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Pareto Optimality for the Single-Stream
Transmission in Multiuser Relay Networks
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Abstract— In this paper, we study Pareto optimality for
multiuser relay networks. We adopt single-stream transmission
and amplify-and-forward relays. First, with fixed relay process-
ing matrices and transmit and receive beamforming vectors,
we study Pareto optimality with respect to the power of the
transmitters. Based on the signal-to-noise-plus-interference ratio
(SINR) balancing analysis, we give a necessary and sufficient
condition for a set of SINRs to be Pareto optimal. Second, we
consider Pareto optimality with respect to the relay processing
matrices, where the power of the transmitters and the transmit
and receive beamforming vectors is fixed. Taking advantage of
multi-objective optimization analysis, we present a necessary and
sufficient condition for a set of SINRs to be Pareto optimal.
We also give a necessary condition to check whether Pareto opti-
mality is fulfilled. Finally, with fixed relay processing matrices,
we study Pareto optimality with respect to the transmit and
receive beamforming vectors. Simulations show that our proposed
algorithms outperform the compared schemes.

Index Terms— Pareto optimality, relay networks, SINR
balancing, beamforming.

I. INTRODUCTION

THE dramatic growth of the requirement of data rates and
the number of devices in communication networks has

motivated the study of the fifth generation (5G) networks [1].
In 5G cellular networks, the communication between users
can be accomplished via device to device (D2D) communi-
cation or with the help of relays when the direct D2D link
can’t provide satisfactory quality of service (QoS), instead
of using the base stations as in traditional cellular net-
works [2]. Several users may be served simultaneously by
a cluster of relays, resulting in a multiuser relay network.
In the multiuser relay network studied in this paper, we
focus on the Pareto optimality, which refers to a state of
allocation of resources where it is impossible to increase
the performance of one individual without decreasing that
of another.

When the power of the transmitters is the only variable
to be optimized, a popular approach to achieve Pareto opti-
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mality is the game-theoretic approach. The motivation of
using game theory to solve power control problem is dis-
cussed in [3]. In [4] and [5], power control among selfish
users is modeled as a noncooperative game where each
user aims at optimizing its own utility. Besides, pricing
techniques have been used to force selfish users to help
improve system performance, such as revenue [6], [7] and
social-welfare [8].

With fixed relay processing matrices, the system perfor-
mance is affected by the number of antennas at the trans-
mitter and the receiver [9]. If transmitters or receivers are
equipped with multiple antennas, beamforming vectors can be
optimized. Downlink beamforming for the multiuser multicell
network is optimized by using the uplink-downlink dual-
ity in [10]. For a multiple-input and single-output (MISO)
interference channel, when each receiver implements single-
user detection, [11] shows that single stream transmis-
sion can achieve all points on the Pareto boundary of
the rate region. Authors in [12] completely characterize
the Pareto optimal transmit beamforming vectors under the
assumption of single stream transmission. Besides, the rate
profile approach [13] can be utilized to compute Pareto
optimal beamforming vectors [14]. For Pareto optimality
in multiple-input and multiple-output (MIMO) interference
channels, authors in [15] characterize the Pareto optimal
boundary by deducing a necessary condition, which reduces
the search space. In [16] and [17], the transmit beamformers
and receive beamformers are alternatively optimized towards
Pareto optimality.

Fixing transmit and receive beamforming vectors, we con-
sider the optimization of the relay processing matrices. There
exist works of relay optimization for various objectives, such
as minimizing the total transmit power [18], [19], mini-
mizing the network error rate (NER) [20], satisfying the
zero-forcing (ZF) or minimum-mean-square-error (MMSE)
criteria [21], and so on. However, works of relay optimization
for Pareto optimality are scarce. A relevant work is [22].
Therein, by utilizing the rate profile approach and semidefinite
relaxation (SDR) method, the relay processing matrices are
updated iteratively to achieve non-decreasing rates for all the
users. When the iterative update converges, Pareto optimality
would be approximately obtained. Different from [22], we
now consider the relay optimization by taking advantage of
SINR balancing analysis, based on which we come up with
necessary and sufficient conditions for a set of SINRs to
be Pareto optimal. Although the relay optimization algorithm
in this paper also achieves Pareto optimality approximately,
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its performance is much better than that of [22], detailed in the
simulation section. Besides, the relay optimization algorithm
in this paper would result in a set of SINRs which is Pareto
optimal with respect to the power of the transmitters.

In this paper, we study the Pareto optimality for a multiuser
interference channel with relays. We first consider the Pareto
optimality with respect to the power of the transmitters based
on SINR balancing analysis [23]–[25] and come up with a nec-
essary and sufficient condition for a set of SINRs to be Pareto
optimal. Second, the optimization of relay processing matrices
is taken into consideration. We optimize the corresponding
SINR balancing problem by bisection search in which the
feasibility problem is solved by the feasible point pursuit
successive convex approximation (FPP-SCA) method [26].
Taking advantage of multi-objective optimization [27], we
give a necessary and sufficient condition for a set of SINRs
to be Pareto optimal with respect to the relay processing
matrices. Combining the FPP-SCA method and the necessary
and sufficient condition, we propose an algorithm towards
Pareto optimality. The relay processing matrices are optimized
through a cloud computing center connected to all relays. With
the central unit, we assume a system power constraint (the
same type of power constraint can be found in multiple-user
multiple-relay networks [28]–[30] and single-user multiple-
relay network [31]). Finally, we consider the Pareto optimality
with respect to the power of the transmitters and beamforming
vectors with fixed relay processing matrices. A necessary and
sufficient condition is proposed and distributed update scheme
of beamforming vectors is obtained.

Our main contributions are the necessary and sufficient
conditions for the transmit power and the relay processing
matrices to be on the Pareto optimal boundary of the SINR
region, given respectively in Theorems 1 and 2. Another
contribution is the relay optimization algorithm towards Pareto
optimality. While there are many works [23]–[25] on SINR
balancing in the literature, our goal is not just solving the
SINR balancing problem. The typical SINR balancing problem
considers a given set of SINRs, which may or may not be on
the boundary of the SINR region. In this work, we aim at
Pareto optimal SINRs. Moreover, instead of fixed SINRs, the
SINRs are updated in our proposed optimization algorithms.

Notations: Vectors and matrices are written in boldface
with matrices in capitals. All vectors are column vectors
unless otherwise specified. For a matrix A, we use AT , AH ,
tr(A), ‖A‖ and vec(A) to indicate the transpose, Hermitian
transpose, trace, 2-norm and vectorization of A respectively.
In denotes the identity matrix of size n (the subscript is omitted
when unnecessary). For square matrices Bi , i = 1, 2, . . . , n,
diag([B1, B2, . . . , Bn]) means stacking the matrix blocks into
the diagonal. A⊗B is the Kronecker product of A and B. The
inequality relation between two matrices with the same size,
e.g. A ≥ B, is component-wise. A � 0 and A � 0 mean A is
positive definite and positive semidefinite respectively.

II. SYSTEM MODEL

Consider the relay network with N transmitters, N receivers
and K relays, where source nodes Si ∀i ∈ N � {1, 2, . . . , N}
are transmitters, Rk ∀k ∈ K � {1, . . . , K } are relays and

destination nodes Di ∀i ∈ N are receivers. Assume that Di

only desires messages from Si and there is no direct link
between Si and Di ∀i . The number of transmit antennas at
Si , transmit/receive antennas at Rk and receive antennas at D j

are Nsi , Nrk and Nd j respectively. Without loss of generality,
we assume Nsi = Ns , Nrk = Nr , Nd j = Nd , ∀i, k, j . Here
∀i, k, j is the short form for ∀i ∈ N ,∀k ∈ K ,∀ j ∈ N .
In the following, we use ∀i,∀k,∀ j to stand for ∀i ∈ N ,∀k ∈
K ,∀ j ∈ N respectively, unless specified otherwise.

We assume single stream transmission at each transmitter.
Let xi denote the message transmitted by Si with E[xxH ] = I
and x = [x1, x2, . . . , xN ]T . The transmit signal of Si is si =√

pi xivi where pi and vi are the transmit power and the unit
transmit beamforming vector of message xi . The covariance
matrix of si is �i = pivi vH

i .
Relays work in the mode of time-division duplex. They

receive signals from the transmitters in the first time slot
and forward signals to the receivers in the second time slot.
Specifically, the received signal at Rk is

yrk =
N∑

i=1

Fki si + nrk

where Fki ∈ C
Nr ×Ns is the channel matrix between Si and Rk ,

and nrk ∼ CN (0, σ 2INr ) is the circularly symmetric complex
Gaussian noise vector at relay Rk .

Let Fi = [FT
1i , FT

2i , . . . , FT
K i ]T be the channel matrix

between Si and the relay cluster, and yR �
[yT

r1, yT
r2, . . . , yT

r K ]T the received signal of the relay cluster,
which can be expressed as

yR =
N∑

i=1

Fi si + nR

where nR = [nT
r1, nT

r2, . . . , nT
r K ]T is the concatenation of

noises and E[nRnH
R ] = σ 2INR with NR = K Nr .

In the second time slot, relay Rk multiplies yrk by Mk , and
then forwards Mkyrk , where Mk ∈ C

Nr ×Nr is the processing
matrix of Rk . The overall transmitted signal of the relay cluster
is xR = MyR with M = diag([M1, M2, . . . , MK ]). The
covariance of the signal transmitted at the relay cluster is

�R = M(

N∑

i=1

Fi�i FH
i + σ 2INR )MH .

The total transmit power of the relay cluster is

tr(�R) = tr(M(

N∑

i=1

Fi�i FH
i + σ 2INR )MH ). (1)

We assume the power constraint is on the whole system, i.e.,
the sum of the transmit power and the relay power is upper
limited by Psys ,

N∑

i=1

tr(�i ) + tr(�R)

=
N∑

i=1

pi +
N∑

i=1

vH
i FH

i MH MFi vi pi + σ 2tr(MMH )

≤ Psys . (2)
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Denote G j = [G j1, G j2, . . . , G j K ] with G j k ∈ C
Nd ×Nr

being the channel matrix between Rk and D j , the received
signal at D j is

y j =
N∑

i=1

H j isi + G j MnR + n j (3)

where H j i = G j MFi and n j ∼ CN (0, σ 2INd ) is the circularly
symmetric complex Gaussian noise vector at D j . It is obvious
that when M is fixed, the multiuser relay network can be
viewed as a multiuser one-hop interference channel, where
H j i is the equivalent channel matrix from Si to D j and
z j = G j MnR + n j is the equivalent noise received at D j .

Let ui ∈ C
Nd ×1 be the unit decoding vector at Di . The

received SINR at Di is

SINRi = hii pi∑
j �=i

hi j p j + σi
(4)

with hi j = |uH
i Hi j v j |2 and σi = σ 2uH

i (Gi MMH GH
i + I)ui .

We have σi > 0 ∀i since Gi MMH GH
i + I � 0 and receive

beamforming vector ui is nonzero. We assume hii �= 0 ∀i in
the following. This assumption is based on the fact that hii = 0
will result in zero SINR and zero rate, which means user i
doesn’t work. So we can omit user i and consider the network
with one fewer user. Actually, with Pareto optimality as the
goal and SINR balancing analysis as the tool, optimization
algorithms in our work will not return ui , vi and M causing
hii = 0, because hii = 0 will make the SINR balancing ratio
to be zero and zero can’t be the optimal value of the SINR
balancing problem (e.g., (5)).

III. PARETO OPTIMALITY WITH RESPECT TO THE

POWER OF THE TRANSMITTERS

In this section, we give a necessary and sufficient condition
for a SINR set to be Pareto optimal when the power of the
transmitters is the only variable to be controlled. The theorem
is based on SINR balancing analysis. So before stating the
theorem, we first talk about the SINR balancing problem.

The SINR balancing problem is usually formulated to
guarantee the fairness among users in the multiuser network,
such as the multiuser multicell network [24], [25] and the
multiuser downlink transmission in a single cell [23]. Denote
γi > 0 as the individual target SINR at Di , and consider the
following SINR balancing problem:

max
U,V,M,p

min
i∈N

SINRi

γi

s.t. ωT p ≤ Pmax (5)

where V = [v1, v2, . . . vN ] and U = [u1, u2, . . . , uN ] are
the matrices containing all the transmit and receive beam-
forming vectors respectively, and p = [p1, p2, . . . , pN ]T is
the power vector composed of the power at all transmitters.
We have assumed the system power constraint (2), so we
make the constraint of Problem (5) equivalent to (2) by letting
ω = [ω1, ω2, . . . , ωN ]T with ωi = 1 + vH

i FH
i MH MFi vi and

Pmax = Psys − σ 2tr(MMH ). Notice that M should be chosen
to satisfy Psys − σ 2tr(MMH ) > 0.

In this section, we fix U, V and M, and deal with the
optimization problem with respect to p:

max
p

min
i∈N

SINRi

γi

s.t. ωT p ≤ Pmax . (6)

Lemma 1: Denote α∗ as the optimal value of Problem (6),
then the solution has the following properties,

SINRi

γi
= α∗, ∀i (7)

ωT p = Pmax . (8)

The proof of this lemma is in the appendix.
Let D = diag([γ1/h11, . . . , γN /hN N ]), σ = [σ1, . . . , σN ]T

and H̄I be an N × N matrix whose (i j)th element is hi j if
i �= j or 0 if i = j . Based on Lemma 1, the power vector p
satisfies the following eigensystem

�pext = 1

α∗ pext (9)

where pext = [pT , 1]T and

� =
⎡

⎣
DH̄I Dσ

1

Pmax
ωT DH̄I

1

Pmax
ωT Dσ

⎤

⎦ . (10)

The detailed derivation of (9) is in the appendix. We notice
that � is a nonnegative matrix and 1

α∗ is a singular value
of �. Based on the Perron-Frobenius theory (see, e.g. [32]),
the spectral radius of �, denoted as ρ(�), is positive and the
associated singular vector, denoted as x, is also positive, i.e.,
x ≥ 0. On the other hand, according to Theorem 1 of [33], it is
possible to choose x ≥ 0 and ρ(�) is the only singular value
whose associated singular vector is positive. This indicates that
there is only one solution of (9) considering that pext and α∗
are positive. Hence, α∗ = 1/ρ(�).

Based on the SINR balancing analysis above, we have a
necessary and sufficient condition for a set of SINRs to be
Pareto optimal.

Theorem 1: For given U, V and M, a set of SINRs
{γ1, . . . , γN } is Pareto optimal under the constraint
ωT p ≤ Pmax , if and only if the optimal value of its
associated SINR balancing problem1 Problem (6) satisfies
α∗ = 1, which is equivalent to

ρ(H̄I D + 1

Pmax
σωT D) = 1. (11)

The proof is in the appendix.

IV. PARETO OPTIMALITY WITH RESPECT TO

THE RELAY PROCESSING MATRICES

Based on the Pareto optimality analysis with respect to the
power, we now take Pareto optimality with respect to the
relay processing matrices into consideration. In this section,
we optimize the relay processing matrices with fixed transmit
power, transmit beamforming vectors and receive beamform-
ing vectors.

1For a set of SINRs, its associated SINR balancing problem refers to the
SINR balancing problem with this set of SINRs as the SINR requirement.
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For given p, U and V, the SINR balancing Problem (5)
becomes

max
M

min
i∈N

SINRi

γi

s.t. ωT p ≤ Pmax (12)

where the constraint is also affected by M since
ωi = 1 + vH

i FH
i MH MFi vi .

Lemma 2: Denote α∗ as the optimal value associated with
the optimal solution M∗ of Problem (12) and ω∗ as the weight
calculated with M∗, i.e., ω∗

i = 1+vH
i FH

i (M∗)H M∗Fi vi . Then
the constraint holds with equality when (12) is solved, i.e.,

(ω∗)T p = Pmax . (13)

The proof of Lemma 2 is in the appendix. Based on
Lemma 2 and the fact that SINRi

γi
> 0 ∀i , we rewrite

Problem (12) as

min
M

max
i∈N

γi

SINRi

s.t. ωT p = Pmax . (14)

In the following, we first reshape Problem (14) and then
talk about the method to solve it.

A. Problem Transformation

Following the same steps in Section IV.A of [22],
we reformulate the SINR expression (4) as

SINRi = pimH hii hH
ii m

∑
j �=i p j mH hi j hH

i j m + mH Ei m + σ 2

where m = [vec(M1)
T , . . . , vec(MK )T ]T , hi j = [(vT

j FT
1 j ) ⊗

(uH
i Gi1), . . . , (vT

j FT
K j ) ⊗ (uH

i Gi K )]H and Ei = σ 2diag([I ⊗
(GH

i1ui uH
i Gi1), . . . , I ⊗ (GH

i K ui uH
i Gi K )]).

Similarly, we rewrite the constraint ωT p = Pmax as
mH Qsumm = 1 with Qi = diag([(F1ivi vH

i FH
1i )

T ⊗
I, . . . , (FK ivi vH

i FH
K i)

T ⊗ I]) and Qsum =
1

Pmax −∑N
i=1 pi

(
∑N

i=1 piQi + σ 2I). Notice that the power of

transmitters should be chosen such that Pmax − ∑N
i=1 pi > 0.

The objective of Problem (14) is equivalent to

min
m

max
i∈N

γi

pi

∑
j �=i

p j mH hi j hH
i j m + mH Ei m + σ 2

mH hii hH
ii m

. (15)

Let y = Q
1
2
summ, the optimization problem becomes

min
y

max
i∈N

γi yH Ai y
yH Ci y

s.t. yH y = 1 (16)

where Ai = 1
σ 2 Q

− 1
2

sum(
∑
j �=i

p j hi j hH
i j + Ei )Q

− 1
2

sum + I and Ci =
pi
σ 2 Q

− 1
2

sumhii hH
ii Q

− 1
2

sum .

Notice that for any y �= 0, we can always scale it to
satisfy the norm-one constraint without affecting the value of
objective function. So we replace the norm-one constraint with
y �= 0 when solving Problem (16).

We introduce a new variable t . Problem (16) is equivalent to

min
y �=0,t

t

s.t.
γi yH Ai y
yH Ci y

≤ t ∀i. (17)

We utilize the bisection search method to find the optimal
solution of Problem (17). Let [a, b] be the search interval
containing the optimal value t∗. If t0 is a feasible solution,
then the following problem is feasible:

find
y �=0

y

s.t.
γi yH Ai y
yH Ci y

≤ t0 ∀i. (18)

For any y �= 0, we have yH Ai y > 0 and yH Ci y ≥ 0
since Ai � 0 and Ci � 0. Zero denominator fails the
inequality constraints of Problem (18), so yH Ci y �= 0, namely
yH Ci y > 0 ∀i . Multiply both sides of the constraint by
yH Ci y and rearrange the terms, we have an equivalent form
of Problem (18), i.e.,

find
y �=0

y

s.t. yH (Ai − t0
γi

Ci )y ≤ 0 ∀i (19)

where the constraints yH Ci y �= 0 ∀i are omitted. This is
because given y �= 0, if yH Ci y = 0 for some i , then
yH Ai y ≤ 0 which contradicts to Ai � 0. Problem (19)
is a quadratically constrained feasibility problem, which is
NP-hard in general.

B. FPP-SCA Method to Solve Problem (19)

Given that finding a feasible solution to Problem (19) is
NP-hard, we introduce FPP-SCA, which combines the convex
approximation with utilization of slack penalty [26]. This
method can find a feasible solution to Problem (19) with high
probability without knowing an initial feasible point when it
is feasible.

Problem (19) has N inequality constraints, thus we need
N slack variables, si ∀i ∈ N . Using the slack penalty
as the objective function, we have the relaxed problem of
Problem (19), i.e.,

min
y �=0,{si }

N∑

i=1

si

s.t. yH (Ai − t0
γi

Ci )y − si ≤ 0 ∀i

si ≥ 0 ∀i. (20)

The penalty
∑N

i=1 si is to push the slack variables towards
zero. We can also use other suitable penalty functions.

For a positive semidefinite matrix C, we have (x − z)H C
(x − z) ≥ 0 for any x and z. Expanding the Left Hand
Side (LHS) results in xH Cx − zH Cx − xH Cz + zH Cz ≥ 0.
Given any complex number a, the real part Re{a} =
(a + a H )/2. Hence we have the following linear restriction:

xH Cx ≥ 2Re{zH Cx} − zH Cz. (21)
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Algorithm 1 FPP-SCA Method to Find a Feasible Solution
of Problem (19)
1: Set the tolerance criterion ε and the iteration number n = 0;
2: Generate a random point z(1) ∈ C

K N2
k ×1;

3: do
4: n = n + 1, z = z(n);
5: Solve the following approximation problem:

min
y �=0,{si }

N∑

i=1

si

s.t. yH Ai y−2
t0
γi

Re{zH Ci y} ≤ si − t0
γi

zH Ci z ∀i

si ≥ 0 ∀i ; (22)

6: Denote y∗ as the optimal solution and set z(n+1) = y∗;
7: while |z(n) − z(n+1)| ≥ ε
8: if (y∗)H (Ai − t0

γi
Ci )y∗ ≤ 0 ∀i then

9: Problem (19) has a feasible solution y∗;
10: else
11: Conclude that Problem (19) is not feasible.
12: end if

Based on (21) and the fact that Ci ∀i are positive semidef-
inite, we have Algorithm 1 to solve Problem (19).

Setting si = 0 ∀i in Problem (22), we have

find
y �=0

y

s.t. yH Ai y − 2
t0
γi

Re{zH Ci y} ≤ − t0
γi

zH Ci z ∀i (23)

which is the result of applying (21) to the terms containing Ci

in Problem (19).
The meaning of linear approximation (21) lies in turning

Problem (19) from NP-hard to convex. The application of
slack variables is meaningful in two aspects. First, apply-
ing (21) to the terms containing Ci tightens the inequality con-
straint of Problem (19). Thus Problem (23) may be infeasible
although Problem (19) is feasible. Adding the slack variables
can avoid this risk since Problem (22) is always feasible.
Second, solving Problem (23) by the SCA approach requires
a feasible initial point which is NP-hard to find. Adding slack
variables relieves this requirement and results in an easier start
for the algorithm.

To run Algorithm 1, matrices Ai and Ci ∀i need to be
calculated. Each relay needs to know all the channel matrices
of the links connected with it, i.e., the channel matrices from
all the transmitters to this relay and the channel matrices
from this relay to all the receivers. Relays also need to know
the transmit power and the beamforming vectors of all the
transmitters as well as all the receive beamforming vectors.
Then they send all the information to the cloud computing
center connected to the relays. Algorithm 1 is convergent since
it results in nonincreasing slack penalty and the penalty has
zero as its lower bound. To be specific, we denote the optimal
slack variables of the nth iteration as s(n)

i ∀i . Since z(n+1) = y∗

is the optimal solution, it satisfies

(z(n+1))H Ai z(n+1) − 2
t0
γi

Re{zH Ci z(n+1)} + t0
γi

zH Ci z

≤ s(n)
i , ∀i (24)

with z = z(n). Using (21), we have

(z(n+1))H Ai z(n+1) − t0
γi

(z(n+1))H Ci z(n+1) ≤ s(n)
i , ∀i. (25)

At the (n + 1)th iteration, we set z = z(n+1). With the
inequality (25), it is easy to verify that y = z(n+1) and
si = s(n)

i ∀i satisfy the constraints. This is to say, the optimal
solution of the nth iteration is a feasible solution of the
(n +1)th iteration. If we denote the optimal slack variables of
the (n + 1)th solution as s(n+1)

i ∀i , then
∑

i s(n+1)
i ≤ ∑

i s(n)
i .

C. Pareto Optimality Analysis Based on Multi-Objective
Optimization

FPP-SCA can find a solution of Problem (19) with high
probability when it is feasible. In this subsection, we try to
improve the probability by taking advantage of multi-objective
optimization. Denote t∗ as the optimal value of Problem (17).
According to Theorem 1, if a set of SINRs is Pareto optimal,
then the optimal value of the associated SINR balancing
problem (17) has to be t∗ = 1. Aiming at Pareto optimality,
we study Problem (19) with t0 = 1 in this subsection. In other
words, when mentioning Problem (19) in this subsection, we
refer to Problem (19) with t0 = 1, unless specified otherwise.

A set of SINRs {γ1, . . . , γN } is achievable if and only if its
associated feasibility problem (19) is feasible. Denote fi (y) =
yH (Ai − 1

γi
Ci )y. Problem (19) is equivalent to find a nonzero

vector y such that fi (y) ≤ 0 ∀i .
The definition of Pareto optimality is that there is no way

to increase one SINR, say γi , without deceasing another SINR
γ j , j �= i . Therefore, if γ = [γ1, . . . , γN ]T is Pareto optimal,
any γ ′ ≥ γ with γ ′ �= γ is not achievable, i.e., the feasibility
problem associated with γ ′ is infeasible. Based on this idea,
we have the following theorem on Pareto optimality.

Theorem 2: For given U, V and p, a set of SINRs
{γ1, . . . , γN } is Pareto optimal under the constraint ωT p ≤
Pmax , if and only if the solution of its associated feasibility
problem (19) with t0 = 1 satisfies that

i) y makes all the constraints active, i.e., fi (y) = 0 ∀i ,
and

ii) there does not exist a y′ such that f(y′) ≤ f(y) and
f(y′) �= f(y).

The proof is in the appendix.
The second condition in Theorem 2 is equivalent to that y

achieves Pareto optimality of f(y). The global Pareto optimal-
ity is NP-hard to find since fi (y) ∀i are nonconvex. Instead,
we try to find a locally Pareto optimal solution y, i.e., within
a neighborhood of y there does not exist a point y′ �= y with
f(y′) ≤ f(y) and f(y′) �= f(y).

Denote the vector r ∈ R
2K N2

k ×1 as r = (Re{y}, Im{y}).
Hence

y j = r j + ιr j+K N2
k
, j = 1, . . . , K N2

k . (26)
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Here ι is the imaginary unit. The function vector f(y) =
f(Re{y} + Im{y}ι), and we use f(r) to stand for f(Re{y} +
Im{y}ι) in the following. Functions fi (r) ∀i are continuously
differentiable. The Jacobian of f at r is denoted by Jf(r), an
N × 2K N2

k matrix with entries

(Jf(r))i j = ∂ fi

∂r j
(r).

A necessary condition for r to be locally Pareto optimal is

span(Jf(r)) ∩ (−R++)N = ∅ (27)

where span(Jf(r)) denotes the column space spanned by
matrix Jf(r) (see e.g. [27]).

If r does not satisfy (27), there exists a direction d ∈ C

satisfying Jf(r)d ∈ (−R++)N . A reasonable choice is to
minimizing the largest change across the set of objectives,
i.e., to reduce the objectives as much as possible [34].

min
β,d

β + 1

2
‖d‖2

s.t. Jf(r)d ≤ β1. (28)

After finding a descent direction, we can apply the steepest
descent method and update r as

r = rc + step ∗ d (29)

where rc is the current solution and step is an appropriately
chosen stepsize.

D. Algorithm Towards Pareto Optimality

In this subsection, we combine the FPP-SCA method and
the multi-objective analysis, and come up with the algo-
rithm for relay processing matrices towards the local Pareto
optimality.

In Algorithm 2, Step 3-7 utilize the bisection search method
and during each search the feasibility problem is solved by
FPP-SCA method. Step 17-28 are based on multi-objective
analysis. To run Algorithm 2, each relay needs to know all
the channel matrices of the links connected with it, i.e., the
channel matrices from all the transmitters to this relay and the
channel matrices from this relay to all the receivers. Relays
also need to know the transmit power and the beamforming
vectors of all the transmitters as well as all the receive
beamforming vectors. Then they send all the information to
the computing center connected to the relays, which then runs
Algorithm 2 and obtains the relay processing matrices towards
Pareto optimality.

This algorithm results in a relay vector and a set of
SINRs. The resultant SINR set {γ ∗

1 , . . . , γ ∗
N } is approximately

locally Pareto optimal with respect to the relay processing
matrices, because (27) is a necessary condition for local Pareto
optimality. If we can replace it with a necessary and sufficient
condition, then Pareto optimality can be achieved.

Although the resultant SINR set achieves the local Pareto
optimality with respect to the relay processing matrices
approximately, it satisfies the necessary and sufficient condi-
tion stated in Theorem 1. This is to say, the update of relay
processing matrices by Algorithm 2 can always keep the set

Algorithm 2 Relay Optimization Towards Pareto Optimality
1: Set the tolerance criterion ε;
2: Set the bisection search interval [a,b];
3: Initialize a set of SINRs {γ1, .., γN };
4: while |a − b| ≥ ε do
5: Set t0 = a+b

2 ;
6: Solve Problem (19) by Algorithm 1;
7: if Problem (19) is feasible with solution y then
8: set b = t0;
9: else Problem (19) is infeasible

10: set a = t0;
11: end if
12: end while
13: if t > 1 then
14: Conclude that the initial set of SINRs is unachievable;
15: end if
16: Set the current SINR of user i as 1

t γi ;
17: for i = 1, . . . , N do
18: if fi (y) < 0 then
19: Adapt γi such that fi (y) = 0;
20: end if
21: end for
22: Set r = (Re{y}, Im{y}) and solve Problem (28);
23: if Problem (28) is infeasible then
24: Conclude the current set of SINRs is Pareto optimal;
25: else Problem (28) is feasible with solution d
26: Update r by (29) until Problem (28) is infeasible;
27: Set y by (26) and go to Step 17;
28: end if
29: Normalize y and return m = Q

− 1
2

sumy as the relay vector.

of SINRs on the Pareto optimal boundary. The details are in
the following theorem.

Theorem 3: With given transmit beamforming vectors and
receive beamforming vectors, the relay processing matrices
and the SINR set resulting from Algorithm 2 satisfy (11). The
resultant SINR set is on the Pareto optimal boundary of the
SINR region with respect to the power.

The proof is in the appendix.
In Step 22-28 of Algorithm 2, we utilize (27) to check

whether the set achieves Pareto optimality. If not, we update r
by (28) and (29). However, such an update method usually
converges very slowly. So we would rather use (27) as a cri-
terion to check whether the Pareto optimality is satisfied than
as a computing method in practice. Even without Step 22-28,
the resultant SINR set is also on the Pareto optimal boundary
since fi = 0,∀ i hold. Besides, given a set of SINRs,
if the purpose is to check whether it is feasible, we can stop
at Step 15.

V. PARETO OPTIMALITY WITH RESPECT TO THE RECEIVE

AND TRANSMIT BEAMFORMING VECTORS

In this section, we fix the relay processing matrices
and consider Pareto optimality with respect to the receive
and transmit beamforming vectors. We study the following
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optimization problem:

max
U,V,p

min
i∈N

SINRi

γi

s.t. ωT p ≤ Pmax . (30)

Based on the analysis in Section III, the optimal value of the
SINR balancing problem is α∗ = 1/ρ(�) for a certain U
and V. Hence we denote the optimal value of Problem (30)
as α∗(U, V).

A set of SINR {γ1, . . . , γN } is Pareto optimal if and only if
max
U,V

α∗(U, V) = 1. In order to achieve the Pareto optimality,

we first need to find the method to solve max
U,V

α∗(U, V) or

equivalently min
U,V

ρ(�). Here �(U, V) is a function of U and V

and calculated as (10).

A. Optimization of Receive Beamforming Vectors

Recall that ρ(�) = ρ
(
D(H̄I + 1

Pmax
σωT )

)
from Section III.

Denote B = D(H̄I + 1
Pmax

σωT ), so ρ(�) = ρ(B) and the

(i, j)th element of B is γi
hii

(hi j + σiω j
Pmax

) if i �= j and γi
hii

σiωi
Pmax

if i = j . The Collatz-Wielandt formula [32] asserts that for
any N × N nonnegative matrix A,

ρ(A) = min
x>0

max
i∈N

(Ax)i

xi
. (31)

Fixing the transmit vectors V and only considering the
optimization of U, we have

min
U

ρ(�) = min
x>0,U

max
i∈N

(Bx)i

xi

= min
x>0,U

max
i∈N

γi

hii xi

(∑

j �=i

hi j x j + σi

Pmax

∑

j∈N

ω j x j
)

(a)= min
x>0,U

max
i∈N

γi

hii xi

(∑

j �=i

hi j x j + σi
)

= min
x>0,U

max
i∈N

γi uH
i Ji ui

xi uH
i Hii vi vH

i HH
ii ui

(32)

where Ji = ∑
j �=i

x j Hi j v j vH
j HH

i j + σ 2(Gi MMH GH
i + I) and

(a) is because we can always set
∑

j∈N ω j x j = Pmax since
scaling x does not affect the result according to (31).

Optimizing x and U simultaneously is very difficult, so we
optimize them iteratively. For a certain x > 0 and a certain i ,

min
U

γi uH
i Ji ui

xi uH
i Hii vivH

i HH
ii ui

= 1/
(

max
ui

xi uH
i Hii vi vH

i HH
ii ui

γi uH
i Ji ui

)

(b)= γi

xi vH
i HH

ii J−1
i Hii vi

(33)

where (b) is because the optimal solution is

ui = J−1
i Hii vi

‖J−1
i Hii vi‖

. (34)

The solution ui is a direct result from the fact that for any
vector a and matrix A � 0,

xH aaH x
xH Ax

≤ aH A−1a (35)

where the equality holds if and only if x = cA−1a with c
being a nonzero real scalar.

For a certain U, Problem (32) is to find a x such that

ρ(�) = min
x>0

max
i∈N

(Bx)i

xi
. (36)

This is fulfilled by the singular vector associated with
ρ(B) = ρ(�). In detail, if �pext = ρ(�)pext with the last
element pext scaled to 1, we stack the first N elements in p.
Then it is easy to check that Bp = ρ(B)p. Therefore p is the
optimal solution of Problem (32) when U is fixed.

To update the receive beamforming vector, each receiver
needs to know the transmit beamforming vectors of all the
transmitters, the relay processing matrices, all the channel
matrices from the transmitters to the relays and all the channel
matrices from the relays to this receiver.

B. Optimization of Transmit Beamforming Vectors

To optimize the transmit beamforming vectors, we first
reformulate ρ(�). Recall that ρ(A) = ρ(AT ) and ρ(AB) =
ρ(BA) for any matrices A and B, we have

ρ(�) = ρ
(
D(H̄T

I + 1

Pmax
ωσ T )

)
.

Denote B̃ = D(H̄T
I + 1

Pmax
ωσ T ). The i j th element of B̃ is

γi
hii

(h j i + σ jωi
Pmax

) if i �= j and γi
hii

σiωi
Pmax

if i = j . Fixing U, we
optimize V and x̃ iteratively. For a certain x̃ and a certain i ,
utilizing (31), we have

min
V

ρ(�) = min
V

(B̃x̃)i

x̃i

= min
V

γi

hii x̃i

(∑

j �=i

h j i x̃ j + ωi

Pmax

∑

j∈N

σ j x̃ j
)

(c)= min
V

γi

hii x̃i

(∑

j �=i

h j i x̃ j + ωi
)

(d)= γi

x̃i uH
i Hii J̃

−1
i HH

ii ui
(37)

where J̃i = ∑
j �=i x̃ j HH

j i u j uH
j H j i + FH

i MH MFi + I. (c) is

because we can set
∑

j∈N σ j x̃ j = Pmax without affecting the

optimal value. (d) results from (35) and the optimal solution is

vi = J̃−1
i HH

ii ui

‖J̃−1
i HH

ii ui‖
. (38)

For fixed V, as analyzed in last subsection, we choose x̃ to
be the singular vector associated with ρ(B̃).

To update the transmit beamforming vector, each transmit-
ter needs to know the receive beamforming vectors of all
the receivers, the relay processing matrices, all the channel
matrices from the relays to the receivers and all the channel
matrices from this transmitter to the relays.
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Fig. 1. Relay optimization.

After updating the transmit and receive beamforming vec-
tors, we calculate the current ρ(�) and set the new SINR as
γi/ρ(�), ∀i . Then the necessary and sufficient condition is
satisfied, i.e., with the new SINR max

U,V
α∗(U, V) = 1.

VI. SIMULATION

In this section, we present the numerical result to ana-
lyze the performance of our proposed algorithm. All the
channel coefficients are independent and identically distrib-
uted (i.i.d.) zero mean unit variance circularly symmetric com-
plex Gaussian. The noise power for all nodes is normalized
to unit. All the simulation are conducted for the three-user
network with two relays, i.e., N = 3, K = 2.

A. Optimization of Relay Processing Matrices

First, we focus on the performance of Algorithm 2, the
algorithm to optimize relay processing matrices towards Pareto
optimality. We assume all nodes are equipped with two anten-
nas, i.e., Ns = Nd = Nr = 2. We plot the simulation results
in Fig. 1.

In Fig. 1, the horizontal axis is the total system power in dB.
The vertical axis is the sum rate of all the users. With an
initial set of SINRs, random beamformers and relay matrices,
we optimize the power of users and calculate the sum rate.
The obtained plot is the plot of random scheme. If we apply
step 17-28 in Algorithm 2 to the initial set of SINRs, we
get the plot of steepest descent update, which is the result of
steepest descent update based on a random initialization. The
plot of Algorithm 2 without steepest descent update results
from bisection search without the steepest descent update, i.e.,
all the steps before 21. The plot of Algorithm 2 is the final
result of the whole Algorithm 2.

We can see the plot of Algorithm 2 without steepest descent
update is very close to that of Algorithm 2. So in practice we
can omit step 22-28. These two plots outperform all the other
plots in the figure. Besides, the plot of the steepest descent
update is not monotonically increasing. This is because the
steepest descent method starts with random initialization and
may end at a local optimal point.

B. Joint Optimization

Joint optimization refers to updating the beamformers by
(34) and (38) and the relay matrices by Algorithm 2 iteratively

Fig. 2. Convergence of joint optimization.

Fig. 3. Joint optimization.

until converging. The simulation of this part is conducted for
the case with two antennas at all the nodes, i.e., Ns = Nd =
Nr = 2. We first give examples to show the convergence,
where the total system power is Psys = 20(dB).

In Fig. 2, the vertical axis is rate normalized to the rate at
convergence. One iteration means one update of the beam-
formers and the relay matrices. The three plots show the
convergence performances for 3 users with 2 relays, 10 users
with 5 relays and 20 users with 12 relays respectively. We see
that the further gain is less than 5% beyond 15 iterations for
all the three cases.

In Fig. 3, the horizontal axis is the total system power
Psys in dB. The vertical axis is the sum rate of all the users
over one time slot. The plot of random scheme is obtained
by choosing the relay processing matrices and beamforming
vectors randomly and setting the power as (9). The red plot
shows the result of Algorithm 2. The plot of beamformer
optimization refers to updating beamformers by (34) and (38)
iteratively until converging. Combining Algorithm 2 and the
beamforming update, we have the plot of joint optimization.
Joint optimization outperforms the others. To balance the
computation complexity and performance, we can run the joint
optimization within a limited number of iterations considering
that the improvement of the sum rate is small after 15 iterations
in Fig. 2.

We also plot the performance of joint optimization with
imperfect CSI. The difference between the accurate channel
coefficient and estimated channel coefficient is modelled as
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a complex Gaussian variable with zero mean and 1/16 vari-
ance. Notice that both joint optimization with perfect CSI and
imperfect CSI outperform all the other compared schemes.

VII. CONCLUSIONS

In this paper, we study how to check and obtain a Pareto
optimal set of SINRs in a multiuser relay network. We give
various necessary and sufficient conditions for a set of SINRs
to be Pareto optimal. Specifically, we deal with the Pareto
optimality problem with respect to the power, the relay
processing matrices and the beamforming vectors respectively,
by taking advantage of SINR balancing analysis. One key
optimization work of this paper is the Pareto optimality with
respect to the relay processing matrices, where FPP-SCA and
multi-objective analysis are used to calculate a set of SINRs
which is approximately Pareto optimal. Simulations show that
our proposed algorithms outperform the compared schemes.
We have developed these results based on the assumption of
single stream transmission. We will consider generalizing the
results to multi-stream transmission in the future.

APPENDIX A
PROOF OF LEMMA 1

With α∗ as the optimal value of Problem (6), we have

SINRi

γi
≥ α∗ ∀i (39)

ωT p ≤ Pmax (40)

and at least one equality holds in (39). Otherwise, if SINRi
γi

>

α∗ ∀i , then we can find a bigger α∗ while (39) and (40) are
satisfied, which contradicts with the optimality of α∗.

First, we prove SINRi
γi

= α∗ ∀i by contradiction. Suppose
SINRi

γi
> α∗ for some i , we can always decrease pi such that

SINRi
γi

> α∗ is still satisfied. Decreasing pi results in increasing

of SINR j ,∀ j �= i . Consequently,
SINR j

γ j
> α∗ ∀ j . Moreover,

since p j ,∀ j �= i don’t change and pi decreases, the power
constraint ωT p ≤ Pmax is still satisfied. As analyzed above,
a bigger optimal value can be found and α∗ is not optimal.
Hence there doesn’t exist any i with SINRi

γi
> α∗.

Second, we prove ωT p = Pmax by contradiction. Suppose
ωT p < Pmax . Let Psum = ωT p and a = Pmax

Psum
, then Psum <

Pmax and a > 1. Set ap as the new power vector, we have
ωT (ap) = Pmax . The new SINR of user i is

SINR′
i = hii pi a∑

j �=i hi j p j a + σi

= hii pi∑
j �=i hi j p j + σi

1
a

>
hii pi∑

j �=i hi j p j + σi

= SINRi , ∀i. (41)

Consequently,
SINR′

i
γi

> α∗ ∀i , which means α∗ is not optimal.
Thus the assumption ωT p < Pmax can’t hold. We have
ωT p = Pmax .

APPENDIX B
DERIVATION OF (9)

Substituting the SINR expression (4) into (7), we can

rewrite as 1
α∗ p = DH̄I p + Dσ . Multiplying both sides

by ωT and dividing both sides by Pmax , we have 1
α∗ =

1
Pmax

ωT DH̄I p + 1
Pmax

ωT Dσ . Combining the above two equa-

tions, we obtain (9).

APPENDIX C
PROOF OF THEOREM 1

Before proving the above theorem, we give two lemmas that
are needed in the proof.

Lemma 3: The optimal value of Problem (6) α∗ can be
expressed as α∗ = 1/ρ(H̄I D + 1

Pmax
σωT D).

Proof: Based on the mathematical rule that for any
A ∈ R

m×n and B ∈ R
n×m , ρ(AB) = ρ(BA), we can rewrite

the spectral radius of � as

ρ(�) = ρ(

[
D

1
Pmax

ωT D

] [
H̄I σ

]
)

= ρ(
[

H̄I σ
] [

D
1

Pmax
ωT D

]
). (42)

Hence α∗ = 1/ρ(�) = 1/ρ(H̄I D + 1
Pmax

σωT D).
Lemma 4: Denote fρ(γ ) = ρ

(
(H̄I + 1

Pmax
σωT )Dh�

)
as a

function about SINR vector γ � [γ1, . . . , γN ]T with Dh =
diag([1/h11, . . . , 1/hN N ]) and � = diag(γ ). Then fρ(γ ) is
strictly increasing in γ , i.e., for any two SINR vectors γ and
γ ′ with γ ′ ≥ γ and γ ′ �= γ , fρ(γ ′) > fρ(γ ).

Proof: We first introduce the definition of the irreducible
matrix (see, e.g. [35]).

Definition 1: An n × n nonnegative matrix A is irreducible
if for every pair i, j of its index set, there exists a positive
integer m � m(i, j) such that Am

i j > 0.

In the definition, m(i, j) depends on the index pair i, j and
Am

ij refers to the (i, j)th element of Am , where Am is the
multiplication of m A′s. Every positive matrix is irreducible
according to [32]. Next we prove Lemma 4. It is obvious
that T � (H̄I + 1

Pmax
σωT )Dh is a positive matrix. Hence it

is irreducible. According to the corollary (3.29) in Chapter 1
of [32], if 0 ≤ A ≤ B, where A is irreducible and A �= B,
then ρ(A) < ρ(B). Suppose γ is an arbitrary SINR vector and
γ ′ is another arbitrary SINR vector. If γ ′ ≥ γ and γ ′ �= γ ,
then 0 ≤ T� ≤ T�′ and T� �= T�′. Consequently ρ(T�) <
ρ(T�′), i.e., fρ(γ ′) > fρ(γ ).

Now we start to prove Theorem 1. For given U, V and
M, it is self-explanatory that a set of SINRs {γ1, . . . , γN } is
achievable if and only if the optimal value of its associated
SINR balancing problem (6) satisfies α∗ ≥ 1. With this result,
we prove α∗ = 1 by two parts.

i) Only if. Given that a set of SINRs {γ1, . . . , γN } is Pareto
optimal, we prove the only if part by contradiction.
Suppose α∗ > 1, then we can always set a new
SINR requirement γ̃i as γ̃i = α∗γi ∀i . With the new
set of SINRs, the optimal value of (6) is α̃∗ = 1.
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This indicates the new SINR requirement is achiev-
able. Furthermore, {γ̃1, . . . , γ̃N } outperforms the original
SINR requirement {γ1, . . . , γN }, which contradicts the
definition of Pareto optimality. Hence if {γ1, . . . , γN } is
Pareto optimal, the optimal value of the corresponding
SINR balancing problem (6) has to be α∗ = 1, i.e.,
ρ(H̄I D + 1

Pmax
σωT D) = 1 according to Lemma 3.

ii) If. Given that a set of SINRs {γ1, . . . , γN } satisfies
ρ(H̄I D + 1

Pmax
σωT D) = 1, i.e., fρ(γ ) = 1. Suppose

there exists some γ ′ such that γ ′ ≥ γ and γ ′ �= γ . Then
according to Lemma 4, fρ(γ ′) > fρ(γ ), i.e., ρ

(
(H̄I +

1
Pmax

σωT )Dh�′) > 1 where �′ = diag(γ ′). This results
in α∗ < 1, which means that the new SINR vector
γ ′ is not achievable. Hence there doesn’t exist a set
of SINRs outperforming {γ1, . . . , γN }. We can conclude
that {γ1, . . . , γN } satisfying ρ(H̄I D + 1

Pmax
σωT D) = 1

is Pareto optimal.

APPENDIX D
PROOF OF LEMMA 2

We prove (13) by contradiction. Suppose (ω∗)T p =∑
i vH

i FH
i (M∗)H M∗Fi vi pi < Pmax . Set βM∗ as the new M,

where β =
√

Pmax
(ω∗)T p

> 1. Recall the SINR expression (4) and

write it as a function of M since it is the only variable consid-
ered here. We can check that all the SINRs are increased, i.e.,

SINRi (βM∗)

= |uH
i Gi M∗Fi vi |2 pi

∑
j �=i

|uH
i Gi M∗F j v j |2 p j + σ 2uH

i Gi M∗(M∗)H GH
i ui + σ 2

β2

> SINRi (M∗). (43)

Since SINRi (βM∗) > SINRi (M∗) ∀i and βM∗ satisfies the
power constraint, βM∗ results in a bigger optimal value. Thus
α∗ is not optimal. Consequently, the assumption (ω∗)T p =∑

i (1 + vH
i FH

i (M∗)H M∗Fi vi )pi < Pmax can’t hold. We have

ωT p = Pmax when (12) is solved.

APPENDIX E
PROOF OF THEOREM 2

We prove the above theorem by looking at the cases when
it is possible to increase an SINR without decreasing another.

i) There is at least one inactive constraint. Without loss
of generality, we assume the i th constraint is inactive,
i.e., fi (y) < 0. Keeping y and γ j , ∀ j �= i , unchanged,

and replacing γi with γ ′
i where γi < γ ′

i ≤ yH Ci y
yH Ai y

, the
i th constraint is still satisfied. Hence we can increase
the i th SINR without decreasing any other SINR if the
i th constraint is inactive.

ii) All the constraints are active. If we can find a new y′
such that f(y′) ≤ f(y) = 0 and f(y′) �= f(y), then a
certain constraint is inactive and we can increase the
corresponding SINR, as in case i).

Based on the above analysis, the case when there is no
possibility to increase some SINR without decreasing the
others is that fi (y) = 0 ∀i and there does not exist a y′ such
that f(y′) ≤ f(y) and f(y′) �= f(y).

APPENDIX F
PROOF OF THEOREM 3

With the resultant SINR set, fi = 0,∀ i . Step 16 of
Algorithm 2 results in t = 1, so fi = 0 is equivalent

to γi yH Ai y = yH Ci y. By substituting y = Q
1
2
summ and

the specific expression of Ai , Ci and Qsum , and using
mH Qsumm = 1, we have

γi

∑

j �=i

p j hi j + γiσi = pi hii ,∀ i

ωT p = Pmax (44)

whose compact form is �pext = pext with � expressed
in (10). For the eigensystem (9), we have mentioned ρ(�)
is the only singular value whose associated singular vector is
also positive. So ρ(�) = 1, which is equivalent to (11).
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