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An Iterative Interference Alignment Algorithm for
the General MIMO X Channel
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Abstract— Interference alignment (IA) has been shown as an
important technique to achieve a linear capacity scaling in
wireless communications. However, the IA scheme over finite
signaling dimensions for a general multiple-input-multiple-output
(MIMO) X channel is still rarely studied. The main challenge
of MIMO X channels is that the two sets of conditions for
IA, namely the interference nulling conditions and the rank
preservation conditions, get coupled. The usual IA methods for
the interference channel and the broadcasting channel cannot
be applied anymore. In this paper, we show that the rank
preservation conditions can be replaced by a group of specific
rank conditions, under which the IA problem is simplified.
Then, based on this technique, an iterative algorithm of IA is
designed for the MIMO X channel. The algorithm is designed
with limited signaling dimensions. From the simulation results,
we find that the algorithm has good performances even under
limited signal-to-noise ratio.

Index Terms— Beamforming, iterative algorithm, MIMO
systems, X channels, interference alignment.

I. INTRODUCTION

IN RECENT years, due to the rapid development of multi-
media services and the demand for ubiquitous connectivity,

wireless communication has attracted a lot of interests [1], [2].
Of particular interests are (multiple-input-multiple-output)
MIMO X channels (XCs) [3], which refer to communication
channels with multiple transmitters and multiple receivers,
where each transmitter aims to send signals to each receiver.

For the wireless channels with multiple receivers, due to
the broadcast nature of the wireless transmission medium,
the desired signals at each receiver can be potentially interfered
by signals intended for the other receivers. Interference is
one of the key factors that degrade the capacity of wire-
less channels. The technique interference alignment (IA) is
developed for these channels. IA is an efficient approach
to abate the effect of interferences by aligning interference
signals into a space distinct from the space occupied by
desired signals [4]. As such, the desired signals can be dis-
tinguished from the interference signals. IA is considered in
a variety of wireless communication scenarios, including the
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wireless interference channels [5]–[7], broadcast (or multiple
access) channels [8]–[10], cognitive radio networks [11] and
MIMO X channels [3], [12], [13], to maximize the remaining
interference-free dimensions for the desired signals. A review
of the current status of IA is presented in [14].

In this paper, we study the IA scheme of the general MIMO
XC with arbitrary numbers of transmitters and receivers, and
multiple antennas at each node.

Many advanced techniques have been proposed to analyze
the degrees of freedom (DoF) of MIMO interference chan-
nels and the MIMO multiway relay channels [4], [15]–[18].
Specifically, Cadambe and Jafar [4] first applied the idea of
IA to analyze the DoF of interference channels, which is
the benchmark for the later IA studies. The authors in [15]
studied the DoF of a 3-user MIMO interference channel
with a same number of antennas at each transmitter and a
same number of antennas at each receiver. The DoF of the
symmetric multiple input multiple output (MIMO) multipair
two-way distributed relay channel has been studied in [16].
Ding et al. [17] studied the DoF of the symmetric multi-relay
MIMO Y channel. Recently, the authors in [18] studied the
DoF of the asymmetric 3-user single-relay MIMO Y channel
with weighted common and private messages. The techniques
proposed by these papers are under one or more following
channel conditions: i) MIMO interference channel [4], [15],
in which the received signals for each receiver come from the
same transmitter. ii) Symmetric wireless channel [16], [17],
which means that all the user nodes are with the same number
of antennas, and all the relays are also with the same number
of antennas. iii) With specific number of users, i.e., in [18],
the number of users is assumed to be 3. Therefore, even though
the research results proposed in these papers are very useful
in the DoF study of the corresponding wireless channels,
they still cannot be applied directly to the general MIMO X
channel with arbitrary numbers of transmitters and receivers,
and arbitrary numbers of antennas at each node.

The DoF for MIMO XC have been studied in [19]–[21],
with closed-form expressions for transmit precoding and
receive decoding matrices. The closed-form solutions are
under some special conditions:

• First, some solutions are only reachable in high Signal-
to-Noise-Ratio (SNR). Since the SNR in practical envi-
ronments is limited, the solutions intended for high-SNR
may not be applicable in real life.

• Second, the closed-form solutions can only be found
for some particular cases, e.g., i) single-antenna termi-
nals with extremely large time or frequency extension,
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in which the channel matrices are with large sizes
and in diagonalized form [19]; ii) 2 × 2 MIMO XC
case [20], [21].

On general multiple-transmitter-multiple-receiver MIMO XCs
with multiple antennas at each node and limited number of
signaling dimensions (i.e., the channel matrices that have no
special form and are with limited sizes), the closed-form
solutions to the IA problem are still unknown. Actually,
even for the general interference channel (IC) with multiple
transmitter-receiver pairs, on which each transmitter only
wants to send signals to its corresponding receiver, it is
difficult to obtain the analytical solutions to the IA problems,
and even the feasibility of IA over a limited number of
signaling dimensions is an open problem [22]. The IA problem
on XC is far more complicated than that on IC, due to the fact
that the interference nulling conditions and rank preservation
conditions are coupled with each other on XC.

Consider a T × R MIMO XC with T transmitters and
R receivers. For each receiver, it will receive T desired
signals and TR − T interference signals. When the receiver
is decoding one of the desired signals, all the other T − 1
desired signals together with the interference signals are
treated as interferences and should be zero-forced by the
decoder. In other words, for each desired signal, there are
TR− 1 to-be-zero-forced signals. The conditions for aligning
the to-be-zero-forced signals into a certain subspace for each
desired signal are named as IA Conditions. For each desired
signal, we need to ensure that it lies in a subspace distinct
from its corresponding to-be-zero-forced signals. Therefore,
in the IA problem, some Rank Conditions should be added to
guarantee that the desired signals can be distinguished from
their to-be-zero-forced signals. On IC, the Rank Conditions are
automatically satisfied [23] and thus can be removed directly.
However, on XC, the Rank Conditions cannot be ignored,
since the IA Conditions and Rank Conditions are coupled.
This is because the desired signals for each receiver on IC are
from the same transmitter, while on XC they are from different
transmitters. In [15]–[17], the authors have jointly discussed
the IA Conditions and the Rank Conditions in different MIMO
networks. The main technique of the works are to replace
the Rank Conditions with some special structures, hence to
make the problem solvable. The analysis in these works is
very instructive, and provides idea for our study.

Due to the complexity of finding closed-form solutions,
algorithmic techniques, such as iterative IA, have been pro-
posed to find the numerical solutions on the general IC in [22]
and [24]–[26]. Some iterative IA schemes are applied to the
2 × 2 MIMO XC in [3] and [27], but generalizations to XC
with more than 2 transmitters and 2 receivers are shown not
to be straightforward.

In this paper, an iterative alternating minimization algorithm
is proposed for general MIMO XC to find IA solutions.
In each iteration of the algorithm, we update the receive
decoding matrices or transmit precoding matrices by solv-
ing an optimization problem under the IA Conditions and
the Rank Conditions. Due to the non-convex nature of the
Rank Conditions, a solution to the general rank-constrained
optimization problem has remained open for a long time [28].

In order to overcome the challenge of the Rank Conditions,
we analyze the necessary conditions of the Rank Conditions
and IA Conditions and then find that under the necessary
conditions and IA Conditions, the Rank Conditions are auto-
matically satisfied almost surely. Thus we replace the Rank
Conditions with their necessary conditions, which simplifies
the optimization problem. The main results of the alternating
minimization algorithm introduced in this paper are as follows.

1) The algorithm is efficient for the general MIMO XC.
Here the general MIMO XC refers to a channel with
multiple transmitters and multiple receivers, no special
form of channel matrices, limited signaling dimensions
and limited SNR.

2) The algorithm can provide numerical insights into the
feasibility of IA for the general MIMO XC.

3) We evaluate the performances of this algorithm and
compare it with other existing algorithms. Numerical
results show that the sum rate of our proposed algorithm
is higher than that of comparison algorithms.

The remainder of this paper is organized as follows.
Section II describes the MIMO XC. In Section III, we analyze
the IA scheme for the MIMO XC and define the IA Feasible
Conditions, under which perfect IA is achieved. In Section IV,
an iterative IA algorithm is proposed. Performance evaluations
are in Section V. Finally, Section VI concludes the paper.

Notations: All boldface letters indicate matrices (upper-
case) or vectors (lower-case). C represents the complex
domain. Im denotes the m × m identity matrix and 0m×n

denotes the m × n zero matrix. AH denotes the conjugate
transpose of A. det(A) and Tr(A) are the determinant and
trace of the matrix A, respectively. The rank of the matrix A
is denoted as rank(A). νd[A] is the eigenvector corresponding
to the dth smallest eigenvalue of A. A�d represents the dth

column of matrix A.

II. DEFINITION–MIMO X CHANNEL

We consider a T × R MIMO XC. It is a communication
channel with T transmitters and R receivers, where each
transmitter has a distinct signal for each receiver and each node
is equipped with multiple antennas. The number of antennas at
each node is assumed to be M . We denote the tth transmitter
as Tt and denote the rth receiver as Rr. T = {1, . . . , T} and
R = {1, . . . , R} are the sets of transmitters and receivers,
respectively. The global channel state information is assumed
to be available at all the transmitters and receivers. An
example of a MIMO XC with 3 transmitters and 2 receivers
is shown in Fig. 1.

A. Transmitter Side

We assume that the tth transmitter Tt wishes to transmit
the signal xtr ∈ CD×1 to the rth receiver Rr, where D
represents the degree of freedom (DoF) achieved by each
signal. Intuitively, D can be perceived as the number of signal
space dimensions that are free of interference. We assume
the average power of each component of xtr is Ptr, i.e.,
E(xtrxH

tr) = PtrID. We denote the channel matrix from
the transmitter Tt to the receiver Rr as Htr ∈ CM×M .
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Fig. 1. A 3 × 2 MIMO X channel.

All the entries of the channel matrix Htr are identically and
independently distributed (i.i.d.) zero mean complex Gaussian
random variables with unit variance. Thus, all channel matrices
will be of full rank with probability 1.

Transmitter Tt uses linear transmit precoding matrix Vtr ∈
CM×D , with orthonormal columns, to map the D symbols in
xtr to its M antennas. On the MIMO XC, each transmitter
has a distinct signal for each receiver. Thus, for the T × R
MIMO XC with R receivers, the signal vector transmitted by
transmitter Tt is

∑
r∈R Vtrxtr.

B. Receiver Side

The received signal vector for the rth receiver Rr can be
expressed as:

yr =
∑

t∈T
Htr

∑

n∈R
Vtnxtn + zr (1a)

=
∑

t∈T
HtrVtrxtr +

∑

t∈T

∑

n∈R,n�=r

HtrVtnxtn+zr, (1b)

where the vector zr is the unit-variance, zero-mean, complex
additive white Gaussian noise.

The first part in (1b) represents receiver Rr’s desired
signals from all T transmitters. The second part represents the
interference signals, which are signals intended for the other
receivers. For each receiver, there are T desired signals and
TR − T interference signals.

We use Utr ∈ CM×D to denote the receive decoding matrix
that decodes the signal transmitted from the tth transmitter and
desired by the rth receiver (i.e., the signal xtr). The columns
of Utr are orthonormal. The received signal vector after being
decoded by Utr at receiver Rr is:

ȳr = UH
trHtrVtrxtr + UH

tr

( ∑

m∈T

∑

n∈R
HmrVmnxmn

−HtrVtrxtr

)
+ UH

trzr .

Then, the receiving rate function of the receiver Rr corre-
sponding to xtr is represented by:

Str � log
(

det
(
ID + PtrUH

trHtrVtrVH
trH

H
trUtr

× (UH
trItrUtr + ID)−1

))

, (2)

where Itr is the interference covariance matrix corresponding
to the signal xtr , and

Itr =
∑

m∈T

∑

n∈R
PmnHmrVmnVH

mnHH
mr

−PtrHtrVtrVH
trH

H
tr. (3)

If perfect IA is achieved, UH
trItrUtr = 0D×D for all t ∈ T

and r ∈ R.
In the next section, we will analyze the IA scheme of the

MIMO XC, aiming to make the power of interference signals
in the subspace occupied by the desired signals to be zero.
In other words, we aim to let UH

trItrUtr = 0D×D for all
t ∈ T and r ∈ R.

Remark 1: For notational convenience, we made the
assumption that all the nodes (transmitters and receivers)
are equipped with the same number of antennas M , and
each signal achieves D DoF. However, the analysis and the
algorithm introduced in this paper can be used directly in the
cases that the nodes are equipped with different numbers of
antennas and the signals achieve different DoFs.

III. ANALYSIS OF INTERFERENCE ALIGNMENT OF

THE T × R MIMO X CHANNEL

According to the definition of IA, for each desired signal,
the interference signals should be aligned into the null-space
of its decoder. Thus, when we use Utr to decode the signals
received by the receiver Rr to obtain xtr, we have the
following conditions on Utr

UH
trHmrVmn = 0, ∀m ∈ T , n ∈ R,

and

|m − t| + |n − r| �= 0. (4)

Conditions in (4) indicate that for the decoding matrix Utr,
all the signals received by the receiver Rr (i.e., HmrVmnxmn

for all m ∈ T and n ∈ R) except HtrVtrxtr (i.e., the case
that m = t and n = r) are to-be-zero-forced signals. All these
signals should be aligned into the null-space of Utr.

To perfectly decode all the desired signals for all the
receivers, the conditions in (4) should be applied to all t ∈ T
and r ∈ R. Thus, we have the following feasible conditions,
under which rank(UH

trHtrVtr) = D (∀t, r) and perfect IA is
achieved.

Definition 1 (IA Feasible Conditions): Given a T × R
MIMO XC with M antennas at each node and with D DoF of
each signal, we say that the channel is IA feasible if and only
if there exist a set of decoding matrices {Utr} and a set of
precoding matrices {Vtr} such that the following conditions
are satisfied.
IA Conditions:

UH
trHmrVmn = 0, ∀t ∈ T , m ∈ T , r ∈ R, n ∈ R,

and

|m − t| + |n − r| �= 0. (5)

Rank Conditions:

rank(UH
trHtrVtr) = D, ∀t ∈ T , r ∈ R. (6)
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Fig. 2. Flow chart of Rank Conditions transformation (in this figure, cond. means conditions).

IA Conditions are interference nulling conditions, which
are used to align the to-be-zero-forced signals into the null
space of the corresponding decoding matrix. Rank Conditions
are used to guarantee that each desired signal is received
through a full rank matrix, so that it can be distinguished
from its corresponding to-be-zero-forced signals. Note that we
can consider symbol extension in time or frequency instead of
multiple antennas.

Remark 2: On MIMO ICs, the Rank Conditions
(i.e., UH

ii HiiVii should be a full rank matrix for all i)
are automatically satisfied. This is because the channel
matrices in Rank Conditions (i.e., Hii) do not appear in
the corresponding IA Conditions (i.e., UH

ii HjiVjj = 0,
∀i �= j), which means that the selection of the decoding and
precoding matrices Uii and Vii under the IA Conditions does
not depend on Hii. Since the entries of Hii are randomly
generated from a continuous distribution, the product matrix
UH

ii HiiVii has full rank almost surely. The proof can be
found in Sec. VII of [22] when the authors were explaining
the reason of removing constraint (12) in their paper.
However, on MIMO XCs, the Rank Conditions are not
satisfied automatically.

Next, we show that the Rank Conditions of MIMO XC can
be replaced by some specific rank conditions, under which
the problem is easier to be solved. The logic flow is shown
in Fig. 2. First, from IA Feasible Conditions (i.e., (5) and (6)),
we find their necessary conditions and define them as Specific
Rank Conditions in the following lemma.

Lemma 1: For any sets of decoding matrices {Utr} and
precoding matrices {Vtr} that satisfy the IA Feasible Condi-
tions ((5) and (6)), the Specific Rank Conditions always hold:

rank(Ur) = TD, ∀r ∈ R, (7)

rank(V t) = RD, ∀t ∈ T , (8)

where Ur � [U1r,U2r , . . . ,UTr] consists of all the decoding
matrices at receiver Rr, and Vt � [Vt1, Vt2, . . . ,VtR]
consists of all the precoding matrices at transmitter Tt.

The proof of Lemma 1 is given in Appendix A.
In the proof, we define Ur(−t) by removing the tth

sub-matrix Utr from Ur and define Vt(−r) by removing
the rth sub-matrix Vtr from Vt. Specifically, we have
Ur(−t) � [U1r ,U2r, . . . ,U(t−1)r , U(t+1)r , . . . ,UTr] and
Vt(−r) � [Vt1,Vt2, . . . ,Vt(r−1),Vt(r+1), . . . ,VtR]. These
definitions will also appear in the following discussions. From

Lemma 1 we know that rank(U r) = TD. Since there are T
sub-matrices {Utr

∣
∣ ∀t ∈ T } in Ur and each of them is with

rank D, the columns of Utr are linearly independent of Ur(−t)

for all t ∈ T and r ∈ R. Similarly, we can see that the columns
of Vtr are linearly independent of Vt(−r) for all t ∈ T and
r ∈ R.

By Lemma 1, we prove the first sign 1© in Fig. 2 (i.e., (5)
and (6) ⇒ (7) and (8)). Based on the necessary conditions
from Lemma 1, we have Lemma 2.

Lemma 2: For any T × R MIMO XC with M antennas
at each node, if there exist a set of decoding matrices {Utr}
and a set of precoding matrices {Vtr} that satisfy IA Feasible
Conditions (i.e., (5) and (6)), we have

D ≤ M

T + R − 1
.

where D is the DoF achieved by each signal.
Lemma 2 follows from the outer bounds established by
Cadambe and Jafar [19]. Thus, we omit the proof of
Lemma 2 in our paper. Recall that D is the DoF that can
be reached by each signal xtr, then the total number of DoF
reached by all signals of the T × R MIMO XC is upper
bounded by TRM

T+R−1 .
From IA Conditions (5) and Specific Rank Conditions (7)

and (8), we obtain Lemma 3.
Lemma 3: For any T × R MIMO XC with M antennas at

each node, if there exist a set of decoding matrices {Utr}
and a set of precoding matrices {Vtr} that satisfy IA Condi-
tions (5) and Specific Rank Conditions (7) and (8), then the
Rank Conditions (6) are satisfied almost surely.

The proof of Lemma 3 is given in Appendix B.
As shown in Fig. 2, from the above derivation we know

that IA Feasible Conditions (5) and (6) are equivalent to
conditions in (5), (7) and (8). We can show that, for any set of
decoding and precoding matrices that satisfy (5), (7) and (8),
we can always construct matrices which also satisfy Unitary
Conditions, i.e.,

UH
trUtr = ID, VH

trVtr = ID, ∀t ∈ T , r ∈ R. (9)

Hence, we call conditions in (5), (7), (8), and (9) as Rewritten
Feasible Conditions.

Based on the Rewritten Feasible Conditions, in the next
section, we will propose an iterative alternating minimization
algorithm to find the proper decoding and precoding matrices.
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IV. ITERATIVE INTERFERENCE ALIGNMENT APPROACH

In this section, we first introduce the IA-XC algorithm
in Sec. IV-A, and then analyze its convergence property in
Sec. IV-B.

A. Introduction of the IA-XC Algorithm

In this section, we aim to design an algorithm to select the
proper decoding and precoding matrices, which can satisfy
Rewritten Feasible Conditions (i.e., IA Conditions (5), Specific
Rank Conditions (7) (8), and Unitary Conditions (9)). We can
show that IA Conditions (5) can be achieved by minimizing
the interference leakage Fi, which is defined as:

Fi �
∑

t∈T

∑

r∈R
Tr(UH

trLtrUtr), (10)

where

Ltr =
∑

m∈T

∑

n∈R
HmrVmnVH

mnHH
mr − HtrVtrVH

trH
H
tr .

(11)

The interference leakage Fi is lower bounded by zero. The
minimum value of Fi equals zero if perfect IA can be reached,
and is larger than zero otherwise. Since Ltr is a function of
precoding matrices {Vtr}, we write it as Ltr(V). Due to the
linear mapping property of trace, Fi can be rewritten as:

Fi = Tr
( ∑

t∈T

∑

r∈R
UH

trLtr(V)Utr

)

= Tr
( ∑

m∈T

∑

n∈R

∑

t∈T

∑

r∈R
VH

mnHH
mrUtrUH

trHmrVmn

−
∑

t∈T

∑

r∈R
VH

trH
H
trUtrUH

trHtrVtr

)

(a)
= Tr

( ∑

t∈T

∑

r∈R

∑

m∈T

∑

n∈R
VH

trH
H
tnUmnUH

mnHtnVtr

−
∑

t∈T

∑

r∈R
VH

trH
H
trUtrUH

trHtrVtr

)

=
∑

t∈T

∑

r∈R
Tr

(
VH

trL̃tr(U)Vtr

)
, (12)

where (a) is from interchanging t with m and r with n in the
first term. L̃tr(U) is defined as:

L̃tr(U) =
∑

m∈T

∑

n∈R
HH

tnUmnUH
mnHtn − HH

trUtrUH
trHtr,

(13)

which is a function of decoding matrices {Utr}.
In order to select proper decoding and precoding matrices,

which can satisfy conditions in (5), (7), (8) and (9), we for-
mulate the minimization problem as follows:

min Fi, (14a)

s.t. rank(Ur) = TD, ∀r ∈ R, (14b)

rank(Vt) = RD, ∀t ∈ T , (14c)

VH
trVtr = ID, ∀t ∈ T , r ∈ R, (14d)

UH
trUtr = ID, ∀t ∈ T , r ∈ R. (14e)

It is still very challenging to solve this minimization prob-
lem (14) under the rank constraints in (14b) and (14c) directly.
Nevertheless, we can find a set of sufficient conditions of the
constraints in (14b) and (14c) to replace them. We show the
sufficient conditions in the following lemma.

Lemma 4: For any T × R MIMO XC with M antennas at
each node, if there exists a set of decoding matrices {Utr}
and a set of precoding matrices {Vtr} (where UH

trUtr = ID

and VH
trV

H
tr = ID) that satisfy

∑

t∈T

∑

m∈T ,m>t

Tr(UH
trUmrUH

mrUtr) <
T

2(T − 1)
, ∀r ∈ R,

(15)
∑

r∈R

∑

n∈R,n>r

Tr(VH
trVtnVH

tnVtr) <
R

2(R − 1)
, ∀t ∈ T

(16)

then the constraints in (14b) and (14c) are satisfied.
The proof of Lemma 4 is given in Appendix C.
Based on Lemma 4, we can solve the original optimization

problem (14) by solving its inner approximation problem1

min Fi,

s.t. conditions in (15) and (16),

VH
trVtr = ID, ∀t ∈ T , r ∈ R,

UH
trUtr = ID, ∀t ∈ T , r ∈ R. (17)

The main difficulty in solving the nonlinear nonconvex
optimization problem (17) is due to the nonlinear inequal-
ity constraints (15) and (16). Motivated by Courant penalty
function technique,2 in our algorithm, we scale each condition
in (15) and (16) by a penalty parameter ω

[r]
u (or ω

[t]
v ), and move

them to the objective function. Specifically, we apply penalty
technique to the inequality constraints and keep the unitary
constraints in order to obtain the following problem:

min F � Fi +
∑

r∈R
ω[r]

u F [r]
u +

∑

t∈T
ω[t]

v F [t]
v ,

s.t.

{
VH

trVtr = ID, ∀t ∈ T , r ∈ R,

UH
trUtr = ID, ∀t ∈ T , r ∈ R.

(18)

where

F [r]
u =

∑

t∈T

∑

m∈T ,m>t

Tr(UH
trUmrUH

mrUtr), (19)

and

F [t]
v =

∑

r∈R

∑

n∈R,n>r

Tr
(
VH

trVtnVH
tnVtr

)
. (20)

Based on [30] and [31], the solution of (17) can be approxi-
mated by that of (18) as the penalty parameters approach zero.
In (18), larger penalty parameters (i.e., ω

[r]
u ω

[t]
v ) lead to

1Since problem (17) is the inner approximation problem of the original
optimization problem (14), the minimum interference leakage Fi achieved
by solving (17) may be a sub-optimal value of the problem (14). In other
words, the algorithm, which is designed to solve the problem (17), can only
give the lower bound of the DoF that can be achieved by general MIMO XCs.

2Courant penalty function technique is a classic penalty function technique,
which avoids dealing with constraints by moving them to the objective
function [29].
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smaller value of F [r]
u and F [t]

v , but they may also lead to a
larger value of Fi (i.e., the real objective function). To avoid
the negative influence of large penalty parameters and to
preserve the positive influence, we initialize our algorithm
with large positive ω

[r]
u and ω

[t]
v , which refer to more strict

conditions than (15) and (16).
In our algorithm, there are two layers of iterations. In the

inner layer iteration, we fix the penalty parameters and itera-
tively minimize F (see Eq. (18)). We divide the variables into
two groups, where the first group contains all the precoding
matrices {Vtr}, and the other group contains all the decoding
matrices {Utr}. We initialize the algorithm by randomly
generating TR precoding matrices Vtr and TR decoding
matrices Utr, and iterate the following steps. In the first step,
we keep all precoding matrices unchanged and minimize F
by tuning decoding matrices. In the second step, we keep
decoding matrices (which are obtained by solving the problem
in the previous step) unchanged and update precoding matrices
to minimize the objective function F . If sufficient reduction
on the interference leakage Fi in the inner layer iteration is
achieved, we stop our algorithm and output the decoding and
precoding matrices. Otherwise, we continue the outer layer
iteration, in which we update the penalty parameters ω

[r]
u with

a smaller value hu(F [r]
u )ω[r]

u and update ω
[t]
v with hv(F [t]

v )ω[t]
v .

The decreasing rate functions hu(x) and hv(x) are in [0, 1]
and increasing in x. When we replace the original penalty
parameters ω

[r]
u and ω

[t]
v with the updated ones hu(F [r]

u )ω[r]
u

and hv(F [t]
v )ω[t]

v , the solutions of (18) with the original penalty
parameters provide good initial points for the next round of
iterations with the updated penalty parameters. Specifically,
the algorithm contains the following steps.

• Step I: With fixed precoding matrices {Vtr}, we update
decoding matrices {Utr} in order to minimize F .
Respect to {Utr}, we have:

F[U] =
∑

t∈T

∑

r∈R
Tr

(
UH

trLtr(V)Utr

)

+
∑

r∈R
ω[r]

u

∑

t∈T

∑

m∈T ,m>t

Tr(UH
trUmrUH

mrUtr).

(21)

By defining

Qtr = Ltr(V) + ω[r]
u

∑

m∈T ,m �=t

UmrUH
mr, (22)

we can find that the formula Tr(UH
trQtrUtr) contains all

the terms, which include Utr in F . Thus for fixed precod-
ing matrices {Vtr} and decoding matrices {Umn

∣
∣ |m−

t|+ |n− r| �= 0}, we can minimize F respect to Utr by
minimizing Tr(UH

trQtrUtr).
In order to minimize Tr(UH

trQtrUtr), the columns of
Utr should be the eigenvectors corresponding to the D
smallest eigenvalues of Qtr. Then, the dth column of Utr

is:

U�d
tr = νd(Qtr). (23)

If decoding matrices {Utr} obtained in this step satisfy
the constraints in (15), we update them and move to

Step II. Otherwise, we stop the algorithm and output
{Utr} and {Vtr}, which are from the previous recursion.

• Step II: With fixed decoding matrices obtained from Step
I, the goal of this step is to find precoding matrices {Vtr}
to minimize F . Respect to {Vtr}, we have

F[V] =
∑

t∈T

∑

r∈R
Tr

(
VH

trL̃tr(U)Vtr

)

+
∑

t∈T
ω[t]

v

∑

r∈R

∑

n∈R,n>r

Tr(VH
trVtnVH

tnVtr).

(24)

By defining

Q̃tr = L̃tr(U) + ω[t]
v

∑

n∈R,n�=r

VtnVH
tn, (25)

we can find that the formula Tr(VH
trQ̃trVtr) contains

all the terms, which include Vtr in F . Hence, for Vtr,
we can minimize F by minimizing Tr(VH

trQ̃trVtr).
Same as in Step I, the dth column of Vtr is given by
V�d

tr = νd(Q̃tr). If the new precoding matrices {Vtr}
satisfy the constraints in (16), we update them and move
to Step I. Otherwise, we stop the algorithm and output
{Utr} and {Vtr}, which are from the previous recursion.
In the algorithm, we alternatively update {Utr} and
{Vtr} by repeating Step I and Step II until convergence.

• Step III (Adjust penalty parameters): After the conver-
gence is reached, if sufficient reduction in Fi is achieved,
we stop the algorithm and output {Vtr} and {Utr}.
Otherwise, we update the penalty parameters and move
to Step I. Specifically, we replace ω

[r]
u with hu(F [r]

u )ω[r]
u

and replace ω
[t]
v with hv(F [t]

v )ω[t]
v , where hu(F [r]

u ) and
hv(F [t]

v ) should have the following properties:
1) The values of both functions are less than 1 in their

feasible sets. Under this assumption, the penalty
parameters keep deceasing in each outer iteration.
Therefore, the convergence of the algorithm is guar-
anteed.

2) Both hu(F [r]
u ) and hv(F [t]

v ) are increasing in F [r]
u

and F [t]
v , respectively. Moreover, the values of

hu(F [r]
u ) and hv(F [t]

v ) are close to 1 when F [r]
u and

F [t]
v approach the upper bound of their feasible set,

respectively. We make this assumption in order to
guarantee that the inequality constraints (15) and
(16) are always satisfied.

In this paper, we simply define hu(F [r]
u ) and hv(F [t]

v ) as
follows:

hu(F [r]
u ) = C +

(1 − C)F [r]
u

T
2(T−1)

,

hv(F [t]
v ) = C +

(1 − C)F [t]
v

R
2(R−1)

, (26)

where C ∈ [0, 1] is the minimum value of the decreasing
rate functions.

The details of the algorithm are illustrated in Algorithm 1.
In the simulation, we assume that perfect IA is achieved if Fi

is smaller than a small positive value ε2, where ε2 = 10−5.
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Algorithm 1: Iterative IA-XC Algorithm

Initialize TR arbitrary precoding matrices {Vtr} and
TR arbitrary decoding matrices {Utr}. Vtr ∈ C

M×D ,
VH

trVtr = ID; Utr ∈ CM×D, UH
trUtr = ID .

Set the penalty parameters ω
[r]
u and ω

[t]
v to a relatively large

value.
Calculate Fi (see (12)) and set F̄i = Fi.
Let V̄tr = Vtr and Ūtr = Utr .
repeat

Step I:
From the 1st receiver to the Rth receiver.
for t = 1; t ≤ T ; t + + do

Calculate Ltr(V) and Qtr as defined in (11) and
(22), respectively.
Update the decoding matrix Utr, U�d

tr = νd(Qtr).
if Utr does not satisfy (15) then

Stop the algorithm and output {Ūtr} {V̄tr}.
else

Set V̄tr = Vtr and Ūtr = Utr.

Step II:
From the 1st transmitter to the T th transmitter.
for r = 1; r ≤ R; r + + do

Calculate L̃tr(U) and Q̃tr as defined in (13) and
(25), respectively.
Update the precoding matrix Vtr, V�d

tr = νd(Q̃tr).
if Vtr does not satisfy (16) then

Stop the algorithm and output {Ūtr} {V̄tr}.
else

Set V̄tr = Vtr and Ūtr = Utr.

until convergence;
Step III:
Calculate the value of Fi.
if Fi < ε2 then

Stop the algorithm and output {Vtr}, {Utr}.
else

Decrease ω
[r]
u to hu(F [r]

u )ω[r]
u and decrease ω

[t]
v to

hv(F [t]
v )ω[t]

v . Set F̄i = Fi, V̄tr = Vtr and Ūtr = Utr .
Go back to Step I

B. Convergence and Analysis of the IA-XC Algorithm

1) Convergence of the Algorithm: In IA-XC algorithm,
with arbitrary initialized matrices, we alternatively update
the decoding and precoding matrices in order to minimize
the objective function F . The objective function F is lower
bounded by zero since it is the summation of several traces of
positive semi-definite matrices.

In Step I and Step II of IA-XC algorithm, we try to adjust
decoding or precoding matrices to minimize F . In Step III,
we decrease the value of the penalty parameters if sufficient
reduction on the interference leakage Fi is not achiveved.
Since F = Fi +

∑
r∈R ω

[r]
u F [r]

u +
∑

t∈T ω
[t]
v F [t]

v and F [r]
u

and F [t]
v are always positive, reducing the penalty parameters

is equivalent to reducing F . Therefore, the value of F is
monotonically reduced to zero or a positive value, which
means that the algorithm will converge.

Fig. 3. Convergence example of our IA-XC algorithm with T = R = 3,
M = 6.

Note that for a given MIMO X channel, the algorithm will
converge for any DoF requirement of each signal (i.e., for
any D) or any number of antennas equipped at each node (i.e.,
for any M ). However, for the case that D is too large or M is
too small, the value of Fi will converge to some positive value,
in which the IA is not achieved. The examples that the values
of M are too small and Fi converge to some positive values are
shown in Fig. 3 in the simulation. Besides, in the simulation,
we will give numerical insights of the feasible region of D or
M for some MIMO XCs that can achieve IA by our IA-XC
algorithm.

2) Convergence Rate of the Algorithm: We present an
example to show the convergence rate. We compare the con-
vergence rate of our IA-XC algorithm with a classical iterative
algorithm for interference channels, which is proposed by
Gomadam et al. [22], by plotting the convergence curves of
the total interference leakage versus the number of iterations
in Fig. 3. In the comparison we use a 3 × 3 MIMO wireless
channel as an example. The number of antennas at each node
is set to be 6. The curves in the figure show that our IA-XC
algorithm’s convergence rate is similar to the Gomadam’s
algorithm’s convergence rate. Therefore, we can claim that
our IA-XC algorithm has an acceptable convergence rate.

3) Analysis of the Algorithm: In IA-XC algorithm, if Fi

converges to zero, IA Conditions are satisfied. In this case,
perfect IA can be achieved on this T ×R MIMO XC with M
antennas at each node and D DoF of each signal. The sum
rate of the channel is then
∑

t∈T

∑

r∈R
log

(
det(ID + PtrUH

trHtrVtrVH
trH

H
trUtr)

)
. (27)

On the contrary, if Fi converges to some positive value,
the interference signals are not perfectly aligned and the sum
rate of the MIMO XC should be written as

∑
t∈T

∑
r∈R Str,

where Str defined in (2) is the receiving rate function corre-
sponding to the signal xtr.

Actually, given a certain MIMO XC, it is not guaranteed
that we can find a set of decoding and precoding matrices that
satisfy Rewritten Feasible Conditions. The MIMO XC has no
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Fig. 4. The changes of Fi of IA-XC algorithm respect to the number of
antennas at each node.

closed-form solution in general. In this paper, we have shown
an iterative IA-XC algorithm, which is helpful in obtaining
numerical insights into this problem.

V. PERFORMANCE EVALUATIONS

In this paper, the main goal is to provide an iterative
algorithm to achieve IA of general MIMO XCs. Therefore,
for different MIMO XCs, we show the DoF achieved by
our IA-XC algorithm in Sec. V-A. At the meantime, we are
also interested in the performance of our proposed algorithm
in terms of transmission rate. Hence, we first compare the
transmission rate of our IA-XC algorithm with that of the
existing IA algorithms in Sec. V-B. Then, we evaluate the
performance of our IA-XC algorithm in asymmetric system
in Sec. V-C.

Since the IA-XC algorithm is designed to perfectly align the
interference signals, it can be applied directly to any power
allocation. In the simulation, we assume that the transmission
power is equally allocated at each transmitter for simplicity of
presentation. Specifically, we have Ptr = Pmn for all t, r, m
and n. In this paper, we model the entries of channel matri-
ces Htr as identically and independently distributed (i.i.d.)
Gaussian random variables with zero mean. We initialize the
penalty parameters ω

[r]
u and ω

[t]
v as (T + R).

A. Feasible-Antenna-Numbers by IA-XC Algorithm

To simplify the notation, we use (T × R, D)M to denote
the MIMO XC with T transmitters and R receivers, where
each transmitter and receiver has M antennas, and each signal
demands D DoF.

In this subsection, we study the number of antennas needed
to achieve IA on several MIMO XCs with different numbers
of transmitters and receivers. With constant DoF for each
signal, Fig. 4 shows the changes of the value of Fi in log
form (i.e., log(105Fi + 1)) with respect to the number of
antennas at each node. According to Lemma 2, we know that
D is upper-bounded by M

T+R−1 , or M is lower-bounded by

D(T + R − 1). As such, we increase the number of antennas
at each node (i.e., M ) from D(T + R − 1) for each XC.
Fig. 4 shows that the objective function Fi decreases with
the number of antennas. We call the number of antennas that
can lead to perfect IA on different MIMO XCs as feasible-
antenna-numbers, and the smallest feasible-antenna-numbers
on each XC are pointed by the corresponding arrows. For
example, as shown in Fig. 4, for the (3 × 3, 1)M MIMO XC,
the feasible-antenna-numbers M are {6, 7, . . .}. The smallest
feasible-antenna-numbers M for (3 × 3, 1)M , (4 × 4, 1)M ,
(5× 5, 1)M , (6× 6, 1)M , (3× 3, 2)M and (4× 4, 2)M MIMO
XCs are 6, 9, 14, 20, 11 and 18, respectively. Since they are
larger than D(T +R−1), Lemma 2 is verified. In addition, the
gap between D(T +R−1) and the smallest feasible-antenna-
number increases with the size of XC.

B. Comparison Between IA-XC Algorithm and the Existing
IA Algorithms

In this section, we will compare our proposed IA-XC algo-
rithm with two existing IA algorithms in terms of transmission
rate. To our best knowledge, IA scheme for the general MIMO
XC with finite signaling dimensions is rarely studied. As such,
we will compare our IA-XC algorithm with two iterative
IA algorithms, which are designed for MIMO broadcasting
channels (BCs) and MIMO ICs, respectively. Since these three
IA algorithms are applied on different wireless channels, they
have totally different IA Conditions and Rank Conditions,
and the ideas behind these three algorithms are significantly
different. In the rest of our paper, we call the existing IA
algorithm designed for BCs as IA-BC algorithm, and call the
existing IA algorithm designed for ICs as IA-IC algorithm.

First, we show the comparison between our IA-XC algo-
rithm and the IA-BC algorithm [32]. BC is a kind of channel
with a single transmitter and multiple receivers. In each time
slot, the transmitter transmits distinct signals to each receiver
simultaneously. Therefore, the IA-BC algorithm can only be
applied on 1×R wireless channels. We assume that there are
T BCs with the same R receivers, and let each transmitter
broadcast its signals for one time slot. As shown in our
example in Fig. 5(b), after T times slots, each transmitter has
transmitted distinct signals to each receiver. To guarantee the
fairness of the comparison, in the IA-BC algorithm, we scaled
the transmission power for each component of signal xtr

to TPtr.
We compare the sum rate of our IA-XC algorithm applied

on 3 × 3 MIMO XCs with that of IA-BC algorithm applied
on 3 3-receiver BCs in Fig. 6. When the number of antennas
at each node is set to be 6, the total DoF achieved by IA-XC
algorithm and IA-BC algorithm are 9 and 6, respectively. If we
increase the number of antennas to 11, the total DoF achieved
by these two algorithms become 18 and 11. We can see that
under our simulation settings, the IA-XC algorithm can reach
higher sum rate than IA-BC algorithm in high SNR region.
When the transmission power is larger than 40dB, the sum
rate of our proposed IA-XC algorithm is over 25% higher
than that of the IA-BC algorithm in [32]. This is because that
the IA-XC algorithm achieves higher total DoF comparing
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Fig. 5. An example of the systems of the comparison algorithms. (a) 3 × 3 MIMO XC. (b) 3 3-user MIMO BCs.

Fig. 6. Comparison between IA-XC algorithm on 3 × 3 MIMO XC and
IA-BC algorithm on 3 3-receiver BCs.

with the IA-BC algorithm, and higher DoF guarantees higher
rate in the high SNR region. However, higher DoF does
not guarantee higher rate in the low SNR region. In low
SNR region, the higher data rate might be achieved by some
other beamforming techniques. From Fig. 6, we can find
that although IA-XC algorithm has higher DoF than the
IA-BC algorithm, it achieves lower sum rate than IA-BC
algorithm in low SNR region. This is because our proposed
IA-XC algorithm only focuses on aligning the interference
signals rather than maximizing the data rate, while the IA-BC
algorithm aligns interference signals and increases the data
rate simultaneously.

Second, we use the iterative IA algorithm in [22], which
is designed for MIMO ICs, as a benchmark and compare
its performances with our IA-XC algorithm’s performance.
IC is a kind of channel with multiple transmitter-receiver
pairs, where each transmitter only wants to send signals to its
corresponding receiver. Hence, we can treat a T × R MIMO
XC as max{T, R} min{T, R}-user MIMO ICs and let these
min{T, R}-user MIMO ICs sequentially transmit their signals,
where each IC can occupy one time slot. As a result, after
max{T, R} time slots, each transmitter has transmitted distinct
signals to each receiver. The example is shown in Fig. 7.

The comparison between the two algorithms are divided into
two cases: i) the wireless channel with different numbers
of transmitters and receivers, i.e., T �= R; ii) the wireless
channel with the same numbers of transmitters and receivers,
i.e., T = R.

As shown in Fig. 7(b), when T �= R, there will be an
under-utilization of transmitters (or receivers) on each time
slot of MIMO ICs. Therefore, on the wireless channels with
different numbers of transmitters and receivers, there is a
significant advantage of MIMO XC, due to the fact that each
transmitter has distinct signals to each receiver and all these
nodes can be fully utilized. In Fig. 8, two 3 × 4 wireless
channels with different antenna numbers M are studied. When
M = 7, the total DoF achieved by IA-XC algorithm and
IA-IC algorithm are 12 and 10, respectively. If we increase
the antenna number to 14, the total DoF achieved by IA-XC
and IA-IC algorithms are 24 and 21, respectively. We can see
that under our simulation settings, the sum rate of our proposed
IA-XC algorithm is always higher than that of the comparison
algorithm. Moreover, when the transmission power is larger
than 40dB, the increment is over 30%.

For the wireless channel with the same numbers of trans-
mitters and receivers, i.e., T = R, the comparison between our
IA-XC algorithm and IA-IC algorithm is illustrated. In Fig. 9,
two 3×3 wireless channels with different numbers of antennas
M are studied. We first set M = 6. In this case, the total
DoF achieved by IA-XC and IA-IC algorithms are both 9.
Then, we increase M to be 11. In this case, the total DoF
achieved by these two algorithms are 18 and 16, respectively.
From the figure we can find that the transmission rate achieved
by IA-XC algorithm is slightly higher than the comparison
algorithm. In conclusion, our IA-XC algorithm has higher
transmission rate than IA-IC algorithm for both T �= R and
T = R cases.

C. Performance of IA-XC Algorithm in Asymmetric System
In this paper, we assume that the MIMO XCs are with the

same number of antennas at each node (i.e., M ) and the same
DoF of each signal (i.e., D). In other words, we introduce
our algorithm based on symmetric MIMO XCs. However, our
proposed IA-XC algorithm is not limited to symmetric MIMO
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Fig. 7. An example of the systems of the comparison algorithms. (a) 3 × 4 MIMO XC. (b) 4 3-user MIMO ICs.

Fig. 8. Comparison between IA-XC algorithm on 3 × 4 MIMO XC and
IA-IC algorithm on 4 3-user ICs.

Fig. 9. Comparison between IA-XC algorithm on 3 × 3 MIMO XC and
IA-IC algorithm on 3 3-user ICs.

XCs, but also available on asymmetric MIMO XCs, which are
with different antennas at each node and are with different
DoFs achieved by each signal. In asymmetric MIMO XCs,
we use M

[t]
T and M

[r]
R to denote the numbers of antennas at

the tth transmitter and the rth receiver, respectively. The DoF
achieved by the signal transmitted from the tth transmitter
to the rth receiver (i.e., the signal xtr) is denoted as Dtr.

Fig. 10. Comparison between IA-XC algorithm and existing IA algorithms
on 3 × 3 asymmetric wireless channel.

From the simulation result, we know that for the asymmetric
3 × 3 wireless channel I with M

[1]
R = 6 and M

[1]
T = M

[2]
T =

M
[3]
T = M

[2]
R = M

[3]
R = 10, the DoF that can be achieved by

IA-XC algorithm is {Dtr}, where Dtr = 1 ∀r = 1 and Dtr =
2 ∀r �= 1. For the asymmetric 3 × 3 wireless channel II with
M

[1]
R = 12 and M

[1]
T = M

[2]
T = M

[3]
T = M

[2]
R = M

[3]
R = 20,

the DoF that can be achieved by IA-XC algorithm is {Dtr},
where Dtr = 2 ∀r = 1 and Dtr = 4 ∀r �= 1.

For the wireless channel with 3 transmitters and 3 receivers,
there are three choices to achieve the transmission goal that
each transmitter has distinct signals for each receiver: 1) we
treat the wireless channel as a 3 × 3 MIMO XC and use
IA-XC algorithm to select decoding and precoding matrices;
2) we treat the wireless channel as 3 3-receiver MIMO BCs
and use IA-BC algorithm to select decoding and precoding
matrices; 3) we treat the wireless channel as 3 3-user MIMO
ICs and use IA-IC algorithm to select decoding and precoding
matrices. To evaluate the performance in terms of transmission
rate of our proposed IA-XC algorithm on asymmetric MIMO
XCs, we compare the transmission method by using IA-XC
algorithm with the other two transmission methods by using
IA-BC and IA-IC algorithms, respectively. The simulation
results are shown in Fig. 10. From the figure we can see that on
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both of these two asymmetric 3×3 wireless channels, when the
transmission power is larger than 10dB, the IA-XC algorithm
achieves higher sum rates than the other two algorithms.

VI. CONCLUSION

In this paper, we study IA problem of MIMO XC. We define
the IA Feasible Conditions for the general MIMO XC, which
includes IA Conditions and Rank Conditions. Due to the
characteristics of the MIMO XC (i.e., each transmitter has
distinct signals to each receiver), the desired signals for
each receiver are from different transmitters, which makes
the IA Conditions and the Rank Conditions coupled. As a
result, the Rank Conditions of XCs cannot be automatically
satisfied with probability one and removed directly as those
of ICs. In order to deal with this problem, we first find the
necessary conditions (i.e., Specific Rank Conditions) of IA
Feasible Conditions and replace Rank Conditions with them,
then prove that under Rewritten Feasible Conditions, Rank
Conditions are satisfied almost surely. The Rewritten Feasible
Conditions simplify the IA problem of general MIMO XC.
Next, we design an iterative algorithm of IA schemes for
general MIMO XCs. The IA-XC algorithm is efficient for
general MIMO XC with limited signaling dimensions and has
a good performance even under limited SNR.

APPENDIX

A. Proof of Lemma 1

We prove Eq. (8) first. Since V t ∈ CM×RD , we have
rank(Vt) ≤ min{M, RD}, which implies that rank(Vt) ≤
RD. If rank(V t) = RD, then M ≥ RD. We prove (8) by
contradiction. Recall that Vtr ∈ CM×D is with orthonormal
columns, thus we have rank(Vtr) = D for all t ∈ T and
r ∈ R. If rank(V t) < RD, there must be at least one
precoding matrix Vtr such that:

rank([V t(−r),Vtr]) < rank(Vt(−r)) + rank(Vtr), (28)

where V t(−r) � [Vt1,Vt2, . . . ,Vt(r−1),Vt(r+1), . . . ,VtR].
As assumed in Sec. II-A, Htr ∈ CM×M is a full rank matrix.
Hence, rank(HtrW) = rank(W) for any matrix W ∈ CM×N

(N can be any positive integer) [33]. Together with (28),
we have

rank([HtrVt(−r),HtrVtr]) < rank(HtrVt(−r))
+ rank(HtrVtr), (29)

which indicates that some columns of HtrVtr are linearly
dependent on HtrVt(−r). What’s more, for fixed Utr, from
IA Conditions (5) we have: UH

trHtrVtn = 0, ∀n ∈ R, n �=
r (i.e., UH

trHtrV t(−r) = 0), which means that the subspace
occupied by HtrV t(−r) belongs to the null-space of Utr.
Since some columns of HtrVtr are linearly dependent on
HtrVt(−r), they are also in the null-space of Utr. Then the
rank of UH

trHtrVtr is less than D, which contradicts (6).
Therefore, the rank of V t is exactly RD. What’s more,
we have M ≥ RD, since Vt ∈ CM×RD and rank(Vt) = RD.

The proof of Eq. (7) is similar to Eq. (8), hence we omit
this proof.

B. Proof of Lemma 3

For a certain Rank Condition: rank(UH
trHtrVtr) = D

(where t and r are fixed), we can divide the conditions in (5),
(7) and (8) into two parts:

Part A : UH
mrHtrVtn = 0, ∀m ∈ T , ∀n ∈ R, n �= r,

(i.e., UH
r HtrVt(−r) = 0).

UH
mrHtrVtr = 0, ∀m ∈ T , m �= t,

(i.e., UH
r(−t)HtrVtr = 0).

Specific Rank Conditions: Eqs. (7) (8).

Part B : UH
mr̃Ht̃r̃Vt̃n = 0, ∀m ∈ T , n ∈ R, t̃ ∈ T ,

r̃ ∈ R, |m − t̃| + |n − r̃| �= 0,

|t̃ − t| + |r̃ − r| �= 0,

First, we show that if we select the decoding and precoding
matrices under the conditions in Part A, the selected decoding
and precoding matrices Utr Vtr satisfy the Rank Condition
(i.e., rank(UH

trHtrVtr) = D) almost surely.
Since the Specific Rank Conditions (7) and (8) are included

in Part A, we know that Utr is linearly independent of Ur(−t)

and Vtr is linearly independent of V t(−r) under the conditions
in Part A. Hence Utr and HtrVtr can be rewritten as:

Utr = Ũr(−t)S[1]
u +NuS[2]

u , HtrVtr = Ṽt(−r)S[1]
v +NvS[2]

v ,

(30)

where Ũr(−t) and Ṽt(−r) are orthonormal basis of Ur(−t)

and HtrVt(−r), respectively.3 S[2]
u and S[2]

v are both full rank
D×D square matrices. Nu and Nv are M ×D matrices with
orthonormal columns and satisfy

[Ũr(−t),Nu]H [Ũr(−t),Nu] = ITD,

[Ṽ t(−r),Nv]H [Ṽ t(−r),Nv] = IRD.

Substituting (30) into the conditions in Part A, we obtain

0 = UH
r HtrVt(−r) (31)

= [Ũr(−t)S[3]
u , Ũr(−t)S[1]

u + NuS[2]
u ]

HṼ t(−r)S[3]
v ,

0 = UH
r(−t)HtrVtr = S[3]

u

HŨH

r(−t)(Ṽ t(−r)S[1]
v + NvS[2]

v ),
(32)

[Ũr(−t),Nu]H [Ũr(−t),Nu] = ITD, (33a)

[Ṽt(−r),Nv]H [Ṽt(−r),Nv] = IRD, (33b)

In (31) and (32), Ur(−t) is rewritten as Ũr(−t)S
[3]
u and

HtrV t(−r) is rewritten as Ṽt(−r)S
[3]
v , where S[3]

u and S[3]
v are

full rank (T − 1)D × (T − 1)D and (R − 1)D × (R − 1)D
span matrices, respectively. Hence, it can be shown that the
conditions in Part A are equivalent to the following conditions:

ŨH

r(−t)Ṽ t(−r) = 0, NH
u Ṽt(−r) = 0, (34)

ŨH

r(−t)Nv = 0. (35)

[Ũr(−t),Nu]H [Ũr(−t),Nu] = ITD, (36a)

[Ṽt(−r),Nv]H [Ṽt(−r),Nv] = IRD, (36b)

3In this paper, when we define a matrix (e.g., Ã) as an orthonormal basis of
matrix A ∈ CM×N (M ≥ N ), the matrix Ã has the following properties:
i) there must exist a full rank matrix B ∈ CN×N such that A = ÃB, and
ii) ÃHÃ = IN .
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With arbitrary set of decoding matrices, if we can find
the precoding matrices that satisfy the conditions in (34) and
(36), then we know that [Ũr(−t),Nu, Ṽt(−r)]4 is a matrix
with orthonormal columns. This is because Ṽt(−r) is in the
null space of [Ũr(−t),Nu], and [Ũr(−t),Nu] is a matrix with
orthonormal columns.

We use matrix N to denote an orthonormal basis of
the null space of the matrix [Ũr(−t),Nu, Ṽt(−r)]. Hence,
[Ũr(−t),Nu, Ṽ t(−r),N] is a unitary matrix. The conditions
need to be satisfied by Nv are:

ŨH

r(−t)Nv = 0, [Ṽt(−r),Nv]H [Ṽt(−r),Nv] = IRD. (37)

In order to satisfy the condition ŨH

r(−t)Nv = 0, the matrix Nv

should be in the space spanned by [Nu, Ṽt(−r),N]. Moreover,
since [Ṽ t(−r),Nv] is with orthonormal columns, the matrix
Nv should be in the space spanned by [Nu,N]. In conclusion,
Nv can be any orthonormal matrix lying in the space spanned
by [Nu,N]. Hence, without loss of generality, the matrix Nv

can be represented as:

Nv = orth([Nu,N]S[4]
v ) = [Nu,N]S[4]

v O[1]
v . (38)

S[4]
v is an M − (T + R − 2)D × D span matrix that can

be represented as S[4]
v =

[
S[4.1]

v

S[4.2]
v

]

, where the entries of

S[4.1]
v ∈ CD×D and S[4.2]

v ∈ CM−(T+R−1)D×D are randomly
and independently generated from continuous distributions.
O[1]

v is a full rank square matrix used to orthonormalize the
product matrix [Nu,N]S[4]

v . Therefore, we have

UH
trHtrVtr

=
(
S[1]

u

HŨH

r(−t) + S[2]
u

H
NH

u

)(Ṽ t(−r)S[1]
v + NvS[2]

v

)

= S[2]
u

H
NH

u [Nu,N]S[4]
v O[1]

v S[2]
v

= S[2]
u

H
[ID,0D×M−(T+R−1)D]S[4]

v O[1]
v S[2]

v

= S[2]
u

H
S[4.1]

v O[1]
v S[2]

v .

As denoted in equations (30) and (38), the matrices S[2]
u ,

S[2]
v and O[1]

v are all full rank square matrices. Hence,

the rank of the product matrix S[2]
u

H
S[4.1]

v O[1]
v S[2]

v is equal
to the rank of S[4.1]

v . Since the entries of S[4.1]
v are ran-

domly and independently generated from continuous distri-
butions, S[4.1]

v has full rank with probability 1. In other
words, under the conditions in Part A, the rank con-
dition (i.e., rank(UH

trHtrVtr) = D) is satisfied almost
surely. Mathematically, we have Pr

(
rank(UH

trHtrVtr) =
D

∣
∣conditions in Part A are satisfied

)
≈ 1. In the follow-

ing analysis, we will use R to represent the statement
“rank(UH

trHtrVtr) = D”, use A to represent the statement
“conditions in Part A are satisfied”, and use B to represent
the statement “conditions in Part B are satisfied”.

Next, we will show that

Pr
(
R

∣
∣A,B

)
=

Pr
(
A

)
Pr

(
R

∣
∣A

)
Pr

(
B

∣
∣A,R

)

Pr
(
A,B

) ≈ 1. (39)

4We use orth(A) to denote an orthonormal basis of the matrix A.

Considering the conditions in Part B. We can find that the
channel matrices {Ht̃r̃| ∀t̃ �= t or r̃ �= r} do not appear
in the conditions in Part A and the rank condition (i.e.,
rank(UH

trHtrVtr) = D). This implies that the decoding and
precoding matrices that satisfy the conditions in Part A and
rank condition (i.e., rank(UH

trHtrVtr) = D) are independent
of the channel matrices in Part B. Therefore, the conditions
in Part B are independent of the conditions in Part A and the
rank condition (i.e., rank(UH

trHtrVtr) = D). In other words,
we have

Pr
(
B

∣
∣A,R

)
= Pr

(
B

)
, Pr

(
A,B

)
= Pr

(
A

)
Pr

(
B

)
. (40)

Substituting (40) into (39), we have Pr
(
R

∣
∣A,B

)
= Pr

(
R

∣
∣A

)
.

Since rank(UH
trHtrVtr) = D is satisfied almost surely under

the conditions in Part A, we can conclude that under IA
Conditions (5) and Specific Rank Conditions (7) (8), the Rank
Conditions (6) are satisfied with probability 1.

C. Proof of Lemma 4

Since UH
trUtr = ID , all the unit vectors that belong to

the subspace spanned by Utr can be expressed as ûtr =∑
d∈D αdU�d

tr , and all the unit vectors that belong to the
subspace spanned by Umr (m �= t) can be expressed as
ûmr =

∑
d∈D βdU�d

mr, where
∑

d∈D α2
d = 1 and

∑
d∈D β2

d =
1. Under the conditions in (15) in Lemma 4, we have

ûH
trûmrûH

mrûtr

= |
∑

d1∈D
αd1U

�d1
tr

H ∑

d2∈D
βd2U

�d2
mr |2

(b)

≤
∑

i∈D
α2

i

∑

j∈D
|

∑

d2∈D
βd2U

�j
tr

H
U�d2

mr |2

(c)
=

∑

j∈D
|

∑

d2∈D
βd2U

�j
tr

H
U�d2

mr |2

(d)

≤
∑

j∈D

∑

k∈D
β2

k

∑

l∈D
|U�j

tr

H
U�l

mr|2

(e)
=

∑

j∈D

∑

l∈D
|U�j

tr

H
U�l

mr|2 = Tr(UH
trUmrUH

mrUtr), (41)

where (b) and (d) are from the Cauchy-Schwarz inequality,
(c) and (e) are from the fact

∑
d∈D α2

d = 1 and
∑

d∈D β2
d =

1. (41) implies that the square of inner product of any
two vectors belonging to the subspaces spanned by different
decoding matrices Utr and Umr (m �= r) is less than
Tr(UH

trUmrUH
mrUtr).

We can show that if the rank of the matrix Ur (i.e.,
[U1r,U2r, . . . ,UTr]) is less than TD, there must be T vectors
{ûtr| t ∈ T } that belong to the same (T − 1)-dimensional
subspace. According to the minimum property of Regular
Simplex [34], if there exist T unit vectors that belong to the
same (T − 1)-dimensional subspace, then we have

∑

t∈T

∑

m∈T ,m>t

ûH
trûmrûH

mrûtr ≥ T

2(T − 1)
. (42)

Substituting (42) into (41), we have∑
t∈T

∑
m∈T ,m>t Tr(UH

trUmrUH
mrUtr) ≥ T

2(T−1) ,
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which contradicts (15). Therefore, the conditions
in (15) (see Lemma 4) are sufficient conditions of
rank(Ur) = TD ∀r (14b).

Similarly, we can obtain that the conditions in (16) are the
sufficient conditions of (14c).
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