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Abstract

For standard factor graphs (S-FGs), i.e., factor graphs with local functions taking on non-negative real values, Vontobel gave a

characterization of the Bethe approximation to the partition function in terms of the partition function of finite graph covers. The proof

of that statement heavily relied on the method of types.

In this paper we give a similar characterization for so-called double-edge factor graphs (DE-FGs), which are a class of factor graphs

where local functions take on complex values and have to satisfy some positive semi-definiteness constraints. Such factor graphs are of

interest in quantum information processing.

In general, approximating the partition function of DE-FGs is more challenging than for S-FGs because the partition function is a

sum of complex values and not just a sum of non-negative real values. In particular, for proving the above-mentioned characterization of

the Bethe approximation in terms of finite graph covers, one cannot use the method of types anymore. We overcome this challenge by

applying the loop calculus transform by Chertkov and Chernyak, along with using the symmetric-subspace transform, a novel technique

for factor graphs that should be of interest beyond proving the main result of this paper. Currently, the characterization of the Bethe

approximation of the partition function of DE-FGs is for DE-FGs satisfying an (easily checkable) condition. However, based on numerical

results, we suspect that the characterization holds more broadly.

I. INTRODUCTION

Standard factor graphs (S-FGs) [1]–[3], i.e., factor graphs with local functions taking on non-negative real values, are used for

representing statistical models. They are widely applied in different areas including statistical mechanics (see, e.g., [4]), coding

theory (see, e.g., [5]), and communications (see, e.g., [6]). Many important inference problems in these areas can be transformed into

computing the marginals and the partition function of S-FGs. In order to approximate these quantities efficiently, a popular choice

is the sum-product algorithm (SPA), also known as loopy belief propagation (LBP), which is a heuristic algorithm and has been

successfully used for approximating the marginal functions and the partition function for many classes of S-FGs.

There are various characterizations of the pseudo-marginal functions obtained via a fixed point of the SPA. When an S-FG is cycle

free, the pseudo-marginal functions at the fixed-point of the SPA are the exact marginal functions of the global function represented

by the associated S-FG [4]. In terms of S-FGs with cycles, the authors in [7] showed that the fixed points of the SPA correspond to

the stationary points of the constrained Bethe free energy function. Because of this connection of the SPA to the Bethe free energy

function, the approximation of the partition function obtained with the help of the SPA is often called the Bethe approximation of

the partition function, or simply the Bethe partition function. In [8], [9], Chertkov and Chernyak presented a technique they called

loop calculus that yields an expression relating the partition function and the Bethe partition function. Notable extensions to these

results were presented by Mori [10].
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Finite graph covers of S-FGs are a useful theoretical tool [11]–[15] for understanding the Bethe partition function and the SPA. A

combinatorial characterization of the Bethe partition function of an S-FG in terms of the partition function of finite graph covers of the

S-FG was given in [12]. Leveraging this result, Ruozzi et al. [13], [14] proved statements relating the partition function and the Bethe

partition function for certain classes of S-FGs, in particular solving a conjecture by Sudderth et al. about log-supermodular graphical

models [16]. Moreover, graph covers were used in [15] to characterize the behavior of the max-product algorithm for Gaussian

graphical models. (For Gaussian graphical models, the max-product algorithm is essentially equal to the sum-product algorithm.)

All the above results are for factor graphs that here are called S-FGs, i.e., for factor graphs with local functions taking on non-

negative real values. Recently, some papers have considered more general factor graphs, namely factor graphs where the local functions

take on complex values, in particular toward representing quantities of interest in quantum information processing [17]–[19]. (For

connections of these factor graphs to other graphical notations in physics, see [18, Appendix A].) The structure of these factor graphs

is not completely arbitrary, and so, toward formalizing such factor graphs, Cao and Vontobel [20] introduced double-edge factor

graphs (DE-FGs), where local functions take on complex values and have to satisfy some positive semi-definiteness constraints.

DE-FGs have the property [20] that the partition function is a non-negative real number. However, because the partition function

is the sum of complex numbers (notably, the real and the imaginary parts of these complex numbers can have positive or negative

sign), approximating the partition function is in general much more challenging for DE-FGs than for S-FGs. This problem is known

as the numerical sign problem in applied mathematics and theoretical physics (see, e.g., [21]).

It is straightforward to define the SPA for DE-FGs, along with defining the Bethe partition function based on fixed points of the

SPA [20, Def. 8].1 One can prove that the Bethe partition function is a non-negative real number. Given this, one wonders if there is

a characterization of the Bethe partition function of a DE-FG in terms of the partition functions of its graph covers analogous to the

result for S-FGs in [12]. Numerical calculations that we performed for small DE-FGs suggested that such a result should also hold

for DE-FGs, however, proving such a result turned out to be much more challenging than for S-FGs. The reason for this is that the

method of types, which was the main ingredient for the proof in the case of S-FGs, works essentially only for approximating sums

of non-negative real values. Therefore, a novel proof approach needed to be developed for the case of DE-FGs; this novel proof

approach is the main result of this paper besides the statement itself. (Currently, the characterization of the Bethe partition function

of DE-FGs in terms of its finite graph covers is for DE-FGs satisfying an (easily checkable) condition. However, based on numerical

results, we suspect that the characterization holds more broadly.)

Our proof approach is based on the following three main ingredients:

• In a first step, we apply the loop calculus transform2 to the DE-FG based on a stable fixed point of the SPA. (In case the SPA

has multiple stable fixed points, we assume that it is the stable fixed point with the largest Bethe partition function value.) The

benefit of the loop calculus transform is that the transformed SPA fixed point messages have a very simple form independent

of the edge and the direction of the message.

• In a second step, we apply the symmetric-subspace transform, a novel technique for factor graphs that should be of interest

beyond the proof of the main result of this paper. Namely, for any positive integer M , the symmetric-subspace transform allows

one to express the average partition function of M -covers of the DE-NFG in terms of some integral.

• In a third step, we let M → ∞ and evaluate the integral with the help of Laplace’s method. In order to apply Laplace’s

method, we study the Hessian matrix of the relevant function by relating it to the Jacobian matrix of the SPA. The negative

1Note that in [20] the Bethe partition function is formulated based on the so-called pseudo-dual Bethe free energy function for S-FGs [20, Def. 8]). Although

generalizing the primal Bethe free energy function from S-FGs to DE-FGs is formally straightforward, it poses challenges because of the multi-valuedness of the

complex logarithm, and is left for future research.
2The loop calculus transform can be seen as a particular instance of a holographic transform [22].
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Fig. 1: NFG N in Example 1

semi-definiteness of the Hessian matrix at the point of interest follows from the stability of the SPA fixed point.3

We leave it as an open problem to broadly characterize when the relevant function has a global maximum at the point of interest.

We give an (easily checkable) condition when this is the case. However, we suspect that it holds more generally.

In the following, we will use, without essential loss of generality, normal factor graphs (NFGs), i.e., factor graphs where variables

are associated with edges [2], [3].

The rest of this paper is structured as follows. Section II reviews the basics of S-NFGs and the Bethe partition function. Section III

discusses finite graph covers and the main result of [12], i.e., the combinatorial characterization of the Bethe partition function of

an S-NFG in terms of the average partition functions of its graph covers. Section IV reviews DE-NFGs. Section V defines the loop

calculus transform. Section VI introduces the symmetric-subspace transform. Finally, Section VII combines the techniques from the

previous sections4.

II. STANDARD NFGS (S-NFGS)

In this section, we review some basic concepts and properties of an S-NFG, along with the Bethe approximation of the partition

function of the S-NFG. We use an example to introduce the key concepts of an S-NFG.

Example 1. Consider the multivariate function g(x1, . . . , x5) := f1(x1, x2, x3) · f2(x1, x4) · f3(x2, x5) · f4(x3, x4, x5), where g,

the so-called global function, is defined to be the product of the so-called local functions f1, f2, f3 and f4. We can visualize the

factorization of g with the help of the S-NFG N in Fig. 1. Note that the S-NFG N shown in Fig. 1 consists of four function nodes

f1, . . . , f4 and five (full) edges with associated variables x1, . . . , x5.

For simplicity, we consider only S-NFGs with full edges, because S-NFGs with half edges can be turned into S-NFGs with only

full edges by adding dummy 1-valued function nodes to half edges without changing any marginals or the partition function.

Definition 2. The S-NFG N(F , Efull,X ) consists of:

1) The graph (F , Efull) with vertex set F and edge set Efull, where Efull consists of all full edges in N. With some slight abuse of

notation, f ∈ F will denote a function node and the corresponding local function.

2) The alphabet X :=
∏
e∈Efull

Xe, where Xe is the alphabet associated with edge e ∈ Efull.

Definition 3. For a given S-NFG N(F , Efull,X ), we define:

1) For every function node f ∈ F , the set ∂f is the set of edges incident on f .

2) The alphabet for each local function f ∈ F is defined to be Xf :=
∏
e∈∂f Xe.

3At a high level, this last result is similar in spirit to some results by Heskes [23] and Watanabe [24]. However, in contrast to [24], we make a statement about all

the eigenvalues of the Hessian matrix and not just the product of the eigenvalues, i.e., the determinant of the Hessian.
4Should there be any difference between the conference version and this version. This version would prevail.
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Fig. 2: Left: NFG N. Right: samples of possible 2-covers N̂ of N.

3) An assignment x := (xe)e∈Efull
∈ X is called a configuration of the S-NFG. For each f ∈ F , a configuration x ∈ X induces

the vector x∂f with components x∂f := (xe)e∈∂f ∈ Xf .

4) The local function f associated with function node f ∈ F denotes an arbitrary mapping f : Xf → R≥0.

5) The global function g is defined to be the mapping g : X → R≥0, x 7→
∏
f∈F f(x∂f ).

6) The partition function is Z(N) :=
∑
x∈X g(x).

If there is no ambiguity, in the following we will use the short-hands
∑
x,
∑
x∂f

,
∑
xe

,
∑
e,
∑
f for

∑
x∈X ,

∑
x∂f∈Xf

,
∑
xe∈Xe

,∑
e∈Efull

,
∑
f∈F , respectively.

The following definition of the Bethe partition function is based on the so-called pseudo-dual Bethe free energy function, not based

on the (primal) Bethe free energy function.

Definition 4. Consider the collection of messages µ := {µe→f}f∈∂e,e∈Efull
, with µe→f having entries µe→f (xe) ∈ R≥0, xe ∈ Xe.

Let ZB(N,µ) :=
∏
f Zf (N,µ)

/∏
e Ze(N,µ), where

Zf (N,µ) :=
∑
x∂f

f(x∂f )
∏
e∈∂f

µe→f (xe), f ∈ F ,

Ze(N,µ) :=
∑
xe

µe→f (xe)µe→f ′(xe), e = (f, f ′) ∈ Efull.

The Bethe partition function ZB(N) is defined to be maximum of ZB(N,µ) over all SPA fixed-point messages µ of N.

III. FINITE GRAPH COVERS

This section reviews the concept of finite graph covers of a graph in general, and of NFGs in particular [11], [12], [25].

Definition 5. A graph Ĝ = (V̂, Ê) with vertex set V̂ and edge set Ê is the cover of a graph G = (V, E) if there exists a graph

homomorphism π : V̂ → V such that for each v ∈ V and v̂ ∈ V̂ , the set ∂v̂, i.e., the neighborhood of v̂, is mapped to ∂v bijectively.

Given a cover Ĝ = (V̂, Ê), if |π−1(v)| = M ∈ Z>0 for all v ∈ V , where π−1 is the pre-image of v under mapping π, then Ĝ is

called an M -cover.

Consequently, we can denote the vertex set of an M -cover as V̂ := V × [M ]. It means that for (v,m) ∈ V̂ , π((v,m)) = v and

for edge
(
(v,m), (v′,m′)

)
∈ Ê , π

(
((v,m), (v′,m′))

)
= (v, v′). Every M -cover, Ĝ = (V̂, Ê) of a graph G = (V, E) can be obtained

in the following way. For each edge (v, v′) ∈ E , select a permutation σv,v′ ∈ SM , where SM is the group of all permutation of M

elements, and then add the edge
(
v,m), (v′, σv,v′(m))

)
to Ĝ for every m ∈ [M ].

Example 6. An S-NFG N with 4 vertices and 5 edges is illustrated in Fig. 2(left). Possible 2-covers of N are shown in Fig. 2(right).

In particular, one can verify that every M-cover of N has M · 4 function nodes and M · 5 edges.

In the following, we review the characterization of the Bethe partition function in terms of finite graph covers [12].
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Fig. 3: DE-NFG. in Example 9.

Definition 7. Consider some S-NFG N. For any positive integer M , we define the degree-M Bethe partition function to be ZB,M (N) :=

M

√〈
Z(N̂)

〉
N̂∈N̂M

, where
〈
Z(N̂)

〉
N̂∈N̂M

represents the average of Z(N̂) over all N̂ ∈ NM , where NM is the set of all M -covers of

N.

Theorem 8 ([12]). Consider some S-NFG N. It holds that5

lim sup
M→∞

ZB,M (N) = ZB(N).

IV. DOUBLE-EDGE NFGS (DE-NFGS)

In this section, we review DE-NFGs [20]. Similar to Section II, we only discuss the DE-NFGs where the edges are all full edges.

Example 9. The DE-NFG in Fig. 3 depicts the following factorization

g(x,x′) := f1(x1, x2, x3, x
′
1, x
′
2, x
′
3) · f2(x1, x4, x

′
1, x
′
4)

· f3(x2, x5, x
′
2, x
′
5) · f4(x3, x4, x5, x

′
3, x
′
4, x
′
5).

Note that with a double edge e we associate the variable x̃e = (xe, x
′
e), where xe and x′e take value in the same alphabet Xe.

Moreover, if e is incident on a function node f , then x̃e is an argument of the local function f , i.e., both xe and x′e are arguments

of f .

Note that DE-NFGs can also contain single edges (see [20] for details). However, without loss of generality, we can consider only

DE-NFGs with double edges, because DE-NFGs with single edges can be turned into DE-NFGs with only double edges by changing

single edges into double edges and suitably reformulating function nodes.

The definition of DE-NFGs is given as follows:

Definition 10. A DE-NFG N(F , Efull, X̃ ) consists of the following objects:

1) A graph (F , Efull) with vertex set F and edge set Efull, where F is also known as the set of function nodes.

2) An alphabet X̃ :=
∏
e∈Efull

X̃e, where X̃e := Xe ×Xe is the alphabet of variables (xe, x
′
e) associated with edge e ∈ Efull.

3) A set of local functions {f}f∈F . Note that each f corresponds to function node f ∈ F .

The details of a DE-NFG are listed as follows.

Definition 11. Given a DE-NFG N(F , Efull, X̃ ), we make the following definitions.

1) For each f ∈ F , the set ∂f is defined to be the set of double edges connected to f . Similarly, the set ∂e is the set of function

nodes that are connected to edge e.

5Actually, in [12] the right-hand side was based on ZB(N) computed via the minimum of the primal Bethe free energy function [7]. Therefore, the reformation

here is for NFGs N for which the minimum of the primal Bethe free energy function can be characterized by an SPA fixed point, which is typically the case [7].
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Fig. 4: Left: DE-NFG Ñ. Right: samples of possible 2-covers N̂ of N.
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ρ Ũ B̃ I

Fig. 5: Left: NFG in Example 12. Right: DE-NFG in Example 12.

2) The alphabet for the set of variables ((xe, x
′
e))e∈∂f is X̃f :=

∏
e∈∂f X̃e.

3) For simplicity, we define x̃e := (xe, x
′
e) ∈ X̃e to be a configuration for each edge e ∈ Efull. For f ∈ F , the associated

configuration is x̃∂f := (x̃e)e∈∂f ∈ X̃f . A configuration of N is x̃ := (x̃e)e∈Efull
∈ X̃ . Note that x̃∂f is induced by x̃.

4) For each f ∈ F , f is defined to be an arbitrary mapping

f : X̃f → C, x̃∂f 7→ f(x̃∂f ).

In particular, we require that for each local function f , the corresponding square matrix (f(x∂f ,x
′
∂f ))x∂f ,x′∂f

with row indices

x∂f and column indices x′∂f , which is known as Choi-matrix representation [26], is a complex-valued, Hermitian, positive

semi-definite (PSD) matrix.

5) The global function g represents a mapping

g : X̃ → C, x̃ 7→
∏
f∈F

f(x̃∂f ).

6) The partition function is defined to be

Z(N) :=
∑
x̃∈X̃

g(x̃).

One can show [20] that Z(N) ∈ R≥0.

7) It is straightforward to extend the SPA from S-NFGs to DE-NFGs. Note that the Choi-matrix representation of the SPA message

µf→e can be represented by the square matrix
(
µf→e(xe, x

′
e)
)
xe,x′e

, with row indices xe and column indices x′e. In particular,

if the initial messages represent complex-valued, Hermitian, PSD matrices, then all subsequent messages will also represent

complex-valued, Hermitian, PSD matrices. (We refer to [20] for details.)

8) The expressions for ZB(N,µ) and ZB(N) in Definition 4 can be extended straightforwardly. However, now the messages µe→f

represent complex-valued, Hermitian, PSD matrices.

9) It is straightforward to define finite graph covers for DE-NFGs. For example, Fig. 4(right) shows possible double covers of the

DE-NFG in Fig. 4(left).

10) It is straightforward to extend the definition of ZB,M (N) in Definition 7 to DE-NFGs.

One of the motivations for considering DE-NFGs is that many NFGs with complex-valued local functions in quantum information

theory can be transformed into DE-NFGs.
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Fig. 6: DE-NFGs and the numerical results in Example 14.

Example 12 ([17], [18]). Let us consider an NFG in Fig. 5 (left). Note that at the end of each edge there is a dot used for denoting

the first index of the matrix with respect to the function node. In particular, it describes a quantum system with two consecutive

unitary evolutions:

• At the first stage, a quantum mechanical system is prepared in a mixed state represented by a PSD density matrix ρ.

• Then the system experiences two consecutive unitary evolutions, which are represented by the pair of factor nodes U and B,

respectively.

By suitably merging the edges, rearranging the order of the variables for each local function and defining new local functions, we can

obtain the DE-NFG in Fig. 5 (right). For example, the entries of matrix Ũ are defined to be Ũ(x0, x1, x
′
0, x
′
1) := U(x0, x1)·U(x′0, x

′
1).

One can verify that Ũ is a PSD matrix with row indices (x0, x1) and column indices (x′0, x
′
1).

Based on the many connections between S-NFGs and DE-NFGs, and based on some numerical experiments, it is tempting to make

the following conjecture.

Conjecture 13. Consider some DE-NFG N. It holds that

lim sup
M→∞

ZB,M (N) = ZB(N).

Let us provide some promising numerical results for Conjecture 13.

A. Numerical Results for Conjecture 13

Example 14. Consider a DE-NFG in Fig. 6(a), where the alphabet size of each edge is fixed to be 4, i.e., |X̊e| = 4 and Xe = {0, 1}

for all e ∈ Efull. The number of realization is 3000. In each realization, the local functions are randomly and independently generated.
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Fig. 7: Exemplifying the LCT for a part of an example DE-NFG.

Fig. 6(c) shows the relationship between (ZB,M (N) − ZB(N))/ZB(N) and the degree of the covers M in terms of the cumulative

distribution functions, while Fig. 6(e) illustrates the metric µ ± σ with respect to |ZB,M (N) − ZB(N)|/ZB(N), where µ and σ

respectively represent the mean and the standard deviation of the corresponding numerical results. We can see that as M increases,

the degree-M Bethe partition function ZB,M (N) approaches ZB(N).

Example 15. We also investigate another DE-NFG shown in Fig. 6(b) with |X̊e| = 4 and Xe = {0, 1} for all e ∈ Efull. The total

number of realizations is 3000. For every realization, all local functions are generated randomly and independently. The cumulative

distribution functions of (ZB,M (N)− ZB(N))/ZB(N) for M = 2 and M = 3, are respectively plotted in Fig. 6(d). In addition, the

impact of degree of covers M on µ± σ is shown in Fig. 6(f), where µ and σ are respectively the mean and the standard deviation

of the metric |ZB,M (N) − ZB(N)|/ZB(N). We notice that when the degree of covers M increases, the gap between ZB(N) and

ZB,M (N)is narrowed.

We can prove Conjecture 13 for DE-NFGs satisfying the constraint mentioned at the end of Section VII. However, we suspect

that Conjecture 13 holds for a much larger class of DE-NFGs.

V. LOOP-CALCULUS TRANSFORM (LCT)

Loop calculus as defined by Chertkov and Chernyak [8], [9] and further developed by Mori [10], can be formulated as a certain

holographic transform [22] applied to a factor graph, and will henceforth be called loop-calculus transform (LCT). In the following,

we give a high-level introduction to the LCT as applied to a DE-NFG with the help of Fig. 7.

• Consider some DE-NFG N. (Fig. 7(a) shows parts of such a DE-NFG.)

• Consider some fixed-point messages µ for this N.

• The DE-NFG in Fig. 7(b) is obtained from the DE-NFG in Fig. 7(a) by applying suitable opening-the-box operations [3].

Importantly, the new function nodes hi are based on µ and are such that the partition function is unchanged.

For example, for the edge e = (f1, f2) in Fig. 7(a), we introduce function nodes h3 and h8 with local functions h3 : X̃e×X̊e → C

and h8 : X̃e × X̊e → C, where X̊e := {0, 1, . . . , |X̊e|−1}2. The partition function of the DE-NFG is unchanged because h3 and

h8 satisfy
∑

˚̃xe
h3(x̃e,f1

,˚̃xe) · h8(x̃e,f2
,˚̃xe) = [x̃e,f1

= x̃e,f2
].

• The DE-NFG in Fig. 7(c) is essentially the same as the DE-NFG in Fig. 7(b).
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• The DE-NFG in Fig. 7(d) is obtained from the DE-NFG in Fig. 7(c) by applying suitable closing-the-box operations [3] to

the DE-NFG in Fig. 7(c). For example, the local function f̊1 with set of adjacent edges ∂f1 = (e, e′, e′′) is obtained via

f̊1(̊x̃e,˚̃xe′ ,˚̃xe′′) :=
∑
x̃e,f ,x̃e′,f ,x̃e′′,f

f1(x̃e,f , x̃e′,f , x̃e′′,f ) · h3(x̃e,f ,˚̃xe) · h2(x̃e′,f ,˚̃xe′) · h4(x̃e′′,f ,˚̃xe′′). Again, the partition

function of the DE-NFG is unchanged.

A. Definition of LCT for DE-NFGs

In the following, we use variables ˚̃x∂f := (x̊∂f , x̊
′
∂f ) for denoting the variable associated with function f̊ and ˚̃xe := (̊xe, x̊

′
e)

for denoting the variable on each edge e ∈ Efull for the DE-NFG after LCT and variables x̃∂f := (x∂f ,x
′
∂f ) and x̃e for denoting

the corresponding variables for the DE-NFG before LCT. By definition, we have ˚̃x∂f = (̊x̃e)e∈∂f , x̊e, x̊′e ∈ {0, . . . , |Xe| − 1} and

X̊e := Xe ×Xe for each e ∈ ∂f , f ∈ F .

Given a solution of ZB(N) for a DE-NFG N, which is denoted as the set of messages µ∗ := (µ∗e→f )e∈∂f,f∈F , we define two

matrices Me→f ∈ C|X̃e|×|X̊e| and Me→f ′ ∈ C|X̃e|×|X̊e| for each e = (f, f ′) ∈ Efull with entries

Me→f (x̃e,
˚̃0) :=ce,1µ

∗
e→f (x̃e),

Me→f (x̃e,˚̃xe) :=
ce,1
ce,3

µ∗e→f (x̃e)
([
x̃e = ˚̃xe

]
− be(̊x̃e)

)
, ˚̃xe ∈ X̊e\{̊0̃},

Me→f ′(x̃e,
˚̃0) :=ce,2µ

∗
e→f ′(x̃e),

Me→f ′(x̃e,˚̃xe) :=ce,2ce,3Ze(N,µ
∗)φe(x̃e,˚̃xe), ˚̃xe ∈ X̊e\{̊0̃},

where ˚̃0 := (0, 0), ce,1 ∈ R and ce,2 ∈ R are arbitrary constants satisfying ce,1ce,2 = Ze(N,µ
∗)−1, ce,3 ∈ R is an arbitrary non-zero

constant and

φe(x̃e,˚̃xe) :=



− 1

µ∗e→f (̊0̃)
˚̃xe = ˚̃0, µ∗e→f (̊0̃) 6= 0,

−1 ˚̃xe = ˚̃0, µ∗e→f (̊0̃) = 0,[
˚̃xe=x̃e

]
µ∗e→f (̊x̃e)

˚̃xe 6= ˚̃0, µ∗e→f (̊x̃e) 6= 0,[
˚̃xe = x̃e

]
˚̃xe 6= ˚̃0, µ∗e→f (̊x̃e) = 0.

One can verify that ∑
x̃e

Me→f (x̃e,˚̃xe,f )Me→f ′(x̃e,˚̃xe,f ′) =
[
˚̃xe,f = ˚̃xe,f ′

]
,

∑
˚̃xe

Me→f (x̃e,f ,˚̃xe)Me→f ′(x̃e,f ,˚̃xe) =
[
x̃e,f = x̃e,f ′

]
,

for all ˚̃xe, ˚̃xe,f , ˚̃xe,f ′ ∈ X̊e and x̃e, x̃e,f , x̃e,f ′ ∈ X̃ .

Theorem 16. Given µ∗ ∈ FI(N) which is one of the solutions of ZB(N), we define N̊ to be the LCT of the DE-NFG N and f̊ be

its local function for function node f . In particular,

f̊(˚̃x∂f ) :=
∑
x̃∂f

f(x̃∂f )
∏
e∈∂f

Me→f (x̃e,˚̃xe), (1)

for any ˚̃x∂f ∈ X̊f and f ∈ F .

The DE-NFG N̊ has the following properties:

• N̊ has the same underlying graph topology as DE-NFG N.

• The messages µ̊0 := (µ̊e→f,0)e∈∂f,f∈F with entries µ̊e→f,0(̊x̃e) = 1 if ˚̃xe = ˚̃0 and µ̊e→f,0(̊x̃e) = 0 otherwise for all e ∈ ∂f ,

f ∈ F are fixed-point messages of the SPA for N̊.
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• ZB(N̊, µ̊0) = ZB(N).

• Z(N̊) = Z(N) = ZB(N) +
∑

˚̃x∈X̊\{̊0̃}

∏
f∈F f̊(x̊∂f ), where X̊ :=

∏
e∈Efull

X̊e, ˚̃0 := (̊0̃)e∈Efull
.

• ZB

(
ˆ̊
N,
⊗M

m=1 µ̊0

)
= (ZB(N))M for ˆ̊

N ∈ N̊M , where N̊M is the set of all degree-M covers of N̊.

Proof. Omitted. �

Proposition 17. For each local function f ∈ F , the corresponding Choi-matrix representation (f̊(x̊∂f , x̊
′
∂f ))x̊∂f ,x̊′∂f

with row indices

x̊∂f and column indices x̊′∂f is a Hermitian matrix.

Proof. See Appendix A. �

B. Definition of LCT for NFGs

Similarly, we use variables x̊∂f ∈ Xf for denoting the variable associated with function node f and x̊e for denoting the variable

on each edge e ∈ Efull for the NFG after LCT and variables x∂f ∈ Xf and xe for denoting the corresponding variables for the NFG

before LCT. By definition, we have x̊∂f = (̊xe)e∈∂f and x̊e ∈ {0, . . . , |Xe| − 1} for each e ∈ ∂f , f ∈ F .

Given a solution of ZB(N) for an NFG N, which is denoted as the set of messages µ∗ := (µ∗e→f )e∈∂f,f∈F , we define two matrices

Me→f ∈ C|Xe|×|Xe| and Me→f ′ ∈ C|Xe|×|Xe| for each e = (f, f ′) ∈ Efull with entries

Me→f (xe, 0) :=ce,1µ
∗
e→f (xe),

Me→f (xe, x̊e) :=
ce,1
ce,3

µ∗e→f (xe)
([
xe = x̊e

]
− be(̊xe)

)
, x̊e ∈ Xe\{0},

Me→f ′(xe, 0) :=ce,2µ
∗
e→f ′(xe),

Me→f ′(xe, x̊e) :=ce,2ce,3Ze(N,µ
∗)φe(xe, x̊e), x̊e ∈ Xe\{0},

where xe ∈ Xe, ce,1, ce,2 ∈ R are two arbitrary constants satisfying ce,1ce,2 = Ze(N,µ
∗)−1, ce,3 ∈ R is an arbitrary non-zero

constant and

φe(xe, x̊e) :=



− 1
µ∗e→f (0) x̊e = 0, µ∗e→f (0) 6= 0,

−1 x̊e = 0, µ∗e→f (0) = 0,[
x̊e=xe

]
µ∗e→f (̊xe) x̊e 6= 0, µ∗e→f (̊xe) 6= 0,[
x̊e = xe

]
x̊e 6= 0, µ∗e→f (̊xe) = 0.

VI. SYMMETRIC-SUBSPACE TRANSFORM (SST)

The symmetric-subspace transform (SST) can be used to analyze M -covers of S-NFGs or DE-NFGs. The developments in this

section were motivated by [27], where, in terms of the language of the present paper, the authors transformed a certain integral into

the average partition function of some NFGs, where the average is over double covers. (Although [27] needs to consider only double

covers, it is clear that their results can be extended to general M -covers.) However, compared with [27], we go in the other direction,

i.e., we express the average partition function of a DE-NFGs, where the average is over M -covers of some DE-NFG, in terms of

some integral.

The developments in this section were partially also motivated by the results in [28].

For simplicity, in the following we consider only the case M = 2.

• Consider some DE-NFG N. (Fig. 8(a) shows parts of this DE-NFG.).6

6Actually, for proving Conjecture 13, we consider a DE-NFG that is the LCT of some DE-NFG.
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f1 f2

(a)

f1,1 f2,1

f1,2 f2,2

(b)
f1,1 f2,1

f1,2 f2,2

(c)

f1,1 f2,1

f1,2 f2,2

P1

(d)
f1,1 f2,1

f1,2 f2,2

P2

(e)

ψef1,1 f2,1ψ̌e ψ̌e

=

f1,2 f2,2ψ̌e ψ̌e

=

p

(f)

Fig. 8: Partial DE-NFGs illustrating the SST.

• Let e = (f1, f2) be the edge connecting f1 and f2 in Fig. 8(a). When considering double covers of N, the two copies of e can

connect the two copies of f1 and f2 either as shown in Fig. 8(b) or as shown in Fig. 8(c). In fact, in half the double covers the

connections will be as in Fig. 8(b), and in half the double covers the connections will be as in Fig. 8(c).

• The connection pattern in Fig. 8(b) can be encoded with the help of a {0, 1}-valued function node P1, see Fig. 8(d). Similarly,

the connection pattern in Fig. 8(c) can be encoded with the help of a {0, 1}-valued function node P2, see Fig. 8(e).

• We can represent the function values of 1
2P1 + 1

2P2 in terms of a square matrix. Crucially, this matrix can be obtained by

evaluating the following integral (for M = 2)

(M + 1)

∫
ψe∈CPd−1

(ψ̌eψ̌
H
e )⊗M dµFS(ψe), (2)

where CPd−1 is the complex projective space with d = |X̃e|M ; ψ̌e := ψe/‖ψe‖; ψ̌H
e is the Hermitian transpose of ψ̌e;

(ψ̌eψ̌
H
e )⊗M is the M -fold tensor product of the matrix ψ̌eψ̌H

e ; and µFS denotes the Fubini-Study (FS) measure.

The above integral can be expressed in terms of an NFG as shown in Fig. 8(f), where (2) is implemented by parameterized

functions ψ̌e that are parameterized by ψe, which is distributed according to p(ψe).

A. An Alternative Characterization of
〈
Z(N̂)

〉
N̂∈N̂M

using SST

Here we give an alternative characterization of
〈
Z(N̂)

〉
N̂∈N̂M

.

Lemma 18. Given an edge e ∈ Efull, we suppose that the entries in we = [we(0), . . . , we(2|X̊e| − 1)]T ∈ R2|X̊e| are independent

and identically distributed (i.i.d.) real-valued random variables following standard normal distribution. For any (Ki)
|X̊e|−1
i=0 ∈ Z|X̊e|

≥0 ,

we have

E

(∏|X̊e|−1
i=0

(
(we(i))

2 + (we(i+ 1))2
)Ki(∑2|X̊e|−1

j=0 (we(j))2
)∑|X̊e|−1

k=0 Kk

)
=

∏|X̊e|−1
i=0 Ki!(∑|X̊e|−1

j=0 Kj + 1
)
!
.

Proof. See Appendix B. �
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To apply SST, we define

ψ := (ψe)e∈Efull
,

˚̃xEfull,F := (̊x̃e,f )e∈∂f,f∈F ,

g̊(˚̃xEfull,F ) :=
∏
f

f̊(˚̃x∂f,f ),

g̊2(ψ) :=
∑

˚̃xEfull,F

g̊(˚̃xEfull,F )
∏
e

ψ̌e(̊x̃e,f )ψ̌e(̊x̃e,f ′), (3)

g̊SST(ψ) :=
(̊
g2(ψ)

)M
,

where ˚̃x∂f,f ∈ X̊f , ˚̃xe,f ∈ X̊e,
∑

˚̃xEfull,F
:=
∑

˚̃xEfull,F∈(X̊ )2 ,

ψe :=
[
we(0) + iwe(1) . . . we(2|X̊e| − 2) + iwe(2|X̊e| − 1)

]T
∈ C|X̊e|,

with index ˚̃xe and the entries in we = [we(0), . . . , we(2|X̊e| − 1)]T ∈ R2|X̊e| are i.i.d. real-valued random variables and follow

standard normal distribution. By definition of LCT, we have g̊(̊0̃) = ZB(N) ∈ R≥0.

Theorem 19. The function
〈
Z(N̂)

〉
N̂∈N̂M

equals〈
Z(N̂)

〉
N̂∈N̂M

= (M + 1)|Efull|
∫
g̊SST(ψ)dµFS(ψ).

Proof. See Appendix C. �

VII. COMBINING EVERYTHING

We could apply the SST to all the edges of the DE-NFG N under consideration. However, the SST turns out to be much more

useful when applied to the LCT N̊ of N based on some SPA-fixed point messages µ. This is because of the properties of N̊ mentioned

in Theorem 16. Namely, after applying the SST to all edges of N̊, we obtain an NFG N̊SST with the following properties:

• On the one hand, the partition function satisfies

Z(N̊SST) =
(
ZB,M (N)

)M
. (4)

• On the other hand, the partition function satisfies

Z(N̊SST) = (M + 1)|Efull|
∫

Re
(̊
gSST(ψ)

)
dµ(ψ), (5)

where ψ := {ψe}e∈Efull
and where the integral is over some suitable set and measure as implied by (2). The function g̊SST

appearing in this integral satisfies g̊SST(ψ0) =
(
ZB(N,µ)

)M
, where ψ0 := (ψe,0)e∈Efull

and ψe,0(̊x̃e) = 1 if ˚̃xe = ˚̃0 and

ψe(̊x̃e) = 0 otherwise for all e ∈ Efull.

Theorem 20. Function Re
(̊
gSST(ψ)

)
has a local maximum at ψ = ψ0

Proof. See Appendix D. �

The proof of Conjecture 13 can be obtained by combining (4)–(5), taking the limit M →∞, and using Laplace’s method. In order

to show that Re
(̊
gSST(ψ)

)
has a global maximum at ψ = ψ0, one can for example limit the consideration to DE-NFGs N whose

LCT N̊ satisfies the following condition: for every function node f , it holds that f̊ (̊0̃) >
∑

˚̃xf 6=˚̃0
|f̊(˚̃xf )|. However, we suspect that

(much) weaker conditions are required.
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˚̃x1
˚̃x3

˚̃x2

f̊1

f̊2

(a)

˚̃x1,1

˚̃x2,1

˚̃x3,1

˚̃x1,2

˚̃x2,2

˚̃x3,2
f̊1

µ̊e1→f1

µ̊e2→f1

f̊2

µ̊e1→f2

µ̊e2→f2

µ̊e3→f1
µ̊e3→f2

(b)

Fig. 9: DE-NFGs in Example 21

VIII. COMPARISON BETWEEN g̊2(ψ) AND THE BETHE PARTITION FUNCTION

Recall that the function ZB(N̊, µ̊) for the DE-NFG after LCT equals

ZB(N̊, µ̊) =

∏
f Zf (N̊, µ̊)∏
e Ze(N̊, µ̊)

,

where µ̊ := {µ̊e→f}e∈∂f,f∈F and µ̊e→f ∈ C|X̊e|.

Example 21. Consider the DE-NFG N̊ in Fig. 9(a). The corresponding function ZB(N̊, µ̊) is the partition function of the DE-NFG

in Fig. 9(b), which equals to

ZB(N̊, µ̊) =

(∑
˚̃x∂f1

, f̊1(˚̃x∂f1
)
∏
e∈(1,2,3) µ̊e→f1

(̊x̃e,1)

)(∑
˚̃x∂f2

, f̊2(˚̃x∂f2
)
∏
e∈(1,2,3) µ̊e→f1

(̊x̃e,2)

)
∏
e∈(1,2,3)

(∑
˚̃xe,f

µ̊e→f1 (̊x̃e,1)µ̊e→f2 (̊x̃e,2)
) ,

where ˚̃x∂f1
:= (̊x̃1,1,˚̃x2,1,˚̃x3,1) and ˚̃x∂f2

:= (̊x̃1,2,˚̃x2,2,˚̃x3,2).

The Wirtinger derivatives of ZB(N,µ) with respect to µ̊e1→f1
(̊x̃e1) and µ̊e1→f1

(̊x̃e1) for e1 = (f1, f
′
1) equal

∂ZB(N, µ̊)

∂µ̊e1→f1
(̊x̃e1)

=

∑
˚̃xEfull,F∈S((e1,f1),̊x̃e1

) g̊(˚̃xEfull,F )µ̊e1→f ′1 (̊x̃e,f ′)
∏
e=(f,f ′)∈Efull\{e1} µ̊e→f (̊x̃e,f )µ̊e→f ′ (̊x̃e,f ′)∏

e∈Efull

(∑
˚̃xe,f

µ̊e→f (̊x̃e,f )µ̊e→f ′ (̊x̃e,f )
)

−
µ̊e1→f ′1 (̊x̃e1)

∑
˚̃xEfull,F

g̊(˚̃xEfull,F )
∏
e=(f,f ′)∈Efull

µ̊e→f (̊x̃e,f )µ̊e→f ′ (̊x̃e,f ′)(∑
˚̃xe1,f1

µ̊e1→f1
(̊x̃e1,f1

)µ̊e1→f ′1 (̊x̃e1,f1
)
)2∏

e∈Efull\{e1}

(∑
˚̃xe,f

µ̊e→f (̊x̃e,f )µ̊e→f ′ (̊x̃e,f )
) ,

∂ZB(N, µ̊)

∂µ̊e1→f1
(̊x̃e1)

= 0,

where

S((e1, f1),˚̃xe1) : = {˚̃xEfull,F ∈ (X̊ )2 : ˚̃xe1,f1
= ˚̃xe1},

for all ˚̃xe1,f1
∈ X̊e1 , e1 = (f1, f

′
1) ∈ Efull. At the stationary point of ZB(N, µ̊) i.e., ∂ZB(N,µ̊)

∂µ̊e1→f1
(̊x̃e1

)
= 0, for every e1 ∈ ∂f and f ∈ F ,

we have

µ̊e1→f1
(̊x̃e1) ∝

∑
˚̃xEfull,F∈S((e1,f ′1),̊x̃e1

)

g̊(˚̃xEfull,F )µ̊e1→f1
(̊x̃e,f ′)

∏
e=(f,f ′)∈Efull\{e1}

µ̊e→f (̊x̃e,f )µ̊e→f ′ (̊x̃e,f ′),

µ̊e1→f ′1 (̊x̃e1) ∝
∑

˚̃xEfull,F∈S((e1,f1),̊x̃e1 )

g̊(˚̃xEfull,F )µ̊e1→f ′1 (̊x̃e,f ′)
∏

e=(f,f ′)∈Efull\{e1}

µ̊e→f (̊x̃e,f )µ̊e→f ′ (̊x̃e,f ′),

which is the expression for the fixed-point of the SPA.
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Proposition 22. Recall that g̊2(ψ) is defined in (3). At the stationary point of g̊2(ψ), i.e., ∂g̊2(ψ)

∂ψe1
(̊x̃e1

)
= ∂g̊2(ψ)

∂ψe1
(̊x̃e1

)
= 0, for every

e1 ∈ ∂f and f ∈ F , the vector ψ corresponds to the SPA fixed-point.

Proof. From (16) and (17), at the stationary point of g̊2(ψ), we have

ψe1 (̊x̃e1) ∝
∑

x̃Efull,F∈S((e1,f ′1),̊x̃e1 )

g̊(x̃E,F )ψe1 (̊x̃e1,f1)
∏

e=(f,f ′)∈Efull\{e1}

ψe(̊x̃e,f )ψe(̊x̃e,f ′),

which is the expression for the fixed-point of SPA such that µ̊e→f = ψe and µ̊e→f ′ = ψe for all e = (f, f ′) ∈ Efull.

�

APPENDIX A

PROOF OF PROPOSITION 17

The following operations on a Hermitian matrix Me ∈ C|Xe|2×|Xe|2 with row index xe, x̊e and column index x′e, x̊
′
e are Hermitian-

preserving operations:

1) cMe for some c ∈ R.

2) The Hadamard product between Me and Me′ , where Me′ is also a Hermitian matrix with the same size as Me.

3) The partial trace of Me. The matrix ∑
xe,x′e

Me

(
(xe, x̊e), (x

′
e, x̊
′
e)
)
,

with row index x̊e and column index x̊′e is a Hermitian matrix. Also the matrix∑
x̊e ,̊x′e

Me

(
(xe, x̊e), (x

′
e, x̊
′
e)
)
,

with row index xe and column index x′e is a Hermitian matrix.

Given a function f ’s corresponding Choi-matrix representation [26] (f(x∂f,f ,x
′
∂f,f ))x∂f,f ,x′∂f,f

and its associated matrices for

loop-calculus transform, i.e., Me→f ((xe,f , x̊e), (x
′
e,f ′ , x̊

′
e))x̃e,f ,̊x̃e∈X̊ in Choi-matrix representation with row indices (xe,f , x̊e) and

column indices (x′e,f ′ , x̊
′
e) such that Me→f ((xe,f , x̊e), (x

′
e,f ′ , x̊

′
e)) = Me→f (x̃e,f ,˚̃xe) for e ∈ ∂f , one can verify that they are all

Hermitian matrices. The loop-calculus transform in (1) can be decomposed into two consecutive operations:

1) The Hadamard product between matrices (f(x∂f,f ,x
′
∂f,f ))x∂f,f ,x′∂f,f

⊗
I and

⊗
e∈∂f Me→f ((xe,f , x̊e), (x

′
e,f ′ , x̊

′
e))x̃e,f ,̊x̃e∈X̊ ,

where I is the identity matrix with size
∏
e∈∂f |Xe| ×

∏
e∈∂f |Xe|.

2) The partial trace over the indices of the edges between local function and its neighboring loop-calculus transform matrices,

i.e.,

f(x̊∂f , x̊
′
∂f ) =

∑
x∂f,f ,x′∂f,f

f(x∂f,f ,x
′
∂f,f )

∏
e∈∂f

Me→f ((xe,f , x̊e), (x
′
e,f , x̊

′
e)).

Both these two operations are Hermitian-preserving operations. Thus the resulting matrix (f(x̊∂f , x̊
′
∂f ))x̊∂f ,x̊′∂f

is Hermitian.

APPENDIX B

PROOF OF LEMMA 18

The main idea of this proof comes from [29]. In the following, we prove Lemma 18 when |X̊e| = 2 and this proof can be

generalized to cases with alphabet size |X̊e| greater than 2.

Let us define we := (we(0), we(1), we(2), we(3)). Since we(0), we(1), we(2), we(3) are uniformly distributed when ‖we‖ = r,

we have

E
(
f1(we)

)
=

∫
CP3

f1(we) dµFS(we),
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where f1(we) := ((we(0))2 + (we(1))2)K1((we(2))2 + (we(3))2)K2/‖we‖2(K1+K2). After some calculations, one obtains∫
R4

1

4π2
f1(we)e

− ‖we‖2
2 dx = 2K1+K2K1!K2!. (6)

Let us define a sphere in R4 with radius r to be S4(r) := {we ∈ R4|‖z‖ = r}. Evaluating (6) in polar coordinates gives

1

4π2

∫
S4

∫ ∞
0

r2(K1+K2)+3e−
r2

2 f1(we) dr dσ(we)

=
1

4π2

∫ ∞
0

r2(K1+K2)+3e−
r2

2 dr

∫
S4

f1(we) dσ(we)

=
2K1+K2+1(K1 +K2 + 1)!

4π2

∫
S4

f1(we) dσ(we). (7)

Since both 2
4π2σ(we) and µFS(we) are measures induced from the Haar measure [30], comparing (6) with (7), we have∫

S4

2f1

(
we
)

4π2
dσ(we) =

∫
CP3

f1(we) dµFS(we)

=
K1!K2!

(K1 +K2 + 1)!
.

APPENDIX C

PROOF OF THEOREM 19

Let us define a matrix Dσe,M for each edge such that given σe ∈ SM , ˚̃x1,M , ˚̃x2,M ∈ X̊Me , the entry of matrix Dσe,M with row

index ˚̃x1,M and column index ˚̃x2,M equals

Dσe,M (˚̃x1,M , ˚̃x2,M ) :=

M∏
m=1

[
˚̃x1,m = σe(̊x̃2,m)

]
,

where I ∈ R|X̊e|×|X̊e| is the identity matrix. Notice that Dσe,M is a permutation matrix. If σe ∈ SM denotes the identity permutation,

then Dσe,M = I⊗M , where I⊗M is the standard M -fold Kronecker product of the identity matrix. Define

Te,M :=
1

M !

∑
σ∈SM

Dσe,M ,

βe,̊x̃e,M
(̊x̃e) :=

M∑
m=1

[
˚̃xe,m = ˚̃xe

]
, (8)

for all ˚̃xe,M ∈ X̊Me ,˚̃xe ∈ X̊ , e ∈ Efull. One can verify that for ˚̃x1,M , ˚̃x2,M ∈ X̊M ,

Te,M (˚̃x1,M , ˚̃x2,M ) =

∏
˚̃xe
βe,̊x̃1,M

(̊x̃e)!

M !
·
[
βe,̊x̃1,M

= βe,̊x̃2,M

]
, (9)

where βe,̊x̃1,M
= βe,̊x̃2,M

means the vector βe,̊x̃1,M
equals the vector βe,̊x̃2,M

entrywise. With these definitions, we have

〈
Z(N̂)

〉
N̂∈N̂M

=
∑

˚̃xEfull,F,M

M∏
m=1

∏
f

f̊(˚̃x∂f,f,m) ·
∏
e

Te,M (˚̃xe,f,M , ˚̃xe,f ′,M ), (10)

where e = (f, f ′) ∈ Efull, ˚̃xEfull,F,M := (̊x̃e,f,m)e∈∂f,f∈F,m∈[M ] and
∑

˚̃xEfull,F,M
=
∑

˚̃xEfull,F,M∈X̊ 2M . As a result, we can reduce

the problem of computing
〈
Z(N̂)

〉
N̂∈N̂M

to a problem of computing the partition function over the original DE-NFG N with a matrix

Te,M on each edge and a function
∏M
m=1 f for each function node.

For ˚̃x1,M , ˚̃x2,M ∈ X̊M , the entry in E
(
(ψ̌eψ̌

H
e )⊗M

)
with row index ˚̃x1,M and column index ˚̃x2,M equals

E
(∏

˚̃xe

|ψ̌e(̊x̃e)|
2βe,˚̃x1,M

(̊x̃e)
)
·
[
βe,̊x̃1,M

= βe,̊x̃2,M

]
. (11)
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Recall that βe,̊x̃1,M
and βe,̊x̃2,M

are defined in (8). With Proposition 18, the entry of matrix E
(
(ψ̌eψ̌

H
e )⊗M

)
with row index ˚̃x1,M

and column index ˚̃x2,M equals ∏
˚̃xe
βe,̊x̃1,M

(̊x̃e)!

(M + 1)!
·
[
βe,̊x̃1,M

= βe,̊x̃2,M

]
, (12)

where
∏

˚̃xe
denotes

∏
˚̃xe∈X̊e

. Comparing the above term with (9), we have (M + 1)E
(
(ψ̌eψ̌

H
e )⊗M

)
= Te,M .

APPENDIX D

PROOF OF THEOREM 20

Here we prove the local maximum at ψ0 by proving that the Hessian matrix of −Re(̊gSST(ψ)) with respect to ψ at ψ = ψ0 is

PSD. For simplicity, we define

g(e1,f1)(̊x̃e1) : = g1

(
˚̃xEfull,F :

˚̃xe1,f1
=˚̃xe1

,

˚̃xe,f =̊0̃ ∀(e,f)∈(Efull×F)
\{(e1,f1)}: e∈∂f

)
, (13)

g(e1,f1),(e2,f2)(̊x̃e1 ,˚̃xe2) : = g1

(
˚̃xEfull,F :

˚̃xe1,f1
=˚̃xe1

, ˚̃xe2,f2
=˚̃xe2

,

˚̃xe,f =̊0̃ ∀(e,f)∈(Efull×F)
\{(e1,f1),(e2,f2)}: e∈∂f

)
, (14)

S((e1, f1), (e2, f2),˚̃xe1 ,˚̃xe2) : = {˚̃xEfull,F ∈ (X̊ )2 : ˚̃xe1,f1 = ˚̃xe1 , ˚̃xe2,f2 = ˚̃xe2}, (15)

for all ˚̃xe1 ∈ X̊e1 , ˚̃xe2 ∈ X̊e2 , e1 = (f1, f
′
1), e2 = (f2, f

′
2) ∈ Efull.

A. First Derivatives of g̊SST(ψ) with respect to ψ at ψ = ψ0

Lemma 23. When ψ = ψ0, we have

∂g̊SST(ψ)

∂ψe1 (̊x̃e1)

∣∣∣∣
ψ=ψ0

= 0,

∂g̊SST(ψ)

∂ψe1 (̊x̃e1)

∣∣∣∣∣
ψ=ψ0

= 0,

for all e1 = (f1, f
′
1) ∈ Efull, ˚̃xe1 ∈ X̊e1 .

Proof. The Wirtinger derivatives of g̊2(ψ) with respect to ψe1 (̊x̃e1) and ψe1 (̊x̃e1) equal, respectively,

∂g̊2(ψ)

∂ψe1 (̊x̃e1)
=
∂ Re(̊g2(ψ))

∂ψe1 (̊x̃e1)
+ i

∂ Im(̊g2(ψ))

∂ψe1 (̊x̃e1)

=

∑
˚̃xEfull,F∈S((e1,f1),̊x̃e1 ) g̊(˚̃xEfull,F )ψe1 (̊x̃e1,f ′1)

∏
e=(f,f ′)∈Efull\{e1} ψe(̊x̃e,f )ψe(̊x̃e,f ′)∏

e∈Efull
‖ψe‖2

−
ψe1 (̊x̃e1)

∑
x̃Efull,F

g̊(˚̃xEfull,F )
∏
e=(f,f ′)∈Efull

ψe(̊x̃e,f )ψe(̊x̃e,f ′)

‖ψe1‖4
∏
e∈Efull\{e1} ‖ψe‖

2
, (16)

∂g̊2(ψ)

∂ψe1 (̊x̃e1)
=

∑
˚̃xEfull,F∈S((e1,f ′1),̊x̃e1

) g̊(˚̃xEfull,F )ψe1 (̊x̃e1,f1)
∏
e=(f,f ′)∈Efull\{e1} ψe(̊x̃e,f )ψe(̊x̃e,f ′)∏

e∈Efull
‖ψe‖2

−
ψe1 (̊x̃e1)

∑
˚̃xEfull,F

g̊(˚̃xEfull,F )
∏
e=(f,f ′)∈Efull

ψe(̊x̃e,f )ψe(̊x̃e,f ′)

‖ψe1‖4
∏
e∈Efull\{e1} ‖ψe‖

2
. (17)

At ψ = ψ0, we have

∂g̊2(ψ)

∂ψe1 (̊x̃e1)

∣∣∣∣
ψ=ψ0

= g(e1,f1)(̊x̃e1)−
[
˚̃xe1 = ˚̃0

]
· g̊(̊0̃),

∂g̊2(ψ)

∂ψe1 (̊x̃e1)

∣∣∣∣∣
ψ=ψ0

= g(e1,f ′1)(̊x̃e1)−
[
˚̃xe1 = ˚̃0

]
· g̊(̊0̃).
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When ˚̃xe1 = ˚̃0, the above expressions equal zero. When ˚̃xe1 6=
˚̃0, by definition of LCT, we also have g(e1,f1)(̊x̃e1) = 0 and

g(e1,f ′1)(̊x̃e1) = 0, which implies

∂g̊2(ψ)

∂ψe1 (̊x̃e1)

∣∣∣∣
ψ=ψ0

= 0,

∂g̊2(ψ)

∂ψe1 (̊x̃e1)

∣∣∣∣∣
ψ=ψ0

= 0.

Note that

∂g̊SST(ψ)

∂ψe1 (̊x̃e1)
= M (̊g2(ψ))M−1 ∂g̊2(ψ)

∂ψe1 (̊x̃e1)
,

∂g̊SST(ψ)

∂ψe1 (̊x̃e1)
= M (̊g2(ψ))M−1 ∂g̊2(ψ)

∂ψe1 (̊x̃e1)
.

�

Lemma 24. At ψ = ψ0, it holds

∂g̊2(ψ)

∂ψe1 (̊x̃e1)

∣∣∣∣∣
ψ=ψ0

= 0,

∂g̊2(ψ)

∂ψe1 (̊x̃e1)

∣∣∣∣∣
ψ=ψ0

= 0.

Proof. We have

∂g̊2(ψ)

∂ψe1 (̊x̃e1)
=

∑
˚̃xEfull,F∈S((e1,f ′1),̊x̃e1 ) g̊(˚̃xEfull,F )ψe1 (̊x̃e1,f1

)
∏
e=(f,f ′)∈Efull\{e1} ψe(̊x̃e,f )ψe(̊x̃e,f ′)∏

e∈Efull
‖ψe‖2

−
ψe1 (̊x̃e1)

∑
˚̃xEfull,F

g̊(˚̃xEfull,F )
∏
e=(f,f ′)∈Efull

ψe(̊x̃e,f )ψe(̊x̃e,f ′)

‖ψe1‖4
∏
e∈Efull\{e1} ‖ψe‖

2
,

∂g̊2(ψ)

∂ψe1 (̊x̃e1)
=

∑
˚̃xEfull,F∈S((e1,f1),̊x̃e1

) g̊(˚̃xEfull,F )ψe1 (̊x̃e1,f ′1)
∏
e=(f,f ′)∈Efull\{e1} ψe(̊x̃e,f )ψe(̊x̃e,f ′)∏

e∈Efull
‖ψe‖2

−
ψe1 (̊x̃e1)

∑
˚̃xEfull,F

g̊(˚̃xEfull,F )
∏
e=(f,f ′)∈Efull

ψe(̊x̃e,f )ψe(̊x̃e,f ′)

‖ψe1‖4
∏
e∈Efull\{e1} ‖ψe‖

2
.

When ψ = ψ0, we have

∂g̊2(ψ)

∂ψe1 (̊x̃e1)

∣∣∣∣∣
ψ=ψ0

= g(e1,f ′1)(̊x̃e1)−
[
˚̃xe1 = ˚̃0

]
· g̊(̊0̃)

= 0,

∂g̊2(ψ)

∂ψe1 (̊x̃e1)

∣∣∣∣∣
ψ=ψ0

= g(e1,f1)(̊x̃e1)−
[
˚̃xe1 = ˚̃0

]
· g̊(̊0̃)

= 0,

for all e1 ∈ Efull, ˚̃xe1 ∈ X̊e1 . �

B. Hessian Matrix of g̊SST(ψ) with respect to ψ at ψ = ψ0

Lemma 25. When ψ = ψ0, we have

∂

∂ψe2 (̊x̃e2)

(
∂g̊SST(ψ)

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

= M (̊g(̊0̃))M−1 ∂

∂ψe2 (̊x̃e2)

(
∂g̊2(ψ)

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

, (18)
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∂

∂ψe2 (̊x̃e2)

(
∂g̊SST(ψ)

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

= M (̊g(̊0̃))M−1 ∂

∂ψe2 (̊x̃e2)

(
∂g̊2(ψ)

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

, (19)

∂

∂ψe2 (̊x̃e2)

(
∂g̊SST(ψ)

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

= M (̊g(̊0̃))M−1 ∂

∂ψe2 (̊x̃e2)

(
∂g̊2(ψ)

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

, (20)

∂

∂ψe2 (̊x̃e2)

(
∂g̊SST(ψ)

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

= M (̊g(̊0̃))M−1 ∂

∂ψe2 (̊x̃e2)

(
∂g̊2(ψ)

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

, (21)

for all e1 = (f1, f
′
1), e2 = (f2, f

′
2) ∈ Efull, ˚̃xe1 ∈ X̊e1 , ˚̃xe2 ∈ X̊e2 .

Proof. We have

∂

∂ψe2 (̊x̃e2)

(
∂g̊SST(ψ)

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

= M(M − 1)(̊g(̊0̃))M−2 · ∂g̊2(ψ)

∂ψe2 (̊x̃e2)

∣∣∣∣
ψ=ψ0

·
(

∂g̊2(ψ)

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

+ M (̊g(̊0̃))M−1 ∂

∂ψe2 (̊x̃e2)

(
∂g̊2(ψ)

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

= M (̊g(̊0̃))M−1 ∂

∂ψe2 (̊x̃e2)

(
∂g̊2(ψ)

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

.

The proof of expressions (19)–(21) is similar and thus it is omitted here. �

Let φe : X̊ →
[∑

e′∈Efull
|X̊e′ |

]
be the bijection that sends an element ˚̃xe ∈ X̊e to the position of (. . . ,˚̃0,˚̃xe,

˚̃0, . . .) ∈
∏
e′∈Efull

X̊e′

in lexicographical order among all vectors in
∏
e′∈Efull

X̊e′ .

The matrices Hψ,1, Hψ,2, Hψ,3 and Hψ,4 with column index φe1 (̊x̃e1) and row index φe2 (̊x̃e2) is defined to be

Hψ,1(φe2 (̊x̃e2), φe1 (̊x̃e1)) := Hψ,1,re(φe2 (̊x̃e2), φe1 (̊x̃e1)) + iHψ,1,im(φe2 (̊x̃e2), φe1 (̊x̃e1)),

Hψ,2(φe2 (̊x̃e2), φe1 (̊x̃e1)) := Hψ,2,re(φe2 (̊x̃e2), φe1 (̊x̃e1)) + iHψ,2,im(φe2 (̊x̃e2), φe1 (̊x̃e1)),

Hψ,3(φe2 (̊x̃e2), φe1 (̊x̃e1)) := Hψ,3,re(φe2 (̊x̃e2), φe1 (̊x̃e1)) + iHψ,3,im(φe2 (̊x̃e2), φe1 (̊x̃e1)),

Hψ,4(φe2 (̊x̃e2), φe1 (̊x̃e1)) := Hψ,4,re(φe2 (̊x̃e2), φe1 (̊x̃e1)) + iHψ,4,im(φe2 (̊x̃e2), φe1 (̊x̃e1)),

for all ˚̃xe1 ∈ X̊e1 , ˚̃xe2 ∈ X̊e2 , e1 = (f1, f
′
1), e2 = (f2, f

′
2) ∈ Efull, where

Hψ,1,re(φe2 (̊x̃e2), φe1 (̊x̃e1)) :=
∂

∂ψe2 (̊x̃e2)

(
∂ Re(̊gSST(ψ))

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

∈ C,

Hψ,1,im(φe2 (̊x̃e2), φe1 (̊x̃e1)) :=
∂

∂ψe2 (̊x̃e2)

(
∂ Im(̊gSST(ψ))

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

∈ C,

Hψ,2,re(φe2 (̊x̃e2), φe1 (̊x̃e1)) :=
∂

∂ψe2 (̊x̃e2)

(
∂ Re(̊gSST(ψ))

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

∈ C,

Hψ,2,im(φe2 (̊x̃e2), φe1 (̊x̃e1)) :=
∂

∂ψe2 (̊x̃e2)

(
∂ Im(̊gSST(ψ))

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

∈ C,

Hψ,3,re(φe2 (̊x̃e2), φe1 (̊x̃e1)) :=
∂

∂ψe2 (̊x̃e2)

(
∂ Re(̊gSST(ψ))

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

∈ C,

Hψ,3,im(φe2 (̊x̃e2), φe1 (̊x̃e1)) :=
∂

∂ψe2 (̊x̃e2)

(
∂ Im(̊gSST(ψ))

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

∈ C,

Hψ,4,re(φe2 (̊x̃e2), φe1 (̊x̃e1)) :=
∂

∂ψe2 (̊x̃e2)

(
∂ Re(̊gSST(ψ))

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

∈ C,
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Hψ,4,im(φe2 (̊x̃e2), φe1 (̊x̃e1)) :=
∂

∂ψe2 (̊x̃e2)

(
∂ Im(̊gSST(ψ))

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

∈ C.

Lemma 26. We have

Hψ,1(φe2 (̊x̃e2), φe1 (̊x̃e1)) = M (̊g(̊0̃))M−1 ·
[
˚̃xe1 6=

˚̃0,˚̃xe2 6=
˚̃0
]
·
(
g(e1,f ′1),(e2,f2)(̊x̃e1 ,˚̃xe2)− [e1 = e2] ·

[
˚̃xe1 = ˚̃xe2

]
· g̊(̊0̃)

)
, (22)

Hψ,2(φe2 (̊x̃e2), φe1 (̊x̃e1)) = M (̊g(0̃))M−1 ·
[
˚̃xe1 6=

˚̃0,˚̃xe2 6=
˚̃0
]
· [e1 6= e2] · g(e1,f1),(e2,f2)(̊x̃e1 ,˚̃xe2), (23)

Hψ,3(φe2 (̊x̃e2), φe1 (̊x̃e1)) = M (̊g(̊0̃))M−1 ·
[
˚̃xe1 6=

˚̃0,˚̃xe2 6=
˚̃0
]
·[e1 6= e2] · g(e1,f ′1),(e2,f ′2)(̊x̃e1 ,˚̃xe2), (24)

Hψ,4(φe2 (̊x̃e2), φe1 (̊x̃e1)) = M (̊g(̊0̃))M−1 ·
[
˚̃xe1 6=

˚̃0,˚̃xe2 6=
˚̃0
]
·
(
g(e1,f1),(e2,f ′2)(̊x̃e1 ,˚̃xe2)− [e1 = e2] ·

[
˚̃xe1 = ˚̃xe2

]
· g̊(̊0̃)

)
, (25)

for all ˚̃xe1 ∈ X̊e1 , ˚̃xe2 ∈ X̊e2 , e1 = (f1, f
′
1), e2 = (f2, f

′
2) ∈ Efull.

Proof. Note that

Hψ,1(φe2 (̊x̃e2), φe1 (̊x̃e1)) =
∂

∂ψe2 (̊x̃e2)

(
∂ Re(̊gSST(ψ))

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

+ i
∂

∂ψe2 (̊x̃e2)

(
∂ Im(̊gSST(ψ))

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

=
∂

∂ψe2 (̊x̃e2)

(
∂ 1

2

(̊
gSST(ψ) + g̊SST(ψ)

)
∂ψe1 (̊x̃e1)

)∣∣∣∣∣∣
ψ=ψ0

+ i
∂

∂ψe2 (̊x̃e2)

(
∂ 1

2i

(̊
gSST(ψ)− g̊SST(ψ)

)
∂ψe1 (̊x̃e1)

)∣∣∣∣∣∣
ψ=ψ0

=
∂

∂ψe2 (̊x̃e2)

(
∂g̊SST(ψ)

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

. (26)

With Lemma 25, it is sufficient to consider the Hessian of g̊2(ψ). We have(
∂g̊2(ψ)

∂ψe1 (̊x̃e1)

)
=

∑
˚̃xEfull,F∈S((e1,f ′1),̊x̃e1

) g̊(˚̃xEfull,F )ψe1 (̊x̃e1,f1)
∏
e=(f,f ′)∈Efull\{e1} ψe(̊x̃e,f )ψe(̊x̃e,f ′)∏

e∈Efull
‖ψe‖2

−
ψe1 (̊x̃e1)

∑
˚̃xEfull,F

g̊(˚̃xEfull,F )
∏
e=(f,f ′)∈Efull

ψe(̊x̃e,f )ψe(̊x̃e,f ′)

‖ψe1‖4
∏
e∈Efull\{e1} ‖ψe‖

2
. (27)

Suppose e1 6= e2, we have

∂

∂ψe2 (̊x̃e2)

(
∂g̊2(ψ)

∂ψe1 (̊x̃e1)

)
=

∑
˚̃xEfull,F∈S((e1,f ′1),(e2,f2),̊x̃e1

,̊x̃e2
) g̊(˚̃xEfull,F )ψe1 (̊x̃e1,f1

)ψe2 (̊x̃e2,f ′2)
∏
e=(f,f ′)∈Efull\{e1,e2} ψe(̊x̃e,f )ψe(̊x̃e,f ′)∏

e∈Efull
‖ψe‖2

−
ψe2 (̊x̃e2)

∑
˚̃xEfull,F∈S((e1,f ′1),̊x̃e1 ) g̊(˚̃xEfull,F )ψe1 (̊x̃e1,f1

)
∏
e=(f,f ′)∈Efull\{e1} ψe(̊x̃e,f )ψe(̊x̃e,f ′)

‖ψe2‖4
∏
e∈Efull\{e2} ‖ψe‖

2

−
ψe1 (̊x̃e1)

∑
˚̃xEfull,F∈S((e2,f2),̊x̃e2

) g̊(˚̃xEfull,F )ψe2 (̊x̃e2,f ′2)
∏
e=(f,f ′)∈Efull\{e2} ψe(̊x̃e,f )ψe(̊x̃e,f ′)

‖ψe1‖4
∏
e∈Efull\{e1} ‖ψe‖

2

+
ψe1 (̊x̃e1)ψe2 (̊x̃e2)

∑
˚̃xEfull,F

g̊(˚̃xEfull,F )
∏
e=(f,f ′)∈Efull

ψe(̊x̃e,f )ψe(̊x̃e,f ′)

‖ψe1‖4‖ψe2‖4
∏
e∈Efull\{e1,e2} ‖ψe‖

2
.

If e1 = e2, the derivative of
(

∂g̊2(ψ)

∂ψe1
(̊x̃e1

)

)
with respect to ψe1 (̊x̃e2) is

∂

∂ψe2 (̊x̃e2)

(
∂g̊2(ψ)

∂ψe1 (̊x̃e1)

)
=

∑
˚̃xEfull,F∈S((e1,f ′1),(e1,f1),̊x̃e1

,̊x̃e2
) g̊(˚̃xEfull,F )

∏
e=(f,f ′)∈Efull\{e1} ψe(̊x̃e,f )ψe(̊x̃e,f ′)∏

e∈Efull
‖ψe‖2

−
ψe1 (̊x̃e2)

∑
˚̃xEfull,F∈S((e1,f ′1),̊x̃e1

) g̊(˚̃xEfull,F )ψe1 (̊x̃e1,f1
)
∏
e=(f,f ′)∈Efull\{e1} ψe(̊x̃e,f )ψe(̊x̃e,f ′)

‖ψe1‖4
∏
e∈E\{e2} ‖ψe‖

2

−

[
˚̃xe1 = ˚̃xe2

]∑
˚̃xEfull,F

g̊(˚̃xEfull,F )
∏
e=(f,f ′)∈Efull

ψe(̊x̃e,f )ψe(̊x̃e,f ′)

‖ψe1‖4
∏
e∈Efull\{e1} ‖ψe‖

2
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−
ψe1 (̊x̃e1)

∑
˚̃xEfull,F∈S((e1,f1),̊x̃e2

) g̊(˚̃xEfull,F )ψe1 (̊x̃e1,f ′1)
∏
e=(f,f ′)∈Efull\{e1} ψe(̊x̃e,f )ψe(̊x̃e,f ′)

‖ψe1‖4
∏
e∈Efull\{e1} ‖ψe‖

2

+
2ψe1 (̊x̃e1)ψe1 (̊x̃e2)

∑
˚̃xEfull,F

g̊(˚̃xEfull,F )
∏
e=(f,f ′)∈Efull

ψe(̊x̃e,f )ψe(̊x̃e,f ′)

‖ψe1‖6
∏
e∈Efull\{e1} ‖ψe‖

2
.

When ψ = ψ0 and e1 6= e2, we have

∂

∂ψe2 (̊x̃e2)

(
∂g̊2(ψ)

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

= g(e1,f ′1),(e2,f2)(̊x̃e1 ,˚̃xe2)−
[
˚̃xe2 = ˚̃0

]
· g(e1,f ′1)(̊x̃e1)−

[
˚̃xe1 = ˚̃0

]
· g(e2,f2)(̊x̃e2)

+
[
˚̃xe1 = ˚̃0,˚̃xe2 = ˚̃0

]
· g̊(̊0̃).

When ψ = ψ0 and e1 = e2, we have

∂

∂ψe2 (̊x̃e2)

(
∂g̊2(ψ)

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

= g(e1,f ′1),(e1,f1)(̊x̃e1 ,˚̃xe2)−
[
˚̃xe2 = ˚̃0

]
· g(e1,f ′1)(̊x̃e1)−

[
˚̃xe1 = ˚̃0

]
· g(e1,f1)(̊x̃e2)

+ 2
[
˚̃xe1 = ˚̃0,˚̃xe2 = ˚̃0

]
· g̊(̊0̃)−

[
˚̃xe1 = ˚̃xe2

]
· g̊(̊0̃).

We notice that when at least one of ˚̃xe1 and ˚̃xe2 equals ˚̃0, we have ∂
∂ψe2 (̊x̃e2 )

(
∂g̊2(ψ)

∂ψe1 (˚̃xe1 )

)∣∣∣∣
ψ=ψ0

= 0. To sum up, for any e1, e2 ∈ Efull,

we have

∂

∂ψe2 (̊x̃e2)

(
∂g̊2(ψ)

∂ψe1 (̊x̃e1)

)∣∣∣∣∣
ψ=ψ0

=
[
˚̃xe1 6=

˚̃0,˚̃xe2 6=
˚̃0
]
·
(
g(e1,f ′1),(e2,f2)(̊x̃e1 ,˚̃xe2)− [e1 = e2] ·

[
˚̃xe1 = ˚̃xe2

]
· g̊(̊0̃)

)
.

With (18), we can obtain (22). The proof for expressions (23)–(25) is similar to the proof of (22). Thus it is omitted here. �

By definition, the Hessian of g̊SST(ψ) at ψ = ψ0, denoted as Hψ , equals

Hψ =

Hψ,1 Hψ,2

Hψ,2 Hψ,4

 .
C. Relating Hψ to the Hessian of g̊SST(ψ) when g̊SST(ψ) is a function of real arguments w

Let Jw be the Jacobian matrix of ψ with respect to w and Hw be the Hessian of g̊SST(ψ) with respect to w. From Section 6 in

[31], the matrix Jw is invertible and we have

Jw · JH
w = c · I, c ∈ R>0,

ψ = Jw ·w,

Hw = JH
w ·Hψ · Jw.

D. Jacobian Matrix for SPA

Here we compute the Jacobian matrix of the SPA on the DE-NFG after LCT. For every the fixed-point messages of the SPA on the

original DE-NFG, there is a corresponding fixed-point messages of the SPA on the DE-NFG after LCT. Given a set of fixed-point

messages µ of the SPA on the original DE-NFG, the corresponding fixed-point messages of the SPA on the DE-NFG after LCT,

denoted as µ̊ = {µ̊e→f}e∈Efull,f∈∂e with element µ̊e→f ∈ C|X̊ | equaling

µ̊e→f =
(
Me→f

)−1 · µe→f ,

µ̊e→f ′ =
(
Me→f ′

)−1 · µe→f ′ ,

for all f ∈ ∂e, e ∈ Efull.
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In the SPA, the terms µ̊e→f (̊0̃) and µ̊e→f ′ (̊0̃) are normalized to be 1 for all e = (f, f ′) ∈ Efull at each iteration. Suppose that we

are at the n-th iteration and we want to obtain the (n+ 1)-th message µ̊(n+1)
e1→f1

∈ C|X̊e1
| with index ˚̃xe1 ∈ X̊e1 using SPA, we have

µ̊
(n+1)
e1→f1

(̊x̃e1) =

∑
˚̃xEfull,F∈S((e1,f ′1),̊x̃e1 ) g̊(˚̃xEfull,F )µ̊

(n)
e1→f1

(̊x̃e1,f1
)
∏
e=(f,f ′)∈Efull\{e1} µ̊

(n)
e→f (̊x̃e,f )µ̊

(n)
e→f ′ (̊x̃e,f ′)∑

˚̃xEfull,F∈S((e1,f ′1),̊0̃)
g̊(˚̃xEfull,F )µ̊

(n)
e1→f1

(̊x̃e1,f1)
∏
e=(f,f ′)∈Efull\{e1} µ̊

(n)
e→f (̊x̃e,f )µ̊

(n)
e→f ′ (̊x̃e,f ′)

.

Let us define µ̊(n) := {µ̊(n)
e→f}e∈Efull∩∂f,f∈F . Recall that µ̊0 is defined in Theorem 16, t he Jacobian matrix Jµ of the SPA at

µ̊(n) = µ̊0 equals

Jµ =

Jµ,1 Jµ,2

Jµ,3 Jµ,4

 ,
where

Jµ,1(φe1 (̊x̃e1), φe2 (̊x̃e2)) :=
∂µ̊

(n+1)
e1→f1

(̊x̃e1)

∂µ̊
(n)
e2→f2

(̊x̃e2)

∣∣∣∣∣
µ̊(n)=µ0

,

Jµ,2(φe1 (̊x̃e1), φe2 (̊x̃e2)) :=
∂µ̊

(n+1)
e1→f1

(̊x̃e1)

∂µ̊
(n)
e2→f ′2

(̊x̃e2)

∣∣∣∣∣∣
µ̊(n)=µ0

,

Jµ,3(φe1 (̊x̃e1), φe2 (̊x̃e2)) :=
∂µ̊

(n+1)
e1→f ′1

(̊x̃e1)

∂µ̊
(n)
e2→f2

(̊x̃e2)

∣∣∣∣∣∣
µ̊(n)=µ0

,

Jµ,4(φe1 (̊x̃e1), φe2 (̊x̃e2)) :=
∂µ̊

(n+1)
e1→f ′1

(̊x̃e1)

∂µ̊
(n)
e2→f ′2

(̊x̃e2)

∣∣∣∣∣∣
µ̊(n)=µ0

,

for all ˚̃xe1 ∈ X̊e1 , ˚̃xe2 ∈ X̊e2 , e1 = (f1, f
′
1), e2 = (f2, f

′
2) ∈ Efull.

Lemma 27. We have

Jµ,1(φe1 (̊x̃e1), φe2 (̊x̃e2)) =
[
˚̃xe1 6=

˚̃0,˚̃xe2 6=
˚̃0
]
·
g(e1,f ′1),(e2,f2)(̊x̃e1 ,˚̃xe2)

g̊(̊0̃)
, (28)

Jµ,2(φe1 (̊x̃e1), φe2 (̊x̃e2)) = [e1 6= e2] ·
[
˚̃xe1 6=

˚̃0,˚̃xe2 6=
˚̃0
]
·
g(e1,f ′1),(e2,f ′2)(̊x̃e1 ,˚̃xe2)

g̊(̊0̃)
, (29)

Jµ,3(φe1 (̊x̃e1), φe2 (̊x̃e2)) = [e1 6= e2] ·
[
˚̃xe1 6=

˚̃0,˚̃xe2 6=
˚̃0
]
·
g(e1,f1),(e2,f2)(̊x̃e1 ,˚̃xe2)

g̊(̊0̃)
, (30)

Jµ,4(φe1 (̊x̃e1), φe2 (̊x̃e2)) =
[
˚̃xe1 6=

˚̃0,˚̃xe2 6=
˚̃0
]
·
g(e1,f1),(e2,f ′2)(̊x̃e1 ,˚̃xe2)

g̊(̊0̃)
, (31)

for all ˚̃xe1 ∈ X̊e1 , ˚̃xe2 ∈ X̊e2 , e1 = (f1, f
′
1), e2 = (f2, f

′
2) ∈ Efull.

Proof. Suppose e1 6= e2, the Wirtinger derivatives of µ̊(n+1)
e1→f1

(̊x̃e1) with respect to µ̊(n)
e2→f2

(̊x̃e2) are

∂µ̊
(n+1)
e1→f1

(̊x̃e1)

∂µ̊
(n)
e2→f2

(̊x̃e2)
=

( ∑
˚̃xEfull,F∈S((e1,f ′1),(e2,f2),̊x̃e1

,̊x̃e2
)

g̊(˚̃xEfull,F )µ̊
(n)
e1→f1

(̊x̃e1,f1
)µ̊

(n)
e2→f ′2

(̊x̃e2,f ′2)

·
∏

e=(f,f ′)∈Efull\{e1,e2}

µ̊
(n)
e→f (̊x̃e,f )µ̊

(n)
e→f ′ (̊x̃e,f ′)

)

·

( ∑
˚̃xEfull,F∈S((e1,f ′1),̊0̃)

g̊(˚̃xEfull,F )µ̊
(n)
e1→f1

(̊x̃e1,f1
)

∏
e=(f,f ′)∈Efull\{e1}

µ̊
(n)
e→f (̊x̃e,f )µ̊

(n)
e→f ′ (̊x̃e,f ′)

)−1

−

∑
˚̃xEfull,F∈S((e1,f ′1),̊x̃e1

) g̊(˚̃xEfull,F )µ̊
(n)
e1→f1

(̊x̃e1,f1)
∏
e=(f,f ′)∈Efull\{e1} µ̊

(n)
e→f (̊x̃e,f )µ̊

(n)
e→f ′ (̊x̃e,f ′)(∑

˚̃xEfull,F∈S((e1,f ′1),̊0̃)
g̊(˚̃xEfull,F )µ̊

(n)
e1→f1

(̊x̃e1,f1
)
∏
e=(f,f ′)∈Efull\{e1} µ̊

(n)
e→f (̊x̃e,f )µ̊

(n)
e→f ′ (̊x̃e,f ′)

)2
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·

( ∑
˚̃xEfull,F∈S((e1,f ′1),(e2,f2),̊0̃,̊x̃e2

)

g̊(˚̃xEfull,F )µ̊
(n)
e1→f1

(̊x̃e1,f1)µ̊
(n)
e2→f ′2

(̊x̃e2,f ′2)

·
∏

e=(f,f ′)∈Efull\{e1, e2}

µ̊
(n)
e→f (̊x̃e,f )µ̊

(n)
e→f ′ (̊x̃e,f ′)

)
, (32)

∂µ̊
(n+1)
e1→f1

(̊x̃e1)

∂µ̊
(n)
e2→f2

(̊x̃e2)
= 0, (33)

for all ˚̃xe1 ∈ X̊e1 , ˚̃xe2 ∈ X̊e2 . When e1 = e2, we have

∂µ̊
(n+1)
e1→f1

(̊x̃e1)

∂µ̊
(n)
e1→f1

(̊x̃e2)
=

∑
˚̃xEfull,F∈S((e1,f ′1),(e1,f1),̊x̃e1

,̊x̃e2
) g̊(˚̃xEfull,F )

∏
e=(f,f ′)∈Efull\{e1} µ̊

(n)
e→f (̊x̃e,f )µ̊

(n)
e→f ′ (̊x̃e,f ′)∑

˚̃xEfull,F∈S((e1,f ′1),̊0̃)
g̊(˚̃xEfull,F )µ̊

(n)
e1→f1

(̊x̃e1,f1)
∏
e=(f,f ′)∈Efull\{e1} µ̊

(n)
e→f (̊x̃e,f )µ̊

(n)
e→f ′ (̊x̃e,f ′)

−

∑
˚̃xEfull,F∈S((e1,f ′1),̊x̃e1

) g̊(˚̃xEfull,F )µ̊
(n)
e1→f1

(̊x̃e1,f1
)
∏
e=(f,f ′)∈Efull\{e1} µ̊

(n)
e→f (̊x̃e,f )µ̊

(n)
e→f ′ (̊x̃e,f ′)(∑

˚̃xEfull,F∈S((e1,f ′1),̊0̃)
g̊(˚̃xEfull,F )µ̊

(n)
e1→f1

(̊x̃e1,f1
)
∏
e=(f,f ′)∈Efull\{e1} µ̊

(n)
e→f (̊x̃e,f )µ̊

(n)
e→f ′ (̊x̃e,f ′)

)2

·

 ∑
˚̃xEfull,F∈S((e1,f ′1),(e1,f1),̊0̃,̊x̃e2

)

g̊(˚̃xEfull,F )
∏

e=(f,f ′)∈Efull\{e1}

µ̊
(n)
e→f (̊x̃e,f )µ̊

(n)
e→f ′ (̊x̃e,f ′)

 ,

∂µ̊
(n+1)
e1→f1

(̊x̃e1)

∂µ̊
(n)
e1→f1

(̊x̃e2)
= 0,

for all ˚̃xe1 ∈ X̊e1 , ˚̃xe2 ∈ X̊e2 . Evaluating (32) at µ̊(n) = µ0 gives

∂µ̊
(n+1)
e1→f1

(̊x̃e1)

∂µ̊
(n)
e2→f2

(̊x̃e2)

∣∣∣∣∣
µ̊(n)=µ0

=
g(e1,f ′1),(e2,f2)(̊x̃e1 ,˚̃xe2)

g̊(̊0̃)
−
g(e1,f ′1)(̊x̃e1)g(e2,f2)(̊x̃e2)

(̊g(̊0̃))2
, (34)

for all ˚̃xe1 ∈ X̊e1 , ˚̃xe2 ∈ X̊e2 . When any one of ˚̃xe1 , ˚̃xe2 equals ˚̃0, expression (34) equals zero. As a result, it holds

∂µ̊
(n+1)
e1→f1

(̊x̃e1)

∂µ̊
(n)
e2→f2

(̊x̃e2)

∣∣∣∣∣
µ̊(n)=µ0

=
[
˚̃xe1 6=

˚̃0,˚̃xe2 6=
˚̃0
]
·
g(e1,f ′1),(e2,f2)(̊x̃e1 ,˚̃xe2)

g̊(̊0̃)
,

for all ˚̃xe1 ∈ X̊e1 , ˚̃xe2 ∈ X̊e2 . For e1 = e2, we have

∂µ̊
(n+1)
e1→f1

(̊x̃e1)

∂µ̊
(n)
e1→f1

(̊x̃e2)

∣∣∣∣∣
µ̊(n)=µ0

=
g(e1,f ′1),(e1,f1)(̊x̃e1 ,˚̃xe2)

g̊(̊0̃)
−
g(e1,f ′1)(̊x̃e1)g(e1,f1)(̊x̃e2)

(̊g(̊0̃))2
, (35)

for all ˚̃xe1 ∈ X̊e1 , ˚̃xe2 ∈ X̊e2 . Similarly, when any one of ˚̃xe1 , ˚̃xe2 equals ˚̃0, expression (35) equals zero. Thus

∂µ̊
(n+1)
e1→f1

(̊x̃e1)

∂µ̊
(n)
e1→f1

(̊x̃e2)

∣∣∣∣∣
µ̊(n)=µ0

=
[
˚̃xe1 6=

˚̃0,˚̃xe2 6=
˚̃0
]
·
g(e1,f ′1),(e1,f1)(̊x̃e1 ,˚̃xe2)

g̊(̊0̃)
,

for all ˚̃xe1 ∈ X̊e1 , ˚̃xe2 ∈ X̊e2 . The proof of expressions (30)–(31) is similar to the proof for expression (30) and thus it is omitted

here. �

E. Relating Jµ to Hψ

Lemma 28. Suppose that µ = µ0 is a stable fixed-point of the SPA, then the eigenvalues of the matrix −Hψ have non-negative real

part.

Proof. Since µ = µ0 is a stable fixed-point of the SPA, by stability theory, the eigenvalues of the matrix Jµ, denoted as {λJ,i}
2
∑

e∈Efull
|X̊e|−1

i=0 ,

satisfy |λJ,i| < 1 and Re(1− λJ,i) > 0 for all i. Let us define I ′ to be a matrix with size 2
∑
e∈Efull

|X̊e| × 2
∑
e∈Efull

|X̊e| such that

I ′ :=

I1 0

0 I1

 ,
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where I1 ∈ R
∑

e∈Efull
|X̊e|×

∑
e∈Efull

|X̊e|
≥0 has entry

I1(φe1 (̊x̃e1), φe2 (̊x̃e2)) :=
[
˚̃xe1 6=

˚̃0,˚̃xe2 6=
˚̃0
]
· [e1 = e2] ·

[
˚̃xe1 = ˚̃xe2

]
,

for all ˚̃xe1 ∈ X̊e1 , ˚̃xe2 ∈ X̊e2 , e1 = (f1, f
′
1), e2 = (f2, f

′
2) ∈ Efull. Comparing the entries in the matrix I ′ − Jµ with the entries in

matrix −HT
ψ , one obtains that I ′ − Jµ = −HT

ψ . With the previous analysis, the eigenvalues of I ′ − Jµ also have non-negative real

part. Thus we can derive that both −HT
ψ and −Hψ have eigenvalues with non-negative real part. �

Let us define matrices Hψ,re and Hψ,im to be

Hψ,re :=

Hψ,1,re Hψ,2,re

Hψ,2,re Hψ,4,re

 ,
Hψ,im :=

Hψ,1,im Hψ,2,im

Hψ,2,im Hψ,4,im

 .
By definition, Hψ,re and Hψ,im are the Hessian matrices of Re(̊gSST(ψ)) and Im(̊gSST(ψ)), respectively.

Theorem 29. Matrix −Hψ,re is positive-semidefinite.

Proof. By definition and [31], we know that −Hψ,im and −Hψ,re are Hermitian matrices. Thus matrix −iHψ,im is a skew-Hermitian

matrix. Let vi ∈ C2
∑

e∈Efull
|X̊e| be a right eigenvector of −Hψ = −(Hψ,re + iHψ,im) with eigenvalue λi ∈ C for all i =

0, . . . , 2
∑
e∈Efull

|X̊e| − 1. We have

−Hψvi = λivi,

−vHi HH
ψ = λiv

H
i ,

λi‖vi‖2 = vHi · (−Hψ) · vi

= vHi · (−Hψ)H · vi.

Therefore,

Re(λi)‖vi‖2 =
1

2
vHi ·

(
−Hψ − (Hψ)H

)
· vi

=
1

2
vHi ·

(
−Hψ,re − iHψ,im − (Hψ,re)H − (iHψ,im)H

)
· vi

(a)
= vHi · (−Hψ,re) · vi ≥ 0, (36)

where at step (a) we have used the condition that matrix iHψ,im is a skew-Hermitian matrix. Note that the inequality vHi ·
(
−Hψ,re

)
·

vi ≥ 0 in (36) holds for all i. Thus −Hψ,re is positive-semidefinite. �
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