4 − p1 − p5)
+

√
p3

1− p3
·
√

1− p2
p2

+
p4 − p1(1 + p4 − p1 − p5)√

p1(1− p1)(p1 + p5 − p4)(1 + p4 − p1 − p5)
+

√
p1

1− p1
·
√

p2
1− p2

. (78)

If we can prove that F3 ≤ 5/2, then we prove (63) for β satisfying (74).

Lemma 62. It holds that F3 ≤ 5/2.

Proof. The proof is similar to the proof in Section E-A and thus is omitted here. �
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Lemma 63. Suppose that β ∈ LMCHSH(K) and there exist (at least) two of the matrices in (βi,j)i,j s.t. each of these two

matrices has at least one zero entry, we obtain (63).

Proof. In this subsection, we prove (63) for β satisfying (74). The proof for other cases is similar and thus is omitted here. �

D. One Zero

In this subsection, we prove (63) for β s.t.

β ∈ LMCHSH(K), β3,4(0, 0) = 0. (79)

We define β(p1, . . . , p7) ∈ LMCHSH(K) to be the set of matrices satisfying (79) s.t.

β1,2 =

p3 1− p3 − p4 − p5
p4 p5

 , β1,4 =

 p6 1− p4 − p5 − p6
p1 − p6 p4 + p5 + p6 − p1

 , (80)

β3,2 =

 p7 p2 − p7
p3 + p4 − p7 1 + p7 − p2 − p3 − p4

 , β3,4 =

 0 p2

p1 1− p1 − p2

 , (81)

β1 = diag
(

1− p4 − p5 p4 + p5

)
, β2 = diag

(
p3 + p4 1− p3 − p4

)
, β3 = diag

(
p2 1− p2

)
, β4 = diag

(
p1 1− p1

)
,

p3 + p4 + p5 ≤ 1, 0 ≤ p6 ≤ p1 ≤ p4 + p5 + p6 ≤ 1, p7 ≤ p2, p7 ≤ p3 + p4, p2 + p3 + p4 ≤ 1 + p7, p1 + p2 ≤ 1,

0 < p3 + p4 < 1, 0 < p4 + p5 < 1, p1, p2 > 0, p3, . . . , p7 ≥ 0, p1, . . . , p7 < 1.

Lemma 64. If β(p1, . . . , p7) is in LMCHSH(K), we have

p5 + p6 + p7 ≤ 1.

Proof. It is similar to the proof of Lemma 53 and thus is omitted here. �

The correlation coefficients for β(p1, . . . , p7) are

Corr
(
β1,2

)
=

(p3 + p4)(p4 + p5)− p4√
(p3 + p4)(1− p3 − p4)(p4 + p5)(1− p4 − p5)

, Corr
(
β1,4

)
=

p6 − p1(1− p4 − p5)√
p1(1− p1)(p4 + p5)(1− p4 − p5)

,

Corr
(
β3,2

)
=

p7 − p2(p3 + p4)√
p2(1− p2)(p3 + p4)(1− p3 − p4)

, Corr
(
β3,4

)
= −

√
p1

1− p1
·
√

p2
1− p2

.

We consider an optimization problem.

F4 := sup
p1,...,p7

f4(p1, . . . , p7)

s.t. p5 + p6 + p7 ≤ 1, p3 + p4 + p5 ≤ 1, 0 ≤ p6 ≤ p1 ≤ p4 + p5 + p6 ≤ 1, p7 ≤ p3 + p4, p2 + p3 + p4 ≤ 1 + p7,

p7 ≤ p2, p1 + p2 ≤ 1, 0 < p3 + p4 < 1, 0 < p4 + p5 < 1, p1, p2 > 0, p3, . . . , p7 ≥ 0, p1, . . . , p7 < 1

(82)

where

f4(p1, . . . , p7) :=
(p3 + p4)(p4 + p5)− p4√

(p3 + p4)(1− p3 − p4)(p4 + p5)(1− p4 − p5)
+

p6 − p1(1− p4 − p5)√
p1(1− p1)(p4 + p5)(1− p4 − p5)

+
p7 − p2(p3 + p4)√

p2(1− p2)(p3 + p4)(1− p3 − p4)
+

√
p1

1− p1
·
√

p2
1− p2

.

If we prove F4 ≤ 5/2, then we prove (63) for β satisfying (79).

Lemma 65. It holds that F4 ≤ 5/2 for p5 > 0.

Proof. The proof is similar to the proof in Section E-A and thus is omitted here. �



30

Lemma 66. Suppose that β ∈ LMCHSH(K) and there exist a matrix in (βi,j)i,j having at least one zero entry, we obtain (63).

Proof. In this subsection, we prove (63) for β satisfying (79). The proof for other cases is similar and thus is omitted here. �

E. General Case

In this subsection, we prove (63) for β ∈ LMCHSH(K) based on the previously obtained results. We define β(p1, . . . , p8) ∈

LMCHSH(K) to be the set of matrices s.t.

β1,2 =

p1 1− p1 − p2 − p3
p3 p2

 , β1,4 =

 p7 1− p2 − p3 − p7
p4 + p6 − p7 p2 + p3 + p7 − p4 − p6

 , (83)

β3,2 =

 p8 p5 + p6 − p8
p1 + p3 − p8 1 + p8 − p1 − p3 − p5 − p6

 , β3,4 =

p6 p5

p4 1− p4 − p5 − p6

 , (84)

β1 = diag
(

1− p2 − p3 p2 + p3

)
, β2 = diag

(
p1 + p3 1− p1 − p3

)
,

β3 = diag
(
p5 + p6 1− p5 − p6

)
, β4 = diag

(
p4 + p6 1− p4 − p6

)
,

p1 + p2 + p3 ≤ 1, 0 ≤ p7 ≤ p4 + p6 ≤ p2 + p3 + p7 ≤ 1, p8 ≤ p5 + p6, p8 ≤ p1 + p3, p1 + p3 + p5 + p6 ≤ 1 + p8,

p4 + p5 + p6 ≤ 1, 0 < p1 + p3 < 1, 0 < p2 + p3 < 1, 0 < p4 + p6 < 1, 0 < p5 + p6 < 1, p1, . . . , p8 > 0, p7, p8 < 1.

Lemma 67. If β(p1, . . . , p8) is in LMCHSH(K), we have

p2 − p6 + p7 + p8 ≤ 1.

Proof. It is similar to the proof of Lemma 53 and thus is omitted here. �

The correlation coefficients for β(p1, . . . , p8) are

Corr
(
β1,2

)
=

(p1 + p3)(p2 + p3)− p3√
(p1 + p3)(1− p1 − p3)(p2 + p3)(1− p2 − p3)

, Corr
(
β1,4

)
=

p7 − (p4 + p6)(1− p2 − p3)√
(p4 + p6)(1− p4 − p6)(p2 + p3)(1− p2 − p3)

,

Corr
(
β3,2

)
=

p8 − (p1 + p3)(p5 + p6)√
(p1 + p3)(1− p1 − p3)(p5 + p6)(1− p5 − p6)

, Corr
(
β3,4

)
= − (p4 + p6)(p5 + p6)− p6√

(p4 + p6)(1− p4 − p6)(p5 + p6)(1− p5 − p6)
.

We then consider an optimization problem:

F5 := sup
p1,...,p8

f5(p1, . . . , p8)

s.t. p2 − p6 + p7 + p8 ≤ 1, p1 + p2 + p3 ≤ 1, 0 ≤ p7 ≤ p4 + p6 ≤ p2 + p3 + p7 ≤ 1, p8 ≤ p5 + p6, p8 ≤ p1 + p3,

p1 + p3 + p5 + p6 ≤ 1 + p8, p4 + p5 + p6 ≤ 1, 0 < p1 + p3 < 1, 0 < p2 + p3 < 1,

0 < p4 + p6 < 1, 0 < p5 + p6 < 1, p1, . . . , p8 ≥ 0, p7, p8 < 1 (85)

where

f5(p1, . . . , p8) :=
(p1 + p3)(p2 + p3)− p3√

(p1 + p3)(1− p1 − p3)(p2 + p3)(1− p2 − p3)
+

p7 − (p4 + p6)(1− p2 − p3)√
(p4 + p6)(1− p4 − p6)(p2 + p3)(1− p2 − p3)

+
p8 − (p1 + p3)(p5 + p6)√

(p1 + p3)(1− p1 − p3)(p5 + p6)(1− p5 − p6)
+

(p4 + p6)(p5 + p6)− p6√
(p4 + p6)(1− p4 − p6)(p5 + p6)(1− p5 − p6)

.

Lemma 68. It holds that F5 ≤ 5/2.

Proof. The proof is similar to the proof in Section E-A. First we show that it is sufficient to consider p8 = 1 + p6 − p2 − p7.

In particular, we note that when p6 = p2 + p7, there is a stricter upper bound w.r.t. p8. We cannot set p8 = 1 + p6 − p2 − p7
in this case. When p6 = p2 + p7, in order to maximize f5, the following inequalities is activated:

p8 ≤ max(p5 + p6, p1 + p3).
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Fig. 9: The NFG representation of βi,j(xi, xj).
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Fig. 10: An alternative NFG representation of βi,j(xi, xj).

In this case, one of the entries in β3,4 equals zero. By Lemma 66, we have F5 ≤ 5/2.

Then we find F5 for p8 = 1 + p6 − p2 − p7 and p2 + p7 ≥ p6. We note that the function f5 is a linear function w.r.t. p7. In

order to maximize f5, we can set one of the inequalities w.r.t. p7 to be an equality. Then one of the entries in β1,4 or β3,2 is

zero. With the help of Lemma 66, we prove F5 ≤ 5/2. The details are omitted here. �

APPENDIX F

PROOF OF PROPOSITION 27

In this proof, we prove CovCHSH(β) ≤ 2
√

2 for X̃e = {(0, 0), (0, 1), (1, 0), (1, 1)} first. The proof for CovCHSH(β) ≥

−
√

2/2 for the same X̃e is similar and thus are omitted here. Our proof approaches are mainly based on the approaches in [23,

Appendix B], where the authors proved

CovCHSH(β) ≤ 2
√

2, CorrCHSH(β) ≤ 2
√

2. (86)

Note that they considered a more general setup where ρ, U1, and U2 have arbitrary finite size. In our setup, we consider a

special set of projection matrices Ai,0 and Bj,0, as defined in (28), which results in a stricter bound of CovCHSH(β) for

β ∈M(N4).

For every β ∈ M(N4), there exist ρ, U1, and U2 s.t. (34)–(35) hold. We suppose that the ρ, U1, and U2 in N4 are given.

Because ρ is a density matrix, it has an eigenvalue decomposition, i.e.,

ρ =
∑
`

λ` · u` · uH
` ,

where
∑
` denotes

∑
`∈[|x̃e|], the vectors u1, . . . ,u|X̃e| form an orthonormal basis and are eigenvectors of ρ with correspoding

eigenvalues λ1, . . . , λ|X̃e|, ∑
`

λ` = 1, 0 ≤ λ` ≤ 1, ` ∈ [|x̃e|].
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Then we define

α`,i :=
√
λ` ·

((
(AH

i,0 ·Ai,0)⊗ I
)
· u` − βi(0) · u`

)
, α̌`,i :=

α`,i√∑
`′ ‖α`′,i‖2

, ` ∈ [|x̃e|], i ∈ {1, 3}, (87)

γ`,j :=
√
λ` ·

((
I ⊗ (BH

j,0 ·Bj,0)
)
· u` − βj(0) · u`

)
, γ̌`,j :=

γ`,j√∑
`′ ‖γ`′,j‖2

, ` ∈ [|x̃e|], j ∈ {2, 4}, (88)

where I is an identity matrix of size |Xe| × |Xe|, the matrices Ai,0 and Bj,0 are defined in (28), and the sum
∑
`′ denotes∑

`′∈[|x̃e|]. As shown in (32) and (33), the matrices AH
i,0 · Ai,0 and BH

j,0 · Bj,0 are projection matrices. In particular, when β

satisfies (34)–(35) for given ρ, U1, and U2, it holds that

βi(0) =
∑
`

λ` · uH
` ·
(
(AH

i,0 ·Ai,0)⊗ I
)
· u`, βj(0) =

∑
`

λ` · uH
` ·
(
I ⊗ (BH

j,0 ·Bj,0)
)
· u`, {i, j} ∈ K,

βi,j(0, 0) =
∑
`

λ` · uH
` ·
(
(AH

i,0 ·Ai,0)⊗ (BH
j,0 ·Bj,0)

)
· u`, {i, j} ∈ K.

As shown in (32) and (33), the matrices (AH
i,0 · Ai,0) ⊗ I , I ⊗ (BH

j,0 · Bj,0), and (AH
i,0 · Ai,0) ⊗ (BH

j,0 · Bj,0) are projection

matrices as well. When 0 < β`(0) < 1 for ` ∈ [|x̃e|], we have∑
`

‖α`,i‖2 = βi(0)(1− βi(0)) ≤ 1

4
,

∑
`

‖γ`,j‖2 = βj(0)(1− βj(0)) ≤ 1

4
, {i, j} ∈ K, (89)

∑
`

αH
`,i · γ`,j = βi,j(0, 0)− βi(0) · βj(0)

(a)
= Cov(βi,j),

∑
`

α̌H
`,i · γ̌`,i = Corr(βi,j) {i, j} ∈ K, (90)

where at step (a) we have used the definition of Cov(βi,j) in (9). Figs. 9 and 10 illustrate βi,j(xi, xj) for any xi and xj in Xe.

By suitably rearranging the function nodes in Fig. 9, we obtain Fig. 10, which is equivalent to Fig. 9. The details of Figs. 9

and 10 are listed as follows:

• After closing the smaller dash box in Figs. 9 and 10, respectively, namely summing over the internal variables in this box,

we obtain ρ.

• After closing the larger dash box in Figs. 9 and 10, respectively, we obtain βi,j(xi, xj).

• We obtain βi,j(0, 0) by setting xi = xj = 0 and closing the larger dash box in Figs. 9 and 10, respectively.

Then we have

CovCHSH(β) =
∑
`

(
α`,1 ·

(
γ`,2 + γ`,4

)
+α`,3 ·

(
γ`,2 − γ`,4

))
(a)

≤

√√√√√
∑

`,i

‖α`,i‖2

 ·(∑
`

‖γ`,2 + γ`,3‖2 +
∑
`

‖γ`,2 − γ`,3‖2
)

(b)
=

√√√√1

2
·

(∑
`

(
2
∥∥γ`,2∥∥2 + 2

∥∥γ`,4∥∥2))
(c)

≤
√

2

2
,

where at step (a) we have used the Cauchy-Schwarz inequality and at steps (b) and (c) we have used the inequalities in (89).

Unlike [37], to prove the covariance-based Tsirelon bound here, we need to show that the inequality (86) holds for arbitrary

finite-dimensional quantum system. One can verify that our proof in this appendix also works for X̃e with arbitrary size, i.e.,

our proof works for arbitrary finite-dimensional quantum systems.

APPENDIX G

PROOF OF PROPOSITION 31

We prove Proposition 31 by showing that there exist ρ, U0, and U1 in N4 s.t. the associated β satisfying

β1,2 = β1,4 = β3,2 =
1

8

2 +
√

2 2−
√

2

2−
√

2 2 +
√

2

 , β3,4 =
1

8

2−
√

2 2 +
√

2

2 +
√

2 2−
√

2

 , (91)
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We suppose that the system N4 in Fig. 4 is prepared in the state

ρ =
1

4
(U ⊗ I) · (I ⊗ I + σ1 ⊗ σ1 − σ2 ⊗ σ2 + σ3 ⊗ σ3) · (U ⊗ I)H

=
1

2
(U ⊗ I) ·


1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

 · (U ⊗ I)H

=
1

8


2 +
√

2
√

2
√

2 2 +
√

2

−
√

2 2−
√

2 −2 +
√

2 −
√

2
√

2 −2 +
√

2 2−
√

2
√

2

2 +
√

2 −
√

2
√

2 2 +
√

2

 ,

where

σ1 :=

0 1

1 0

 , σ2 :=

0 −ι

ι 0

 , σ3 :=

−1 0

0 1

 , U :=
1

2

√2 +
√

2 −
√

2−
√

2√
2−
√

2
√

2 +
√

2

 .

By M(N5) =M(N4) in Proposition 33, it is equivalent to consider the ρL, Ũ1 and Ũ2. The associated ρL is

ρL =
1

2
· Ũ ·


1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 =
1

8


2 +
√

2 −
√

2 −
√

2 2−
√

2
√

2 2 +
√

2 −2 +
√

2 −
√

2
√

2 −2 +
√

2 2 +
√

2 −
√

2

2−
√

2
√

2
√

2 2 +
√

2

 ,

where Ũ = U ⊗ U . We set the matrices Ũ1 and Ũ2 for the N5 in Fig. 6 to be

Ũ1 =
(
Ũ2
)H
, Ũ2 = Ũ2.

Then we have

(
Ũ2
)H · ρL = ρL ·

(
Ũ2
)H

=
1

8


2 +
√

2
√

2
√

2 2−
√

2

−
√

2 2 +
√

2 −2 +
√

2
√

2

−
√

2 −2 +
√

2 2 +
√

2
√

2

2−
√

2 −
√

2 −
√

2 2 +
√

2

 ,

(
Ũ2
)H · ρL · (Ũ2

)H
=

1

8


2−
√

2
√

2
√

2 2 +
√

2

−
√

2 2−
√

2 −2−
√

2
√

2

−
√

2 −2−
√

2 2−
√

2
√

2

2 +
√

2 −
√

2 −
√

2 2−
√

2

 .

The marginals (βi,j)i,j obtained in (44)–(47) are the same as the marginals (βi,j)i,j in (91).

APPENDIX H

PROOF OF LEMMA 34

One can verify thatM(N3) ⊆ LM(K). In order to prove that LM(K)\M(N3) 6= ∅, we consider the vertex v18 of LM(K)

(see Appendix A).

β1,4 β1,2 β3,2 β3,4

v18
1
2

1 0

0 1

 1
2

0 1

1 0

 1
2

1 0

0 1

 1
2

1 0

0 1


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By the definition of M(N3) in (5), for any β ∈M(N3), there exists a joint PMF {pN3
(x)}x s.t. β computed by (6) satisfies

the above table for (βi,j)i,j . In order to have such joint PMF, the valid configurations in C(N3) satisfy

x1 = x4, x1 6= x2, x2 = x3, x3 = x4.

which leads to a contradiction. Such β is not in M(N3).

APPENDIX I

PROOF OF LEMMA 36

Since ρ is a PSD matrix, the principal minors of ρ are all non-negative, which implies the matrix ρ must have the form

ρ =


0 0 0 0

0 α ρ3,2 0

0 ρ3,2 1− α 0

0 0 0 0

 .

Since ρ is PSD, we need |ρ3,2| ≤ (α(1− α))
1/2.

APPENDIX J

PROOF OF LEMMA 37

In this appendix, we prove that the vertex v18 is not in M(N4) (see Appendix A). Recall that

β1,4 β1,2 β3,2 β3,4

v18
1
2

1 0

0 1

 1
2

0 1

1 0

 1
2

1 0

0 1

 1
2

1 0

0 1

 (92)

By M(N5) =M(N4) in Proposition 33, we know that proving v17 ∈ M(N4) is equivalent to proving v17 ∈ M(N5). In the

rest of the proof, we consider the matrices ρL, Ũ1, and Ũ2 in N5.

Lemma 36 implies that in this case, the ρL can be characterized by ρ3,2, i.e.,

ρL =


0 0 0 1

2

0 0 ρ3,2 0

0 ρ3,2 0 0

1
2 0 0 0

 , |ρ3,2| ≤
1

2
,

The matrix β3,2 in (45) and the matrix β1,4 in (46) equal

β3,2 =
1

2

|U1(0, 1)|2 |U1(0, 0)|2

|U1(0, 0)|2 |U1(0, 1)|2

 , β1,4

|U2(0, 1)|2 |U2(0, 0)|2

|U2(0, 0)|2 |U2(0, 1)|2

 .

In order to have β in (92), we need

|U1(0, 1)| = 1, U1(0, 0) = 0, |U2(0, 1)| = 1, U2(0, 0) = 0.

Then the Ũ0 and Ũ1 in (43) become

Ũ1 = Ũ2 =


0 0 0 1

× × × ×

× × × ×

1 0 0 0

 .

The matrix β3,4 obtained via (47)satisfies β3,4(x3, x4) = 1
2 [x3 6= x4], which is a contradiction of the matrix β3,4 in v17.
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APPENDIX K

PROOF OF LEMMA 39

In this appendix, we prove that

S3,4,7,10,18,22(N1) :=

v ∈ LM(K)

∣∣∣∣∣∣∣∣∣
v = α3v3 + α4v4 + α7v7 + α10v10 + α18v18 + α23v23,

α3, . . . , α23 ∈ R≥0, α3 + α4 + α7 + α10 + α18 + α23 = 1,

0 < α3 + α7 < 1, 0 < α4 + α10 < 1

 *M(N4).

where

β1,4 β1,2 β3,2 β3,4 β1,4 β1,2 β3,2 β3,4

v3

0 0

1 0

 0 0

1 0

 1 0

0 0

 1 0

0 0

 v4

1 0

0 0

 0 1

0 0

 0 1

0 0

 1 0

0 0


v7

0 0

0 1

 0 0

1 0

 1 0

0 0

 0 1

0 0

 v10

0 1

0 0

 0 1

0 0

 0 1

0 0

 0 1

0 0


v18

1
2

1 0

0 1

 1
2

0 1

1 0

 1
2

1 0

0 1

 1
2

1 0

0 1

 v23
1
2

0 1

1 0

 1
2

0 1

1 0

 1
2

1 0

0 1

 1
2

0 1

1 0


Any β ∈ S2,3,6,9,17,22(N1) satisfies

β1,2 =

 0 α4 + α10 + α18+α23

2

α3 + α7 + α18+α23

2 0

 , β1,4 =

α4 + α18

2 α10 + α23

2

α3 + α23

2 α7 + α18

2

 , (93)

β3,2 =

α3 + α7 + α18+α23

2 α4 + α10

0 α18+α23

2

 , β3,4 =

α3 + α4 + α18

2 α7 + α10 + α23

2

α23

2
α18

2

 . (94)

By M(N5) = M(N4) in Proposition 33, we know that proving S2,3,6,9,17,22(N1) * M(N4) is equivalent to proving

S2,3,6,9,17,22(N1) *M(N5). In the rest of the proof, we consider the ρL, Ũ1, and Ũ3 in N5.

In order to set the matrix β1,2 in (44) equal to the matrix β1,2 in (93), Lemma 36 implies that the ρL equals

ρL =


0 0 0 α4 + α10 + α18+α23

2

0 0 ρ3,2 0

0 ρ3,2 0 0

α3 + α7 + α18+α23

2 0 0 0

 , ρ3,2 ≤

√(
α4 + α10 +

α18 + α23

2

)
·
(
α3 + α7 +

α18 + α23

2

)
.

By (45), the matrix β3,2 equals

β3,2 =

(α3 + α7 + α18+α23

2

)
· |U1(0, 1)|2

(
α4 + α10 + α18+α23

2

)
· |U1(0, 0)|2(

α3 + α7 + α18+α23

2

)
· |U1(0, 0)|2

(
α4 + α10 + α18+α23

2

)
· |U1(0, 1)|2

 .

In order to obtain β3,2 in (94), we need(
α3 + α7 +

α18 + α23

2

)
· |U1(0, 1)|2 = α3 + α7 +

α18 + α23

2
,

(
α4 + α10 +

α18 + α23

2

)
· |U1(0, 0)|2 = α4 + α10,(

α3 + α7 +
α18 + α23

2

)
· |U1(0, 0)|2 = 0,

(
α4 + α10 +

α18 + α23

2

)
· |U1(0, 1)|2 =

α18 + α23

2
.

Since α3 + α7 > 0, the above expressions imply

|U1(0, 1)| =
(

α18 + α23

2(α4 + α10) + α18 + α23

)1/2

= 1, |U1(0, 0)| =
(

2(α4 + α10)

2(α4 + α10) + α18 + α23

)1/2

= 0, α4 + α10 = 0.

However, it contradicts to the requirement α4 + α10 > 0 in the definition of S2,3,6,9,17,22(N1).
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APPENDIX L

PROOF OF LEMMA 42

In this appendix, we prove that

M(N3) \
(
(M(N1) ∪M(N4)) ∩M(N3)

)
6= ∅.

We consider a joint PMF for {pN3
(x)}x.

(x) (0, 0, 1, 0) (0, 0, 0, 1) (1, 1, 1, 1) Otherwise

pN3
(x) 1

3
1
3

1
3 0

The associated β ∈M(N3) in (6) satisfies

β1,2 =
1

3

2 0

0 1

 , β1,4 =
1

3

1 1

0 1

 , β3,2 =
1

3

1 0

1 1

 , β3,4 =
1

3

0 1

1 1

 . (95)

If this β is inM(N1), the possible valid configurations in C(N1) s.t. the marginals computed by (6) satisfy the above marginals

are

(x) (0, 0, 1, 0) (0, 0, 0, 1) (0, 0, 1, 1) (1, 1, 1, 1)

To have the marginals in (95), we need

pN1
(0, 0, 1, 0) =

1

Z(N1)
· f1,2(0, 0) · f3,2(1, 0) · f1,4(0, 0) · f3,4(1, 0) =

1

3
> 0,

pN1
(0, 0, 0, 1) =

1

Z(N1)
· f1,2(0, 0) · f3,2(0, 0) · f1,4(0, 1) · f3,4(0, 1) =

1

3
> 0,

pN1
(1, 1, 1, 1) =

1

Z(N1)
· f1,2(1, 1) · f3,2(1, 1) · f1,4(1, 1) · f3,4(1, 1) =

1

3
> 0,

which implies

pN1
(0, 0, 1, 1) =

1

Z(N1)
· f1,2(0, 0) · f3,2(1, 0) · f1,4(0, 1) · f3,4(1, 1) > 0.

It contradicts the definition of pN1(x), i.e.,
∑

x pN1(x) = 1.

In the rest of this proof, we prove that β satisfying (95) is not in M(N4). By M(N5) = M(N4) in Proposition 33, we

know that it is equivalent to prove that such β is not in M(N5).

In order to have β1,2 in (100), there are two conditions that ρL needs to satisfy. One is that β1,2 obtained from (44) satisfy

β1,2 in (95) and the other is that the associated matrix ρ is a density matrix. The resulting ρL is

ρL =


2
3 0 0 0

0 ρ4,1 0 0

0 0 ρ4,1 0

0 0 0 1
3

 , |ρ4,1| ≤
√

2

3
.

Suppose that β3,2 ∈M(N5), the matrix β3,2 computed by (45) equals

β3,2 =
1

3

2|U1(0, 0)|2 |U1(0, 1)|2

2|U1(0, 1)|2 |U1(0, 0)|2

 .

The matrix β3,2 in (95) implies that

|U1(0, 1)| =
√

2

2
, |U1(0, 1)| = 0,

which is a contradiction.
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APPENDIX M

PROOF OF LEMMA 43

In this appendix, we prove that

(M(N3) ∩M(N4)) \
(
M(N1) ∩M(N4)

)
6= ∅.

We consider a joint PMF for {pN3
(x)}x.

(x) (0, 0, 0, 0) (0, 0, 1, 0) (0, 0, 0, 1) (1, 1, 1, 0) (1, 1, 0, 1) (1, 1, 1, 1) Otherwise

pN3
(x) 1

8
1
4

1
8

1
8

1
4

1
8 0

(96)

The associated β ∈M(N3) computed by (6) for N3 satisfies

β1,2 =
1

2

1 0

0 1

 , β1,4 =
1

8

3 1

1 3

 , β3,2 =
1

4

1 1

1 1

 , β3,4 =
1

8

1 3

3 1

 . (97)

We show that β ∈M(N4). When we let

ρ =
1

2
·
(

1 0 0 1
)H
·
(

1 0 0 1
)
, U1 =

√
2

2

 1 −
√
3
3 (1 +

√
2ι)

√
3
3 (1−

√
2ι) 1

 , U2 =
1

2

√3 1

−1
√

3

 ,

the collection of matrices β ∈M(N4) computed by (34) and (35) satisfies (97).

We want to show that the valid configurations in (96) are the only possible valid configurations in C(N3) to realize the

marginals in (97). The possible valid configurations in C(N3) s.t. the marginals computed by (6) satisfy (97), and the range of

the associated probabilities are listed as follows.

(x) pN3
(x)

(0, 0, 0, 0) or (1, 1, 0, 0) ≤ β3,4(0, 0) = 1
8

(0, 0, 1, 1) or (1, 1, 1, 1) ≤ β3,4(1, 1) = 1
8

(0, 0, 1, 0) ≤ β3,2(1, 0) = 1
4

(0, 0, 0, 1) ≤ β1,4(0, 1) = 1
8

(1, 1, 0, 1) ≤ β3,2(0, 1) = 1
4

(1, 1, 1, 0) ≤ β1,4(1, 0) = 1
8

By the definition of the valid configuration, we have ∑
x∈C(N3)

pN3
(x) = 1,

which implies

(x) pN3
(x)

(0, 0, 0, 0) or (1, 1, 0, 0) 1
8

(0, 0, 1, 1) or (1, 1, 1, 1) 1
8

(0, 0, 1, 0) 1
4

(0, 0, 0, 1) 1
8

(1, 1, 0, 1) 1
4

(1, 1, 1, 0) 1
8

To have marginals β(2,1)(0, 1) = 1/4 and β(2,1)(1, 0) = 1/4, we need

pN3
(0, 0, 1, 1) = pN3

(1, 1, 0, 0) = 0,

which implies

pN3(0, 0, 0, 0) = pN3(1, 1, 1, 1) =
1

8
.
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In the remaining part of the proof, we prove that β satisfying (97) is not inM(N1) by contradiction. To have such marginals

in M(N1), we need to set the valid configurations in C(N1) satisfy (96), which means that

pN1
(0, 0, 0, 0) =

1

Z(N1)
· f1,2(0, 0) · f3,2(0, 0) · f1,4(0, 0) · f3,4(0, 0) =

1

8
> 0,

pN1
(1, 1, 0, 1) =

1

Z(N1)
· f1,2(1, 1) · f3,2(0, 1) · f1,4(1, 1) · f3,4(0, 1) =

1

4
> 0,

pN1
(1, 1, 1, 0) =

1

Z(N1)
· f1,2(1, 1) · f3,2(1, 1) · f1,4(1, 0) · f3,4(1, 0) =

1

8
> 0.

However, it implies

pN1(1, 1, 0, 0) =
1

Z(N1)
· f1,2(1, 1) · f3,2(0, 1) · f1,4(1, 0) · f3,4(0, 0) > 0,

which contradicts to pN1
(1, 1, 0, 0) = 0 as required in (96).

APPENDIX N

PROOF OF LEMMA 47

In this appendix, we prove that

M(N1) \
(
(M(N4) ∪M(N2)) ∩M(N1)

)
6= ∅.

For N1, if we let

f1,2(x1, x2) = [x1 = x2 = 0], f3,2(x2, x3) =
1

2
, f1,4(x4, x1) =

1

2
, f3,4(x3, x4) = [x3 6= x4], x1, x2, x3, x4 ∈ Xe,

then the associated β ∈M(N1) obtain by (6) satisfies

β1,2 =

1 0

0 0

 , β1,4 =
1

2

1 1

0 0

 , β3,2 =
1

2

1 0

1 0

 , β3,4 =
1

2

0 1

1 0

 . (98)

We prove that β in (98) is not in M(N2) first. Suppose that β ∈M(N2) computed in (20) and (21) having β1,2, β1,4, and

β3,2 in (98), we have

MX1,X2
=

1 0

0 0

 , MX4|X1
=

 1
2 α1

1
2 1− α1

 , MX3|X2
=

 1
2 α2

1
2 1− α2

 , 0 ≤ α1, α2 ≤ 1.

Then β3,4 computed in (21) satisfies

β3,4 = MX3|X2
· (MX4|X1

·MX1,X2
)T =

1

4

1 1

1 1

 ,

which is a contradiction to β3,4 in (98).

By M(N5) =M(N4) in Proposition 33, we know that it is equivalent to prove that β in (98) is not in M(N5). In order to

have β1,2 = (1, 0, 0, 0), there are two conditions that ρL needs to satisfy. One is that β1,2 obtained from (44) equals (1, 0, 0, 0)

and the other is that the associated matrix ρ is a density matrix. Both these two conditions imply that

ρL(x̃1, x̃2) =
[
(x̃1, x̃2) = (0̃, 0̃)

]
, x̃1, x̃2 ∈ X̃e,

Then β1,4 and β3,2 obtained via (45) and (46) equal

β1,4 =

|U2(0, 0)|2 |U2(0, 1)|2

0 0

 , β3,2 =

|U1(0, 0)|2 0

|U1(0, 1)|2 0

 .

In order to have β1,4 and β3,2 in (98), we need

|U1(0, 0)|2 = |U1(0, 1)|2 = |U2(0, 0)|2 = |U1(0, 1)|2 =
1

2
.

Then β3,4 computed by (47) satisfies β3,4(x3, x4) = 1/4 for all x3, x4 ∈ Xe and it contradicts to β3,4 in (98).
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APPENDIX O

PROOF OF LEMMA 48

In this appendix, we prove that

M(N2) (M(N1), M(N1) ∩M(N4) \ (M(N2) ∩M(N1) ∩M(N4)) 6= ∅.

We proveM(N2) ⊆M(N1) first. For any β inM(N2), there exist three matrices MX1,X2
, MX3|X2

and MX4|X1
s.t. (20)–(21)

hold. If we let

f1,2(x1, x2) = MX1,X2
(x1, x2), f3,2(x3, x2) = MX3|X2

(x3, x2), x1, x2, x3 ∈ Xe,

f1,4(x4, x1) = MX4|X1
(x4, x1), f3,4(x3, x4) = 1, x1, x3, x4 ∈ Xe.

for the S-FG N1 in Fig. 1, then β ∈M(N1) computed by (6) is the same as β in (20)–(21).

In the rest of this appendix, we prove that there is a point inM(N1)∩M(N4) that is not inM(N2). On one hand, if we let

f1,2(x1, x2) =
[x1 = x2]

2
, f3,2(x3, x2) =

1

4
, f1,4(x4, x1) =

1

4
, f3,4(x3, x4) =

[x3 = x4]

2
, x1, x2, x3, x4 ∈ Xe,

for N1 and

U1 =
1√
2

 1 1

−1 1

 , U2 =
1√
2

 1 1

−1 1

 , ρ =


1
2 0 0 1

2

0 0 0 0

0 0 0 0

1
2 0 0 1

2

 ,

for N4, then β computed in (6) and (34)–(35), respectively, are the same. In particular, the collection of matrices β satisfy

β1,2(x1, x2) =
1

2
[x1 = x2], β1,4(x1, x4) =

1

4
, β3,2(x1, x4) =

1

4
, β3,4(x1, x4) =

1

2
[x3 = x4], x1, . . . , x4 ∈ Xe.

(99)

On the other hand, to have β1,4, β1,2, and β3,2 in (99), the expressions (20)–(21) for computing β in M(N2) imply that the

matrices MX1,X2
, MX3|X2

and MX4|X1
in N2 satisfy

MX1,X2(x1, x2) =
[x1 = x2]

2
, MX3|X2

(x3, x2) =
1

2
, MX4|X1

(x4, x1) =
1

2
, x1, . . . , x4 ∈ Xe.

Then β3,4 in (21) satisfies β3,4(x3, x4) = 1/4 for all x3, x4 ∈ Xe, which is a contradiction to β3,4 in (99).

APPENDIX P

PROOF OF LEMMA 46

In this appendix, we prove

M(N2) \ (M(N4) ∩M(N2)) 6= ∅.

by proving that any β ∈M(N2) with

β1,2(x1, x2) =
1

2

1 0

0 1

 , β3,2 =
1

2

 α1 α2

1− α1 1− α2

 , α1 6= 1− α2, 0 ≤ α1, α2 ≤ 1 (100)

is not in M(N4).

We firstly prove that there exists a β ∈M(N2) satisfying (100). If we let

MX1,X2 =
1

2

1 0

0 1

 , MX3|X2
=

 α1 α2

1− α1 1− α2

 , α1 6= 1− α2, 0 ≤ α1, α2 ≤ 1,

in N2, then β ∈M(N2) computed by (20) and (21) satisfies (100).
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In the rest of this appendix, we prove that β satisfying (100) is not in M(N4). By M(N5) =M(N4) in Proposition 33, we

know that it is equivalent to prove that this β is not in M(N5).

In order to have β1,2 in (100), there are two conditions that ρL needs to satisfy. One is that β1,2 obtained from (44) satisfy

β1,2(x1, x2) = 1/2 · [x1 = x2] for all x1, x2 ∈ Xe and the other is that the associated matrix ρ is a density matrix. The resulting

ρL is

ρL =


1
2 0 0 0

0 ρ4,1 0 0

0 0 ρ4,1 0

0 0 0 1
2

 , |ρ4,1| ≤
1

2
.

Suppose that β3,2 ∈M(N5), the matrix β3,2 computed by (45) equals

β3,2 =
1

2

|U1(0, 0)|2 |U1(0, 1)|2

|U1(0, 1)|2 |U1(0, 0)|2

 .

Because this β3,2 satisfies (100), we need

|U1(0, 0)|2 = α1 = 1− α2,

which is a contradiction to α1 6= 1− α2.
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