
I/O Interference Aware Multiuser Computation
Offloading for Virtualized Edge Computing

Zezu Liang∗, Yuan Liu†, Kaibin Huang‡, and Tat-Ming Lok∗

∗Department of Information Engineering, The Chinese University of Hong Kong, Shatin, Hong Kong
†School of Electronic and Information Engineering, South China University of Technology, Guangzhou 510641, China

‡Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong

Emails: {lz017, tmlok}@ie.cuhk.edu.hk, eeyliu@scut.edu.cn, huangkb@eee.hku.hk

Abstract—Mobile-edge computing (MEC) is an emerging tech-
nology for enhancing the computational capabilities of mobile
devices and reducing their energy consumption via offloading
complex computation tasks to the nearby servers. Multiuser MEC
at servers is widely realized via parallel computing based on
virtualization. Due to finite shared I/O resources, interference
between virtual machines (VMs), called I/O interference, arises
that degrades the computation performance. In this paper,
we study the problem of joint radio-and-computation resource
allocation (RCRA) in multiuser MEC systems in the presence of
I/O interference. Specifically, we formulate a sum offloading rate
maximization problem by joint offloading-user scheduling, the
offloaded size control, and time allocation for communication
(offloading and downloading) and computation. The problem
is a non-convex mixed-integer programming problem. An op-
timal algorithm with low complexity is designed based on a
decomposition approach and Dinkelbach method. The simulation
results demonstrate considering of I/O interference can endow
on an offloading controller robustness against the performance-
degradation factor.

I. INTRODUCTION

Recently, mobile-edge computing (MEC), which provides

users computing services at the network edge, is envisioned as

a promising way to enable computation-intensive and latency-

sensitive mobile applications. Compared with cloud comput-

ing, users in MEC systems offload tasks to the proximate edge

servers [e.g., base stations (BSs) and access points (APs)]

for execution, which avoids data delivery over the backhaul

networks and thereby dramatically reduces latency [1].

An essential technology for implementing MEC is virtu-

alization, referring to sharing of a physical machine (server)

by multiple computing processes via the execution of virtual

machines (VMs). Specifically, each VM is a virtual computer

configured with a certain amount of the server’s hardware

resource (such as CPU, memory and I/O bus). According

to technical standards for the MEC server architecture [2],

the virtualization functionality is supported by a virtualization

layer and a virtualization manager. The virtualization layer

virtualizes the MEC hosting infrastructure by abstracting the

detailed hardware implementation, while the virtualization

manager provides the virtualized computer infrastructure as

This work was supported in part by the Natural Science Foundation of
China under Grant U1701265 and the Pearl River Science and Technology
Nova Program of Guangzhou under Grant 201710010111.

a service (IaaS). Applications run on top of an IaaS and are

deployed within the packaged-operating systems (i.e.,VMs)

that are well-isolated with the others. To this end, the MEC

server can isolate co-hosted applications and provide multi-

service support. Nevertheless, it has been shown in the lit-

erature [3]–[5] that sharing the same physical platform can

incur the so-called I/O interference among VMs, resulting in

a certain degree of computation-speed reduction for each VM.

As far as we know, prior research of this issue focuses on

the interference modeling [4]–[6] and computation resource

provisioning [7]. No previous works related to the compu-

tation offloading coupled with joint radio-and-computational

resource allocation (RCRA) have been studied before.
In this paper, we investigate the multiuser offloading prob-

lem in an MEC system in the presence of I/O interference.

Although the joint optimization of RCRA has been studied in

various scenarios, e.g., [8]–[13], only the works in [13], [14]

are closely related to this paper, as they both address parallel

computation at a MEC server for joint RCRA. However,

simultaneous computation processes at the same server are

assumed in [13], [14] to be independent and conditioned on

partitioned computation resources. The effect of I/O interfer-

ence is neglected despite its being an importance issue in

virtualization.
Omitting I/O interference in multiuser MEC based on

virtualization leads to the unrealistic assumption that the total

computation resource at a server remains fixed regardless of

the number of VMs. In reality, the resource reduces as the

number grows due to I/O interference. Thus, the number

of VMs per server is usually constrained in practice, so as

to maintain the efficiency in resource utilization. Despite its

importance, I/O interference has received little attention in the

literature. It motivates the current work on accounting for the

factor in resource allocation for MEC systems.
In this paper, we revisit the RCRA problem in multiuser

offloading and address the following two practical issues that

have received scant attention in the literature.

1) (I/O interference) The I/O interference in practical paral-

lel computing has been largely neglected in the existing

“cake-slicing” model of computing-resource allocation

(see e.g., [13], [14]). Considering I/O interference in-

troduces a dilemma: scheduling more offloading users

978-1-5386-8088-9/19/$31.00 ©2019 IEEE

increases the multiplexing gain in parallel computing

but degrades the speeds of individual VMs due to their

interference.

2) (Result downloading) The communication overhead for

computation-result downloading is commonly assumed

in the literature to be negligible compared with that for

offloading. The assumption does not always hold in appli-

cations such as augmented reality and image processing.

Considering downloading complicates scheduling as the

policy needs account for not only users’ uplink channel

states but also downlink states as well as the output-input-

size ratio for each task.

In this paper, we consider a multiuser MEC system where

parallel computing at the server is based on virtualization.

The I/O interference is modelled using a practical model

developed based on measurement data [6]. While the literature

focuses on offloading latency, we consider offloading, parallel

computing and downloading as factors contributing to latency.

Based on the assumptions, scheduling policies are designed

by solving a RCRA problem for sum offloading rate maxi-
mization under the latency constraint. The main contributions

are summarized as follows: We jointly optimize the offloading-

user scheduling, offloaded-data sizes, and communication-and-

computation time division. By analyzing its properties, we

present a solution approach of decomposing the problem into

master and slave sub-problems. The former optimizes the

number of offloading users and given the number, the later

optimizes offloading-user set, offloaded-data sizes, and time

division (offloading, computing, downloading). By adopting

Dinkelbach method, an efficient iterative algorithm is designed

to solve the slave problem that is a combinatorial-optimization
problem. With the algorithm, the master problem can be then

solved by a simple search over a finite integer set of possible

numbers of offloading users.

The rest of this paper is organized as follows. In Section

II, we present our system model and problem formulation.

In Section III, we propose an optimal algorithm to solve

the problem of sum offloading rate maximization. Finally,

simulation results and conclusions are provided in Section IV

and Section V, respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

Consider an MEC system shown in Fig. 1, consisting of

one AP integrated with an MEC server and K users. Partial

offloading is assumed in this paper so that each user can

partition its computation task into two independent parts

for local computing and offloading to the server. The two

operations are simultaneous assuming that the communication

modulars and user CPUs are separated. All of the users have

to complete their tasks within a fixed duration T (in second)

so as to meet a real-time requirement. The system operation

is divided into three sequential phases: 1) TDMA-based task

offloading by users, 2) parallel computing at the server, and 3)

TDMA-based computation-result downloading from the server

Figure 1: A multiuser MEC system comprising a single AP and K users.

to users. Corresponding models and assumptions are described

as follows.

1) Offloading and Downloading Phases: Let �i denote the

input data bits offloaded by user i to the server. It is assumed

that each input bit generated γi bits of computation result.

Then for an offloaded data �i, the computed result contains

γi�i bits. The transmission delay for user i for offloading and

downloading can be written separately as

tui = ai�i, (1)

tdi = biγi�i, (2)

where ai and bi are the required time for transmitting a single

bit in uplink and downlink, respectively, which are the inverse

of the corresponding uplink and downlink rates.

2) Parallel-Computing Phase with Virtualization: After re-

ceiving all the offloaded tasks, the server executes them in

parallel by creating multiple VMs. We consider the important

factor of I/O interference in parallel computing [15] and adopt

a model developed in the literature based on measurement

data [1], [6], which is described as follows. Group the user

indices into the set K. The subset S ⊆ K identifies the set

of scheduled offloading users, te the time allocated to the

parallel-computing phase, and ri the expected computation-

service rate (bits/sec) of a VM given task i when running

in isolation. Following [1], [6], a performance degradation

factor d > 0 is defined to specify the percentage reduction in

the computation-service rate of a VM when multiplexed with

another VM. 1 Suppose that one VM is created and assigned to

a task, the degraded computing rate for each task is modeled as

ri(1+ d)1−|S| [6], where |S| denotes the number of tasks (or

offloading users) for parallel computing. Therefore, for given

te, the numbers of offloadable bits are constrained by

0 ≤ �i ≤ teri(1 + d)1−|S|, ∀i ∈ S. (3)

1The parameter d depends on the specific VM multiplexing and placement
strategy [16], [17]. Its value can be estimated by theoretical studies or
statistical observations.

The constraints in (3) show that the maximum number of

offloadable bits per user decreases with the number of of-

floaded tasks due to the I/O interference in parallel computing.

Moreover, relaxing the duration for parallel computing (te)

can accommodate more offloaded bits ({�i}), however, at the

cost of less time for the offloading and downloading phases.

This introduces a tradeoff between the three phases under the

following total-latency constraint:∑
i∈S

tui + te +
∑
i∈S

tdi =
∑
i∈S

�i (ai + biγi) + te ≤ T. (4)

B. Problem Formulation

In this paper, we aim at maximizing the weighted sum of

the users’ offloading rates under the latency constraint, by

joint scheduling, offloaded-bits control, and three-phase time

allocation. Here, the sum offloading rate is defined as the sum

offloadable bits over the time duration T . Let ωi denote a

positive weight assigned to user i based on the users’ priority.

Mathematically, the optimization problem can be formulated

as

(P1) : max
S⊆K,{�i},te

R =
1

T

∑
i∈S

ωi�i (5a)

s.t.
∑
i∈S

�i (ai + biγi) + te ≤ T, (5b)

0 ≤ �i ≤ teri (1 + d)
1−|S|

, ∀i ∈ S. (5c)

Problem (P1) is a mixed-integer programming problem

comprising both a combinatorial variable S and continuous

variables ({�i}, te) and non-convex constraints (5c). There-

fore, Problem (P1) is non-convex. Though such a problem is

usually difficult to solve exactly, an algorithm is designed in

sequel to find the optimal solution.

III. SUM OFFLOADING RATE MAXIMIZATION

In this section, we develop an optimal algorithm for solving

Problem (P1). First, an important property of the optimal

offloading-user set S∗ will be obtained, which allows tractable

analysis of the optimal offloading scheme and thereby simpli-

fies the problem. Subsequently, an iterative algorithm based

on the Dinkelbach method is proposed to exactly solve the

simplified problem.

A. Sum Offloading Rate Maximization for a Given Offloading-
User Set

We made a key observation that Problem (P1) becomes a

linear programming (LP) problem if the offloading-user set is

given. The conditional optimal offloading strategy, specified by

the offloaded-data sizes {�∗i }, satisfies the following property.

Lemma 1. Given an arbitrary offloading-user set S, the
optimal offloading strategy {�∗i | i ∈ S} must be the maximum
or minimum value in the constraint in (5c).

The proof is presented in the longer version of this paper

[18]. Lemma 1 indicates that the optimal offloading strategy

of each scheduled user follows a binary policy, i.e., offloading

with the maximum data size or nothing. Accordingly, we can

divide the elements in {�i | i ∈ S} into two groups, with one

group S̃ for the users offloading maximum bits and the other

performing no offloading, i.e.,

�i =

{
teri (1 + d)

1−|S|
, i ∈ S̃,

0, i ∈ S\S̃. (6)

Note that S̃ is needed to be determined and we first use S̃ to

express {�i} and te. It is intuitive that the equality must hold

in constraint (5b) for the optimal solution of Problem (P1).

Then, by substituting (6) into (5b), we obtain the conditional

optimal parallel-computing time te as

te =
T (1 + d)|S|−1

(1 + d)|S|−1 +
∑

i∈ ˜S(ai + biγi)ri
. (7)

Combining (6) and (7), Problem (P1) for a given S can be

formulated as one for determining the subset S̃ in S:

max
˜S⊆S

R =

∑
i∈ ˜S ωiri

(1 + d)|S|−1 +
∑

i∈ ˜S(ai + biγi)ri
. (8)

It is observed that, for any given S, if S̃∗ �= S, R in (8) can be

further improved via replacing S with the smaller subset S̃∗.

In other words, there exists the users i ∈ S\S̃∗ who offload

zero bits but are scheduled to unnecessarily create a VM at

the server, resulting in waste of resources. Thereby, removing

them from the offloading-user set and only allocating VMs to

the full offloading users can further increase the sum offloading

rate. By the above argument, the necessary condition for S
being optimal of Problem (P1) is S̃∗ = S in Problem (8).

That is, all the scheduled users offload their maximum bits, or

otherwise the given S is not optimal.

Therefore, we re-define R as the sum offloading rate

achieved by S̃ = S in Problem (8), i.e.,

R =

∑
i∈S ωiri

(1 + d)|S|−1 +
∑

i∈S(ai + biγi)ri
. (9)

We have the following proposition to identify whether S meets

the necessarily optimal condition.

Proposition 1. S̃ = S is the optimal solution of Problem (8)

if and only if the given offloading-user set S satisfies

R ≤ min
i∈S

{
ωi

ai + biγi

}
. (10)

Due to limited space, we provide the detailed derivation in

[18]. To better understand (10), we multiply the term te(1 +
d)1−|S| in both the numerator and denominator of R and using

the result that �i = teri(1 + d)1−|S|, ∀i ∈ S , then R in (9)

can be rewritten as

R =

∑
i∈S ωi�i

te +
∑

i∈S(ai + biγi)�i
. (11)

The numerator in (11) denotes the weighted sum offloaded

bits and the denominator denotes the total time and equals T .

Then, R in (11) can be physically interpreted as the weighted

sum-offloading rate of the system with users of set S. On the

other hand, ωi

ai+biγi
can be rewritten as ωi�i

(ai+biγi)�i
, where the

numerator denotes the weighted amount of offloaded bits of

user i while the denominator denotes the transmission duration

that includes both offloading and downloading time. Therefore,
ωi

ai+biγi
can be regarded as the weighted transmission rate of

user i. Proposition 1 implies that the system offloading rate

should be less than or equal to the minimum transmission rate

among users in S if it solves Problem (P1).

B. Offloading User Scheduling

Building on the results from the last subsection, we present

in this subsection an efficient scheduling algorithm for com-

puting the optimal offloading-user set. To this end, the vari-

ables {�i} and te can be expressed in term of S when S
meets the necessarily optimal condition (10). This simplifies

Problem (P1) as a scheduling problem that finds the optimal

offloading-user set under constraint (10):

max
S⊆K

R =

∑
i∈S ωiri

(1 + d)|S|−1 +
∑

i∈S(ai + biγi)ri
(12)

s.t. (10).

The problem can be further reduced to an unconstrained

optimization problem using the following useful result.

Proposition 2. Constraint (10) can be removed from Problem
(12) without loss of optimality.

The proof is presented in [18] due to the space limitation.

Using Proposition 2, Problem (12) can be safely relaxed into

the following non-constrained optimization problem:

max
S⊆K

R =

∑
i∈S ωiri

(1 + d)|S|−1 +
∑

i∈S(ai + biγi)ri
. (13)

However, with the non-convex term (1 + d)|S|−1 in the

denominator of R, Problem (13) is still challenging to solve.

To tackle this difficulty, we fix |S| = m, with m = 1, · · · ,K.

For a given m, since term (1 + d)|S|−1 becomes a constant,

Problem (13) is reduced to a mixed-integer linear fractional
programming problem. We solve Problem (13) by decom-

posing it into master-and-slave problems without loss of the

optimality. The slave problem is determining the optimal

offloading-user set using the Dinkelbach method [19] for a

given number of scheduled users m. Then the master problem

is obtaining the optimal value of m, denoted as m∗, by

a simple search. The detailed solutions of the decomposed

problems are presented in the sequel, which yield Algorithm 1

for computing the optimal scheduled-user set S∗.

1) Optimal scheduling for a given number of scheduled
users: In this section, we solve Problem (P1) conditioned on

a given number of offloading users m, i.e., |S| = m. To this

end, we introduce a set of binary variables x = [x1, · · · , xK],
where xi = 1 means that user i is scheduled (i.e., i ∈ S),

and xi = 0 otherwise. Then, using the binary variables and

conditioned on |S| = m, Problem (P1) can be transformed

into a combinatorial optimization problem as

(Slave Problem)

max
x

Rm =

∑K
i=1 xiωiri

(1 + d)m−1 +
∑K

i=1 xi(ai + biγi)ri
=
N(x)

D(x)

s.t.

K∑
i=1

xi = m, xi ∈ {0, 1}, i = 1, · · · ,K, (14)

where N(x) �
∑K

i=1 xiωiri and D(x) � (1 + d)m−1 +∑K
i=1 xi(ai + biγi)ri. Let R∗

m denotes the maximum condi-

tional sum offloading rate from solving the slave problem. For

ease of notation, we define the feasible set for Problem (14)

as Fm � {x|∑K
i=1 xi = m and xi ∈ {0, 1}, i = 1, · · · ,K}.

Since the objective function has a fractional form, the problem

can be solved by non-linear fractional programming. To this

end, define a function g(·) of the conditional rate Rm by an

optimization problem in a substrative form:

g(Rm) = max
x∈Fm

[N(x)−D(x)Rm] . (15)

Let x∗ be an optimal solution of Problem (14). We have the

following property.

Lemma 2. The maximum conditional sum offloading rate R∗
m

that solves Problem (14) can be achieved if and only if

g(R∗
m) = max

x∈Fm

[N(x)−D(x)R∗
m]

= N(x∗)−D(x∗)R∗
m = 0. (16)

The proof is presented in [18] due to the space limitation.

Lemma 2 reveals the fact that the targeted fractional-form

problem in (14) shares the solution x∗ as the subtractive-

form problem in (15) when Rm = R∗
m. This provides an

indirect method for solving the former using an iterative

algorithm derived in the sequel, in which the derived condition

g(Rm) = 0 is applied to checking the optimal convergence.
Based on Dinkelbach method [19], we propose an iterative

algorithm to obtain R∗
m in (16), thereby solving the slave

problem in (14). Specifically, we concern the optimal solution

to the subtractive-form Problem (15) for a given Rm:

g(Rm) = max
x∈Fm

{
K∑
i=1

xiri [ωi −Rm(ai + biγi)]

−Rm(1 + d)m−1

}
. (17)

To facilitate exposition, we can rewrite the expression of

g(Rm) as

g(Rm) = max
x∈Fm

{∑K
i=1 xiψi(Rm)

te(1 + d)1−m
−Rm(1 + d)m−1

}
,

(18)

with

ψi(Rm) = xiri [ωi −Rm(ai + biγi)] te(1 + d)1−m

= xi [ωi�i −Rm(ai + biγi)�i]

= ωi�i −Rm(tui + tdi), (19)

where the second equality is derived by the result that �i =
teri(1+d)

1−m and the last equality is obtained by substituting

(1) and (2).

• Step 1: The objective of the optimization in (17) can

be interpreted as one for maximizing the total system

revenue. It follows that the optimal solution, denoted

as x∗, is to select m users having the largest per-user

revenue:

x∗i =

{
1, if ψi(Rm) is one of the m largest,

0, otherwise,
(20)

with i = 1, · · · ,K, where ψi(Rm) is defined in (19).

• Step 2: Given x∗ computed in Step 1, the sum offloading

rate Rm can be updated as

Rm =
N(x∗)
D(x∗)

, (21)

where N(·) and D(·) are given in (14). Then the per-user

revenues {ψi(Rm)} are updated using the new value of

Rm.

Based on the Dinkelbach method, the above two steps are

iterated till g(Rm) = 0. Since this is the optimality condition

according Lemma 2, the convergence of the iteration yields

the maximum R∗
m and the corresponding m scheduled users

S∗(m) = {i | x∗i = 1}. It can be proved that the convergence

rate is superlinear (see e.g., [19]).

2) Finding the optimal number of scheduled users: With

the slave problem in (14) solved in the preceding sub-section,

the master problem is to optimize m:

(Master Problem)

max
1≤m≤K

R∗
m =

∑
i∈S∗(m) ωiri

(1 + d)m−1 +
∑

i∈S∗(m)(ai + biγi)ri
. (22)

To solve the problem, an intelligent search for m∗ over

{1, 2, · · · ,K} seems difficult for the reason that {R∗
m} is not

a monotone sequence. Due to the lack of monotonicity, we

resort to enumerating all possible values of m from 1 to K to

find m∗. The complexity of the exhaustive search is reasonable

as it scales only linearly with the total number of users K.

3) Overall Algorithm and Its Complexity: The overall al-

gorithm for solving the scheduling problem in (13) is shown

in Algorithm 1 which combines the iterative algorithm for

solving the slave problem and the exhaustive search for solving

the master problem. The complexity of the overall algorithm

is discussed as follows. The iterative algorithm for solving the

slave problem using Dinkelbach method has complexity upper

bounded by O(logK) [20]. Solving the master problem re-

peats at most K runs of the iterative algorithms. Therefore, the

worst-case complexity of the overall algorithm is O(K logK).

IV. SIMULATION RESULTS

In this section, we provide simulation results to evaluate the

proposed algorithm. The parameters are set as follows: we let

T = 35 ms and ωi = 1, ∀i ∈ K. The uplink and downlink

transmission rates are uniformly distributed in [100, 150] Mbps

Algorithm 1 Iterative User Scheduling Algorithm Based on

Dinkelbach Method

1: for m = 1, · · · , K do
2: initialize Rm = 0.

3: repeat
4: For a given Rm, compute x∗ according to (20);

5: Update Rm = N(x∗)
D(x∗) ;

6: until g(Rm) = 0.

7: Return R∗
m = Rm, x∗

m = x.

8: end for
9: Return m∗ = argmax1≤m≤K {R∗

m}, R∗ = R∗
m∗ and

S∗ = {i | x∗i = 1, i ∈ K}.

Output: R∗ and S∗.

4 5 6 7 8 9 10 11 12
Number of users

3.6

3.8

4

4.2

4.4

4.6

4.8

5

5.2

Su
m

 o
ffl

oa
di

ng
 ra

te
 [b

ps
]

×107

Optimal
LR
Greedy
All-Offloading

Figure 2: Sum offloading rate vs. the number of users K.

and [150, 200] Mbps, respectively. The computation-service

rate ri follows uniform distribution over
[
1× 107, 2× 107

]
bits/sec. The ratio of output/input data is γi = 10−x, where x
is uniformly distributed in [0.5, 1.5].

For performance comparison, we introduce three benchmark

algorithms in the following.

1) All-Offloading: All the users are scheduled to offload, i.e.,

S = K.

2) Greedy: S is obtained through a greedy method, i.e.,

selecting users in the descending order of the transmission

rate (i.e., ωi

ai+biγi
) until condition (10) is invalid.

3) Linear Programming Relaxation (LR): S is obtained by

solving K slave problems in (14) using linear program-

ming relaxation [21].

Note that the three benchmarks are used to find the offloading-

user set, then the rest problem is reduced to a LP that can be

solved efficiently.

In Fig. 2, we compare the sum offloading rate performance

of different algorithms when the number of users K varies

from 4 to 12, where d is set as 0.1. First, we can see that

the sum offloading rate is increasing with K in the cases of

0 0.04 0.08 0.12 0.16 0.2 0.24
Degradation factor (d)

2.5

3

3.5

4

4.5

5

5.5

6

Su
m

 o
ffl

oa
di

ng
 ra

te
 [b

ps
]

×107

d=0
Optimal
LR
Greedy
All-Offloading

Figure 3: Sum offloading rate vs. the degradation factor d.

the optimal, LR and greedy algorithms, while for the scheme

that all users offload, it grows slowly when K ≤ 10 and

begins to decrease afterwards. This is because the former

three algorithms have more flexible user-scheduling schemes

to balance the degradation impact caused by I/O interference

and thus have superior system performance. In contrast, the

last algorithm with no control on the number of offloading

users, will suffer more severe performance degradation as K
increases. Besides, it can be observed that the optimal algo-

rithm outperforms the benchmark algorithms especially when

K is large. For instance, when K = 12, the optimal algorithm

obtains about 3%, 6%, and 20% performance improvements

over the three benchmarks respectively.

In Fig. 3, we illustrate the relationship between the degrada-

tion factor d and the sum offloading rate performance, where

K = 10. As expected, the sum offloading rate is decreasing

with d in all considered algorithms while the descending rate

of the optimal algorithm is the slowest. This indicates that our

proposed algorithm has the best performance resistance against

the I/O-interference effect. Another interesting observation is

that, the performance of LR and greedy algorithms is close-

to-optimal when d is small. On the other hand, the line of

d = 0 can been seen as the sum offloading rate of the

conventional case without considering the I/O interference

issue. Its performance gap with the optimal algorithm can be

interpreted as the overestimation of the system performance

builded on the optimistic assumption of no I/O interference.

V. CONCLUSIONS

In this paper, we studied joint radio-and-computation re-

source allocation in a multiuser MEC system, where the com-

putation interference issue has been considered. We formulated

the problem of sum offloading rate maximization by joint of-

floading scheduling, offloaded-data sizes, and communication-

and-computation time division. We proposed an optimal solu-

tion with low-complexity to solve the non-convex problem.

Simulation results demonstrated that our proposed algorithm

achieves superior performance gain compared with the bench-

mark schemes.

REFERENCES

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” Commun.
Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, Fourthquarter 2017.

[2] European Telecommunications Standards Institute (ETSI), “Mobile-edge
Computing-Introductory technical white paper,” September 2014.

[3] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, and C. Pu, “Understanding
performance interference of I/O workload in virtualized cloud environ-
ments,” in IEEE Cloud, 2010, pp. 51–58.

[4] S. Ibrahim, B. He, and H. Jin, “Towards pay-as-you-consume cloud
computing,” in IEEE SCC, 2011, pp. 370–377.

[5] S.-g. Kim, H. Eom, and H. Y. Yeom, “Virtual machine consolidation
based on interference modeling,” J. Supercomput., vol. 66, no. 3, pp.
1489–1506, December 2013.

[6] D. Bruneo, “A stochastic model to investigate data center performance
and QoS in IaaS cloud computing systems,” IEEE Trans. Parallel
Distrib. Syst., vol. 25, no. 3, pp. 560–569, March 2014.

[7] W. B. Slama, Z. Brahmi, and M. M. gammoudi, “Interference-aware
virtual machine placement in cloud computing system approach based
on fuzzy formal concepts analysis,” in IEEE WETICE, 2018, pp. 48–53.

[8] C. You, K. Huang, H. Chae, and B. H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wire-
less Commun., vol. 16, no. 3, pp. 1397–1411, March 2017.

[9] X. Chen, “Decentralized computation offloading game for mobile cloud
computing,” IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 4, pp. 974–
983, April 2015.

[10] M. Liu and Y. Liu, “Price-based distributed offloading for mobile-edge
computing with computation capacity constraints,” IEEE Commun. Lett.,
vol. 7, no. 3, pp. 420–423, June 2018.

[11] S. Sardellitti, G. Scutari, and S. Barbarossa, “Joint optimization of radio
and computational resources for multicell mobile-edge computing,”
IEEE Trans. Signal Inf. Process. Netw., vol. 1, no. 2, pp. 89–103, June
2015.

[12] Y. Liu, “Exploiting NOMA for cooperative edge computing,” IEEE
Wireless Commun. Mag., 2019.

[13] X. Lyu, H. Tian, C. Sengul, and P. Zhang, “Multiuser joint task
offloading and resource optimization in proximate clouds,” IEEE Trans.
Veh. Technol., vol. 66, no. 4, pp. 3435–3447, April 2017.

[14] Y. Mao, J. Zhang, S. H. Song, and K. B. Letaief, “Stochastic joint
radio and computational resource management for multi-user mobile-
edge computing systems,” IEEE Trans. Wireless Commun., vol. 16, no. 9,
pp. 5994–6009, September 2017.

[15] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, C. Pu, and Y. Cao, “Who is
your neighbor: Net I/O performance interference in virtualized clouds,”
vol. 6, no. 3, pp. 314–329, July 2013.

[16] J. N. Matthews, W. Hu, M. Hapuarachchi, T. Deshane, D. Dimatos,
G. Hamilton, M. McCabe, and J. Owens, “Quantifying the performance
isolation properties of virtualization systems,” in ExpCS’07, 2007.

[17] M. Mishra and A. Sahoo, “On theory of VM placement: Anomalies in
existing methodologies and their mitigation using a novel vector based
approach,” in IEEE Cloud, 2011, pp. 275–282.

[18] Z. Liang, Y. Liu, T. Lok, and K. Huang, “Multiuser
computation offloading and downloading for edge computing with
virtualization,” CoRR, vol. abs/1811.07517, 2018. [Online]. Available:
http://arxiv.org/abs/1811.07517

[19] W. Dinkelbach, “On nonlinear fractional programming,” Management
Science, vol. 13, no. 7, pp. 492–498, 1967. [Online]. Available:
https://doi.org/10.1287/mnsc.13.7.492

[20] T. Matsui, Y. Saruwatari, and M. Shigeno, “An analysis of dinkelbach’s
algorithm for 0-1 fractional programming problems,” 1992.

[21] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. S. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency scaling,”
IEEE Trans. Commun., vol. 65, no. 8, pp. 3571–3584, August 2017.

