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Abstract—This paper considers the downlink channel of mul-
ticell multiuser multiple-input single-output (MISO) systems
with arbitrary architecture. We aim to maximize the minimum
weighted signal-to-interference-plus-noise ratio (SINR) through
user-base station (BS) association, coordinated beamforming
among BSs and power control subject to per BS power con-
straints. The problem is known to be NP-hard. In the high-SNR
regime where the performance is interference-limited, we globally
optimize the upper bound, which is achieved asymptotically, of
the balanced SINR. In the low-SNR regime where the perfor-
mance is restricted by the tightest per BS power constraint, we
balance the transmit power using relaxed integer programming
(RIP) and group sparse optimization (GSO) techniques. The
two goals can be integrated to achieve a universally better
performance. From the perspective of optimization methods, the
corresponding algorithms are based on Lagrangian relaxation
and are guaranteed to converge. Simulation results show that the
proposed algorithms outperform the existing algorithms designed
for the downlink single-input single-output (SISO) systems.

Index Terms—downlink multicell MISO; SINR balancing;
max-min SINR; base station association; relaxed integer pro-
gramming; group sparse optimization.

I. I NTRODUCTION

The concept of coordinated multipoint (CoMP) has been
introduced to deal with inter-cell interference in LTE-advanced
and WiMAX. In CoMP networks, interference can be ex-
ploited by joint processing of the data or mitigated by co-
ordinated scheduling and beamforming [1]. As data traffic
grows and spectral efficiency approaches its limit, node density
is urged to be increased. A strategy is to deploy low-power
nodes together with high-power nodes to form a heterogeneous
network (HetNet) [2]. Considering the imbalanced BS power
budgets and density of deployments, a more flexible user-
BS association scheme is required to balance the load and
power in HetNet [3]. Meanwhile, the emergence of cloud
radio access network (C-RAN) offers a practical platform
for joint processing. In C-RAN, BSs can be clustered, either
fully or partially, statically or dynamically, and share data
within the clusters [4]. BS clustering yields a many-to-many
relationship for user-BS association. This paper addresses the
SINR balancing problem via joint design of the following
techniques: user-BS association, coordinated beamforming and
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power control in a general downlink multicell MISO system,
and extensively, dynamic BS clustering when the architecture
supports data sharing in backhaul links.

SINR is a commonly used metric for quality-of-service
(QoS). The SINR balancing problem, also known as the max-
min weighted SINR problem, has been widely studied for
decades. For single-antenna systems, the concept of SINR
balancing is first introduced in [5] and later applied to the
cellular system in [6]. [7] solves the problem over power
assignment in single-cell downlink MISO systems. [8]–[10]
study the SINR balancing problem using nonlinear Perron-
Frobenius theory. [7]–[10] focus on single-cell systems subject
to a single (weighted) sum power constraint. However, in
downlink systems with multiple power constraints, the active
power constraint at optimum and the noise variance in the
dual uplink problem are uncertain [11]–[13]. Concerning per
BS power constraints, Cai et al. [11] relax the multiple power
constraints to be a single weighted sum power constraint
followed by subgradient-based update of the weights; Huang
et al. [13] use the subgradient projection method to update the
uncertain noise variance in the dual problem.

Beside multiple per BS power constraints, user-BS associa-
tion introduces extra challenge to the SINR balancing problem
because of its interdependence with channel matrices and
power constraints. It has been stressed early in [14] that there
is no Pareto optimal solution for joint power control and BS
association in downlink multicell SISO systems, and later in
[15] and [16] that the problem is NP-hard in general. [16]
studies joint power control and BS association under per BS
power constraints in downlink multicell SISO systems, which
is linked with the uplink problem in [15] by the same sum
power. The authors also propose an improved algorithm to
manage the imbalanced power budget in HetNet [16]. To the
best of our knowledge, the problem investigated by [16] is
closest to what this paper does, except that beamforming is
not involved in downlink multicell SISO systems in [16].

In this paper, we target at SINR balancing via joint BS
association, beamforming and power control in downlink mul-
ticell MISO systems subject to per BS power constraints. We
deconstruct the problem from a new perspective by extracting
two factors that limit the performance, namely, interference
and the tightest power constraint. In the interference-limited
case, we optimize the asymptotic upper bound of the balanced
SINR. Concerning the tightest power constraint, we balance
the transmit power at BSs using relaxed integer program-
ming (RIP) [4] and group sparse optimization (GSO) [17]
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techniques. The two goals are combined ultimately to resolve
the SINR balancing problem. To achieve these various goals,
we propose a novel Lagrangian relaxation framework that
accommodates various algorithms.

The rest of the paper is structured as follows. Section II
introduces the system model and formulates the problem.
Section III establishes some preliminary theoretical results to
guide the design of algorithms. In section IV, we propose
algorithms converging to the global optimum of the asymptotic
upper bound of the balanced SINR in the high SNR regime.
Section V starts with RIP-based and GSO-based approaches
to balance the transmit power and enhance the performance at
low SNR, followed by an integrated algorithm that solves the
SINR balancing problem in universal SNR regime. Section VI
demonstrates simulation results and Section VII concludes the
paper.

II. SYSTEM MODEL

We consider a downlink multicell MISO network withK
multi-antenna BSs andN single-antenna users sharing the
channel without frequency or time extensions. Denote by
K = {1, 2, . . . ,K} andN = {1, 2, . . . , N} the index sets for
BSs and users, respectively. Each usern ∈ N is associated
with exactly one BS with the indexκn ∈ K. Each BSk ∈ K
may serve multiple users or not associate with any user. BSk
hasM [k] antennas and a power budgetP [k].

BS k transmits a data streamxn(t) to usern with κn = k

using powerpn and a beamforming vectorv[k]
n of dimension

M [k] × 1, where the data stream and the beamformer are
normalized such thatE[xn(t)

⋆
xn(t)] = 1 andv

[k]H
n v

[k]
n = 1.

We assumeN > M [k] for all k ∈ K such that zero-forcing
beamforming is not applicable and that each user receives
interference from at least one other user. The transmitted signal
to usern can be written as

√
pnv

[κn]
n xn(t). The received signal

at usern is

yn(t) =
√
pnh

[κn]H
n v[κn]

n xn(t)

+
∑

m 6=n

m∈N

√
pmh[κm]H

n v[κm]
m xm(t) + zn (II.1)

whereh
[k]
n is the M [k] × 1 channel state information (CSI)

vector from BSk to usern. CSI is assumed to be known
at the BS side. In simulation, the channel is modeled as
Rayleigh flat fading and the entries of allh

[k]
n are drawn from

i.i.d. zero-mean unit-variance circularly symmetric complex
Gaussian distribution. The second term in (II.1) captures all
intra-cell and inter-cell interfering signals.zn is the additive
white Gaussian noise (AWGN) with noise powerηn.

The received SINR of usern is given by

Γn =
pngnn

∑

m 6=n

m∈N
pmgnm + ηn

(II.2)

wheregnm = ||h[κm]H
n v

[κm]
m ||2 is the effective channel gain

or interference imposed by userm on usern.
The goal is to determineκn, v[κn]

n , andpn for all n ∈ N , in
order to balance the weighted SINRΓn

γn

for max-min fairness.
γn may reflect some long-term priority of usern.

The problem is mixed-integer programming and is NP-
hard [15], [16]. In Section V, RIP and GSO techniques are
adopted to relax the problem, where a many-to-many relation-
ship is allowed for user-BS association in intermediate steps.
Therefore, before formulating the problem, we first introduce
consistent descriptions of the association strategyWn and the
beamforming strategyVn of usern in place of the integer
mapping functionκn and the beamforming vectorv[κn]

n .
The association strategy of usern is represented by

Wn =
(

w[1]
n , w[2]

n , . . . , w[K]
n

)

(II.3)

where

w[k]
n =

{

1, k = κn

0, k 6= κn

(II.4)

The feasible set ofWn is denoted by

Wn =

{

Wn : w[k]
n ∈ {0, 1},∀k ∈ K;

∑

k∈K

w[k]
n = 1

}

(II.5)

Later in Section V, the feasible set is relaxed so thatw
[k]
n is

not restricted to be binary.
Let the beamforming strategy of usern consist of the

beamformers at allK BSs, given by

Vn =
(

v[1]
n ,v[2]

n , . . . ,v[K]
n

)

(II.6)

The feasible set ofVn is denoted by

Vn =
{

Vn : v[k]H
n v[k]

n = 1,∀k ∈ K
}

(II.7)

Note thatv[k]
n for k 6= κn are redundant arguments which will

not take effect in actual transmission. However, we reserve
these arguments which become effective in relaxed-integer
programming in Section V.

Concerning per BS power constraints, we further construct
a vectorw[k] = [w

[k]
1 , w

[k]
2 , . . . , w

[k]
N ]T for each BSk and a

power vectorp = [p1, p2, . . . , pN ]T . Now the SINR balancing
problem can be formulated as

max
p, Wn,Vn,∀n∈N

min
n∈N

Γn

γn

s.t. w[k]Tp ≤ P [k], ∀k ∈ K (P)

Vn ∈ Vn, ∀n ∈ N
Wn ∈ Wn, ∀n ∈ N

In the first constraint,w[k]Tp =
∑

n:κn=k pn is the total
transmit power at BSk constrained by the power budgetP [k].
In the second and third constraints, the feasible sets of the
beamforming strategies and association strategies are given by
(II.7) and (II.5), where the beamformersv[k]

n are orthonormal
andw[k]

n are binary.
In terms of feasibility of problem (P), the power vectorp

can be viewed as BS-centric, constrained by the power budgets
of BSs. The beamforming strategyVn can be considered
as user-centric, which means each user can make a feasible
decision without being constrained by others. The association
strategyWn is user-centric with respect to the feasible set
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Wn, but is meanwhile restricted by the BS-centric power
constraints.

For briefness of notation, we considerWn as user-centric
and further defineSn = (Wn,Vn) with the feasible setSn =
Wn×Vn to combine the association strategy and beamforming
strategy of usern. The strategy profile of all users can be
denoted byS = (S1, S2, . . . ,SN ) with the feasible setS =
∏

n∈N Sn. Problem (P) is restated as the following problem
(P′) in terms of the strategy profileS.

max
p, S

min
n∈N

Γn

γn

s.t. w[k]Tp ≤ P [k], ∀k ∈ K (P′)

S ∈ S
The NP-hardness of the joint design problem has been

established in [15] and [16]. Therefore, we design algorithms
to solve the relaxed problem in the rest of the paper.

III. PRELIMINARY DISCUSSION

In this section, we discuss the SINR balancing problem (P′)
with respect to the power allocation vectorp and the strategy
profile S separately.

A. Revisiting Downlink Power Control

First, for a fixed strategy profileS, problem (P′) is reduced
to the classic downlink power control problem.

max
p

min
n∈N

Γn

γn
(PS)

s.t. w[k]Tp ≤ P [k], ∀k ∈ K
We have assumed that each user will receive interference from
at least one other user, which implies that the weighted SINR
of all users are equal at optimum. Denote the optimal value
by

1

ρ∗
=

Γ∗
n

γn
, ∀n ∈ N (III.1)

A closed-form expression ofρ∗ and the corresponding power
allocation vectorp∗ are given in [11]. For consistency with
[11], we define the cross channel matrixF of dimensionN×N
and a vector̂γ of lengthN as follows.

[F]nm =

{

0, n = m

gnm, n 6= m
(III.2)

γ̂ =

[

γ1
g11

,
γ2
g22

, . . . ,
γN
gNN

]T

(III.3)

The dependence of the effective channel gaingnm upon the
strategy profileS is omitted in the above notation. LetD(γ̂)
represent the diagonal matrix with the elements ofγ̂ on the
diagonal. DefineC[k] = D(γ̂)(F + 1

P [k]ηw
[k]T ) and j =

arg max
k

ρ(C[k]), then the optimal value and solution are given

by
ρ∗ = ρ(C[j]) (III.4)

p∗ =
P [j]

w[j]Tx(C[j])
x(C[j]) (III.5)

whereρ(·) andx(·) denote the Perron-Frobenius (PF) eigen-
value and the right PF eigenvector.

The closed-form expression ofρ∗ reveals that the optimal
value is restricted by the tightest power constraint which
corresponds to the largestρ(C[k]).

It can also be noticed that the power constraints vanish in
the interference-limited case. When the noise powerη = 0,
the optimalρ∗ and the corresponding optimal power allocation
vectorp∗ become

ρ∗ = ρ(C) (III.6)

p∗ = a · x(C) (III.7)

whereC = D(γ̂)F anda can be any positive scaling factor.
From the above discussion on the closed-form solution to

(PS), we observe two limiting factors in the the original prob-
lem (P′): one is the tightest per BS power constraint, which
depends on the association strategy and power allocation;
the other is the effective channel gain or interference, which
depends on the association strategy and beamforming strategy.

In addition, the uplink-downlink duality also has a Perron-
Frobenius characterization as follows.

ρ(C[j]) = ρ

(

D(γ̂)(FT +
1

P [j]
w[j]ηT )

)

(III.8)

In the dual uplink problem,η corresponds to the weight on
power andw[j] corresponds to the noise vector. Now we have
a clear vision of the difficulty in applying uplink-downlink
duality to solve the problem (PS): the power constraintP [j]

and the noisew[j] are uncertain in the dual uplink problem.
Moreover,w[k] are also variables in the original problem (P′).

B. Feasible SINR Balancing Level

In the rest of this paper, we refer to1
ρ
= min

n

Γn

γn

as the

balanced SINR andρ = max
n

γn

Γn

as the SINR balancing level.
In this subsection, we study the feasible SINR balancing

levelρ with respect to the strategy profileS in the interference-
limited case where the noise power approaches zero or the
power budget approaches infinity. To be specific, we relax the
explicit power constraints to be the finite-power requirement
and allow for any noise powerη ≥ 0. In the interference-
limited case,ρ(C) is the asymptotic lower bound of all
feasibleρ. Any ρ > ρ(C) is referred to as feasible in the
sense that it can be achieved with finite power.

Theorem 1 interprets the feasibility ofρ for η > 0 more
rigorously without recourse to the closed-form solution. Before
that, we define the following matrices

G(ρ) = ρD−1(γ̂)− F (III.9)

A(ρ) = G(ρ)D(γ̂) (III.10)

B = ρI−A(ρ) (III.11)

It is assumed that each user will receive interference from or
impose interference to another user, which implies thatF is
irreducible. Following the definitions (III.9) to (III.11),G(ρ),
A(ρ) andB are all irreducible matrices.

Theorem 1. ρ is feasible in the interference-limited case,
namely, there exists a positive and finite power allocation
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vector such thatΓn

γn

≥ 1
ρ
, ∀n ∈ N in the presence of noise, if

and only if any of the following statements holds:

1) There exists0 < p < ∞ such thatG(ρ)p ≥ η for any
η > 0;

2) G(ρ) is a non-singular M-matrix;
3) A(ρ) is a non-singular M-matrix;
4) ρ(B) < ρ.

Proof. The equivalence between the main statement and state-
ment 1) can be obtained directly by expandingG(ρ)p ≥ η

entry-wise.
According to (III.9) and (III.10),G(ρ) ∈ Zn,n andA(ρ) ∈

Zn,n whereZn,n denotes the set of alln × n real matrices
whose off-diagonal elements are less than or equal to zero.
Next, we prove the equivalence between statements 1) and 2),
2) and 3), and 3) and 4) sequentially.

• Condition K33 [18, Theorem 1] states thatG(ρ) ∈ Zn,n

is a non-singular M-matrix if and only if there exists
x > 0 with G(ρ)x > 0. Therefore, statement 2) holds
given statement 1). On the other direction, letb = G(ρ)x
for such x, then we can find ap = max

n

ηn

bn
x such

that G(ρ)p ≥ η. Therefore, statement 1) holds given
statement 2).

• The condition that there existsx > 0 with G(ρ)x > 0,
is equivalent to that there existsy = D−1(γ̂)x > 0 with
A(ρ)y = G(ρ)x > 0. Therefore, statements 2) and 3)
are equivalent.

• According to [18, Definition],A(ρ) is expressed in the
form A(ρ) = ρI−B whereB has non-negative elements
andρ(B) ≤ ρ, thenA(ρ) is an M-martix. Furthermore,
A(ρ) is a non-singular M-matrix if and only ifρ(B) < ρ.

Extensively, whenρ = ρ(B), A(ρ) and G(ρ) are singular.
The following lemma can be established in the absence of
noise, i.e., forη = 0. The proof is similar to that of Theorem 1.
The corresponding properties of irreducible M-matrices, either
singular or non-singular, can be found in [19, Theorem 3.4].

Lemma 1. ρ is feasible in the absence of noise if and only if
any of the following statements holds:

1) There exists0 < p < ∞ such thatG(ρ)p ≥ 0;
2) G(ρ) is an M-matrix;
3) A(ρ) is an M-matrix;
4) ρ(B) ≤ ρ.

Noticing thatB = FD(γ̂) and thereforeρ(B) = ρ(C),
we can unify the intuitive results based on the closed-form
solution with Theorem 1 and Lemma 1. In addition, ifG(ρ)
is an irreducible non-singular M-matrix, thenG(ρ) is strictly
inverse-positive [20, Theorem A]. That is,G−1(ρ) exits and
G−1(ρ) > 0. Then for any feasibleρ, the optimal power
allocation vectorp∗(ρ) that achieves the same weighted SINR
for all users can be found directly byp∗(ρ) = G−1(ρ)η.

To conclude the section, the SINR balancing problem (P′)
can be relaxed and solved by the following two main steps:
(1) find the strategy profileS that yields a minimum feasibleρ
satisfying the statements in Theorem 1 and Lemma 1; (2) for
fixed S, find the optimal power allocation vector satisfying the

power constraints given by (III.5). In later sections, we will
design algorithms based on these two main steps. Obviously,
the difficulty lies mostly in the first step. We will propose a
Lagrangian relaxation framework to approach the minimum
value of ρ. Recall that in Subsection III.A, we intuitively
summarized two factors that limits the minimum value ofρ:
(1) interference; (1) the tightest power constraint. The two
corresponding goals are: (1) to minimize the asymptotic lower
bound ofρ; (2) to balance the transmit power. The statements
in Theorem 1 and Lemma 1 serve as the feasibility conditions
of ρ in the various problems in the Lagrangian relaxation
framework.

IV. A SYMPTOTIC LOWER BOUND OF THESINR
BALANCING LEVEL

In this section, we propose algorithms that minimize the
asymptotic lower bound of the SINR balancing levelρ. We
adopt statement 3) in Lemma 1 to form the feasible region
of the auxiliary variableρ. That is,A(ρ) is an M-matrix, or
equivalently, there existsy > 0 such thatA(ρ)y ≥ 0. Because
B = ρI−A(ρ) andB is dependent onS, A(ρ)y ≥ 0 can be
written asB(S)y ≤ ρy. The problem is formed as follows.

min
ρ, S∈S, y>0

ρ (P1)

s.t. B(S)y ≤ ρy

We have discussed the condition forA(ρ) to be a singular
M-matrix in last section. It can be easily proved that the
above constraint is active if and only ifρ = ρ(B(S)) and
y = x(B(S)).

A. Lagrangian Relaxation Method

To solve problem (P1), we adopt the Lagrangian relaxation
method [21] by penalizing the constraint with the Lagrangian
multipliersλ ≥ 0. The Lagrangian function isL(ρ, S,y,λ) =
ρ+ λTB(S)y − ρλTy. By letting λTy = 1, L(ρ, S,y,λ) is
equivalent to

L′(S,y,λ) = λTB(S)y (IV.1)

Due to the non-negative penalty term,ρ ≥ L′(S,y,λ) for all
jointly feasibleρ, S, y andλ. The partially dualized problem
is

max
λ≥0,λT ẙ=1

g(λ) (PDual
1 )

where

g(λ) = min
S∈S,y>0

L′(S,y,λ) (Pin
1 )

is referred to as the inner problem, and̊y is the solution toy
in the inner problem.

Lagrangian relaxation algorithms are typically based on the
following principles: g(λ) is a lower bound of the optimal
result of (P1) becauseρ∗ ≥ L′(S∗,y∗,λ) ≥ g(λ) for any
feasible λ; solving (PDual

1 ) over λ gives a tighter bound;
a sequence ofλ can be found to guideg(λ) towards ρ∗.
For problem (P1), the inner problem (Pin1 ) can be solved
efficiently. The problem is that when the dualized constraint
has a complex structure as in (P1), updating the dual variable
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via solving the dual problem does not guarantee convergence
towards the optimal value.

For (P1), the ideal choice ofλ is what yields strong duality,
in which case the penalty term is zero. We can impose the
zero-penalty condition to get an updatedλ̂ for the solution
to (Pin

1 ), denoted bŷS and ẙ, and a feasiblêρ despite their
optimality. The zero-penalty condition means that the relaxed
constraint is active in (P1), which happens only when

ρ̂ = ρ(B(Ŝ)) (IV.2)

Therefore,̂λ satisfyingρ̂ = λ̂TB(Ŝ)̊y is given by the right PF
eigenvector ofBT (Ŝ) normalized such that̂λT ẙ = 1, written
as

λ̂ =
x(BT (Ŝ))

ẙTx(BT (Ŝ))
(IV.3)

λ̂ given above satisfies the zero-penalty condition for any
random ẙ > 0, although suchρ̂ and Ŝ are only feasible
with active constraints for a particular̂y = x(B(Ŝ)) in
problem (P1). We stress here that the zero-penalty condition
is simply an updating rule for the dual variableλ. The
convergent performance is analyzed in detail after we present
the algorithm.

As a brief summary of this subsection, the Lagrangian
relaxation algorithm to solve (P1) is implemented as follows:
(1) for a given λ̂, solve (Pin1 ) for Ŝ and ẙ; (2) updateλ̂
according to (IV.3); (3) repeat (1) and (2) till convergence.

B. Algorithm Design

First, we solve the inner problem (Pin
1 ), which is not elab-

orated in last subsection. Notice that thenth column ofB(S)
depends only onSn and thaty is always positive. (Pin1 ) can be
decomposed intoN parallel sub-problems with thenth given
by

min
Sn∈Sn

fn(Sn,λ) (PSub
n )

wherefn(Sn,λ) is thenth element of the vector

f(S,λ) = BT (S)λ (IV.4)

Denote byŜn the solutions to the sub-problems (PSub
n ). Ac-

cordingly, the strategy profilêS = (Ŝ1, Ŝ2, . . . , ŜN ) is the
solution to S in the inner problem (Pin1 ). We see that these
solutions are regardless of the value ofy, so any random
positive vector̊y can be a solution toy in (Pin

1 ).
(PSub

n ) is a mixed-integer programming problem. For given
λ and fixedκn = k, fn(·) is a function of the beamformer
v
[k]
n

f [k]
n (v[k]

n ) = γn
v
[k]H
n R

[k]
n v

[k]
n

v
[k]H
n Q

[k]
n v

[k]
n

(IV.5)

where Q
[k]
n = h

[k]
n h

[k]H
n and R

[k]
n = H

[k]
−nD(λ−n)H

[k]H
−n

for H
[k]
−n =

[

h
[k]
1 , . . . ,h

[k]
n−1,h

[k]
n+1, . . . ,h

[k]
N

]

and λ−n =

[λ1, . . . , λn−1, λn+1, . . . , λN ]T . We have assumedN > M [k]

for all k ∈ K, soR
[k]
n has full rank almost surely.

It turns out that (PSub
n ) can be further decomposed intoK

sub-problems with respect tov[k]
n , written as

min
v
[k]H
n v

[k]
n =1

f [k]
n (v[k]

n ) (PSub
n[k])

The problem is equivalent to maximizing the Rayleigh quotient
v
[k]H
n Q

[k]
n v

[k]
n /v

[k]H
n R

[k]
n v

[k]
n . The solution is known to be

v̂[k]
n = v1

(

(R[k]
n )−1Q[k]

n

)

(IV.6)

and the minimized value is

f [k]
n (v̂[k]

n ) = γn/σ1

(

(R[k]
n )−1Q[k]

n

)

(IV.7)

whereσ1(·) is the largest eigenvalue andv1(·) is the corre-
sponding eigenvector.

The beamforming strategŷVn in (PSub
n ) consists ofv̂[k]

n

given by (IV.6) for allk ∈ K. The association strategŷWn is
obtained by comparingf [k]

n (v̂
[k]
n ) over allk ∈ K. Specifically,

Ŵn consists ofŵ[k]
n as follows

ŵ[k]
n =

{

1, k = arg min
j

f [j]
n (v̂[j]

n )

0, otherwise
(IV.8)

Intuitively, the optimal beamforming strategŷVn is to find
beamformers that maximize SIR of usern at all K BSs in
the dual uplink channel, where the power allocation vector is
given by λ. The optimal association strategŷWn is to find
the BS that maximizes the SIR weighted by1

λnγn

for usern
in the dual uplink channel.

It follows that the solution to(PSub
n ) is Ŝn = (Ŵn, V̂n) and

the solution to (Pin1 ) is Ŝ = (Ŝ1, Ŝ2, . . . , ŜN ).
Now the algorithm that solves (P1) iteratively is listed

below. Since̊y > 0 can be chosen randomly in the inner
problem (Pin1 ), we let ẙ = 1 .

Algorithm 1

1 Initialize λ(0) > 0, 1Tλ(0) = 1;
2 while |ρ(t)− ρ(t− 1)| > ǫ do
3 Updatet = t+ 1;
4 for n = 1 to N do
5 Solve (PSub

n ) for Sn(t);
6 end
7 Updateλ(t) = x(BT (S(t))), 1Tλ(t) = 1, and

ρ(t) = ρ(B(S(t)));
8 end
9 Calculatep∗ by (III.5) for S

∗ = S(t);
Output: S

∗ andp∗.

ǫ is a small positive value to deal with rounding error.
Theoretically, ǫ can be set to zero. The convergence of
Algorithm 1 is asserted by the following Proposition.

Proposition 1. ρ(t) decreases monotonically and converges
to the global optimum of (P1) in Algorithm 1.

Proof. Let m = arg max
n

fn(Sn(t),λ(t−1))
λn(t−1) , we first prove the

monotonic decrement ofρ(t) by establishing

ρ(t) ≤ fm(Sm(t),λ(t− 1))

λm(t− 1)

≤ fm(Sm(t− 1),λ(t− 1))

λm(t− 1)
= ρ(t− 1)

(IV.9)
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The first inequality is obtained from the min-max version
of the Collatz-Wielandt formula [22, Theorem 2.7], namely
min
x>0

max
n

(Ax)n/xn = ρ(A) for an irreducible non-negative

matrix A. Equality holds if and only if λ(t − 1) =

x(BT (S(t))) = λ(t), in which casefn(Sn(t),λ(t−1))
λn(t−1) is equal

to ρ(t) for all n ∈ N . The second inequality is because
Sm(t) = arg min

Sm

fm(Sm,λ(t − 1)) according to line5 in

Algorithm 1. Equality holds if and only ifSm(t−1) = Sm(t).
For equalities to hold concurrently in the first and second
inequalities, the conditionSm(t − 1) = Sm(t) should be
satisfied for allm ∈ N . The third equality is due to the way
we setλ(t−1) andρ(t−1) in line 7 in Algorithm 1. Therefore,
ρ(t) decreases monotonically.

In addition, Algorithm 1 stops atρ(t) = ρ(t − 1) when
the strategy profileS(t) = S(t−1). Because the beamforming
strategy has closed-form solutions and the association strategy
has limited number of combinations, Algorithm 1 does con-
verge to a particular valuêρ = ρ(B(Ŝ)). Next we prove the
global optimality of sucĥρ and Ŝ.

The convergence of Algorithm 1 implies that̂Sn =
arg min

Sn

fn(Sn, λ̂) for all n ∈ N with λ̂ = x(BT (Ŝn)).

Denote the global optimal solution and value of (P1) by S
∗

and ρ∗. Becauseρ ≥ ρ(B(S)), the minimal ρ∗ must be
equal to ρ(B(S∗)) with y∗ = x(B(S∗)). Assume to the
contrary thatρ(B(S∗)) < ρ(B(Ŝ)). The max-min version
of the Collatz-Wielandt formula [22, Theorem 2.7] says that
max
x>0

min
n

(Ax)n/xn = ρ(A). Therefore, for anyλ > 0, there

exists a userm with fm(S∗
m
,λ)

λm

≤ ρ(B(S∗)) < ρ(B(Ŝ)). Taking

λ = λ̂, we havefm(S∗m, λ̂) < ρ(B(Ŝ))λ̂m = fm(Ŝm, λ̂),
which contradicts with the optimality of̂Sm. Therefore,Ŝ is
the global optimizer and̂ρ is the global optimum of (P1).

As we have discussed in Section III.B, the optimal value
ρ∗ = ρ(B(S∗)) returned by Algorithm 1 is an asymptotic
lower bound. Therefore,S∗ and the correspondingp∗ based
on S

∗ can be approximated solutions to the original problem
(P′) at high SNR.

C. A Variation of Algorithm 1

In Algorithm 1, the strategySn is determined by solving the
sub-problem(PSub

n ), which can be explained as maximization
of the weighted SIR in the dual uplink channel for usern. It
is noticed that the objective functionfn(·) in (PSub

n ) depends
only on the beamforming pattern but not the norm of the
beamformers. In this sense, Algorithm 1 lacks the ability of
power control. To compensate for this deficiency, we introduce
a different metric and propose a variation of Algorithm 1,
which helps incorporating power control into the design of
algorithms in next Section. Define

φ[k]
n (v[k]

n ,λ, fn) = v[k]H
n

(

(fn/γn)Q
[k]
n −R[k]

n

)

v[k]
n

(IV.10)
whereQ[k]

n andR[k]
n are the same as in Subsection IV.B, and

φn(Sn,λ, fn) =
∑

k∈K

w[k]
n φ[k]

n (v[k]
n ,λ, fn) (IV.11)

In place of(PSub
n ) and(PSub

n[k]), consider the following problems

max
Sn∈Sn

φn(Sn,λ, fn) (PSub2
n )

max
v
[k]H
n v

[k]
n =1

φ[k]
n (v[k]

n ,λ, fn) (PSub2
n[k])

(PSub2
n[k] ) has closed-form solution and optimal value given by

v̂[k]
n = v1

(

(fn/γn)Q
[k]
n −R[k]

n

)

(IV.12)

φ̂[k]
n = σ1

(

(fn/γn)Q
[k]
n −R[k]

n

)

(IV.13)

Accordingly, the beamforming strategŷVn consists of̂v[k]
n for

all k ∈ K. The association strategŷWn consists ofŵ[k]
n given

by

ŵ[k]
n =

{

1, k = arg max
j

φ̂[j]
n

0, otherwise
(IV.14)

Ŵn and V̂n constituteŜn as the solution to (PSub2
n ).

Intuitively, we are maximizing the weighted signal-minus-
interference for usern in the dual uplink channel in (PSub2

n ), in-
stead of the weighted SIR in (PSub

n ). Precisely, (PSub2
n[k] ) is related

to (PSub
n[k]) as follows. For fixedv[k]

n and λ, φ[k]
n (v

[k]
n ,λ, fn)

is an increasing function offn. When fn = f
[k]
n (v

[k]
n ,λ),

φ
[k]
n (v

[k]
n ,λ, fn) = 0. Consider the following steps: 1) start

with some̊v[k]
n and calculate̊fn = f

[k]
n (̊v

[k]
n ,λ) which yields

φ
[k]
n (̊v

[k]
n ,λ, f̊n) = 0; 2) solve (PSub2

n[k]) for v̂
[k]
n which yields

φ
[k]
n (v̂

[k]
n ,λ, f̊n) ≥ 0; 3) updatef̂n = f

[k]
n (v̂

[k]
n ,λ) which

yields φ
[k]
n (v̂

[k]
n ,λ, f̂n) = 0. It follows that f̂n ≤ f̊n. In this

sense,̂v[k]
n is a better solution to(PSub

n[k]), compared with the

original solution̊v[k]
n .

The variation of Algorithm 1 is listed below. The procedure
is mostly the same as Algorithm 1, except that we initialize
f(0) = f(S(0),λ(0)) for some randomS(0) in line 1, solve
(PSub2

n ) instead of(PSub
n ) in line 5, and updatef(t) = ρ(t)λ(t)

in line 7.

Algorithm 1′

1 Initialize λ(0) > 0, 1Tλ(0) = 1, andf(0);
2 while |ρ(t)− ρ(t− 1)| > ǫ do
3 Updatet = t+ 1;
4 for n = 1 to N do
5 Solve (PSub2

n ) for Sn(t);
6 end
7 Updateλ(t) = x(BT (S(t))), 1Tλ(t) = 1,

ρ(t) = ρ(B(S(t))), andf(t) = ρ(t)λ(t);
8 end
9 Calculatep∗ by (III.5) for S

∗ = S(t);
Output: S

∗ andp∗.

In fact, Algorithm1′ also falls into the category of the La-
grangian relaxation algorithms. Consider the following prob-
lem

min
ρ, S∈S, y>0

ρ (P′
1)

s.t. G(ρ)y ≥ 0
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Statement 2) of Lemma 1 is adopted as the feasibility condition
of ρ in (P′

1), instead of statement 3) in (P1). The corresponding
inner problem of (P′1) is to minimize the penalty of violating
the feasibility condition ofρ, given by

min
S∈S,y>0

− λTG(ρ)y (Pin
1′)

Sinceφn(Sn,λ, ρλn) = (GT (ρ)λ)n, (PSub2
n ) can be explained

as sub-problems of the inner problem (Pin
1′), if fn is updated

to beρλn as in line 7 in Algorithm1′.
Algorithm1′ achieves the same goal as Algorithm 1.ρ(t)

decreases monotonically and converges to the global optimum
of (P′

1) as well as (P1). The proof is similar to that of
Proposition 1. (IV.9) still holds with a different explanation
of the second inequality. The second inequality can be writ-
ten as f ′

m(t)/λm(t − 1) ≤ fm(t − 1)/λm(t − 1) where
f ′
m(t) = fm(Sm(t),λ(t − 1)). Becauseφm(Sm(t),λ(t −
1), fm(t − 1)) ≥ φm(Sm(t − 1),λ(t − 1), fm(t − 1)) = 0 =
φm(Sm(t),λ(t − 1), f ′

m(t)), we havef ′
m(t) ≤ fm(t − 1). In

a word, maximizingφn(Sn,λ, fn) followed by the way of
updatingfn decreasesfn(Sn,λ) indirectly.

From the above convergence analysis, it can be seen that
as long asSn(t) satisfiesφn(Sn(t),λ(t − 1), fn(t − 1)) ≥ 0
for all n ∈ N and λ(t) and f(t) are updated as in line 7,
ρ(t) is guaranteed to be non-incremental. To be specific, the
non-incremental condition ofρ in the Lagrangian relaxation
framework can be written as

∑

k∈K

w[k]
n φ[k]

n (v[k]
n ,λ, fn) ≥ 0, ∀n ∈ N (IV.15)

This is the key contribution of Algorithm1′ to this paper
and intrigues different design of the inner problem in the
Lagrangian relaxation framework in next section.

V. POWER BALANCING FOR SINR BALANCING

In this section, we include power control in the SINR bal-
ancing problem, which faces two major challenges: multiple
per BS power constraints and dependence on the integer-
valued association strategy. Referring to the closed-form ex-
pressions ofρ∗ andp∗ given by (III.4) and (III.5), the influence
of power constraints is more notable in the noise-limited low
SNR regime. The performance is limited by the tightest power
constraint and thus can be improved via power balancing
among BSs. This limitation may be crucial in HetNet where
power budgets of BSs tend to variate considerably. Therefore,
the power balancing level, denoted byα = max

k

1
P [k]w

[k]Tp,

is an important factor concerned in this section. To tackle the
second challenge, we introduce relaxed integer programming
in the following.

A. Power Balancing based on Relaxed Integer Programming

In previous sections, the association strategyWn is com-
posed ofw[k]

n ∈ {0, 1}. In this section, the restriction is relaxed
to be0 ≤ w

[k]
n ≤ 1, giving the following relaxed feasible set

of Wn.

W̃n =

{

Wn : 0 ≤ w[k]
n ≤ 1,∀k ∈ K;

∑

k∈K

w[k]
n = 1

}

(V.1)

The feasible set of the beamforming strategyVn is unchanged.
Accordingly, we can construct the association strategy profile
W = (W1,W2, . . . ,WN ) and the beamforming strategy
profile V = (V1,V2, . . . ,VN ) with the feasible setsW̃ =
∏

n∈N W̃n and V =
∏

n∈N Vn, respectively. The feasible
set of the full strategy profileS = (W,V) is denoted by
S̃ = W̃ × V. All previous notations, such asΓn, G(ρ), A(ρ)
and B, remain the same by rewriting the effective channel
gain as

gnm =
∑

k∈K

w[k]
m ||h[k]H

n v[k]
m ||2 (V.2)

The physical meaning of the relaxation is that each usern can
be simultaneously associated with allK BSs providing the
transmit powerpn with the proportionw[k]

n . In other words,
BS k transmits the data streamxn(t) with the beamformer
v
[k]
n and powerpnw

[k]
n . Therefore, the effective channel gain

is given by (V.2).

Consider the following RIP-based power balancing problem.

min
α, S∈S̃

α (PRIP)

s.t.
∑

n∈N

w[k]
n p̂n ≤ αP [k], ∀k ∈ K

∑

k∈K

w[k]
n φ[k]

n (v[k]
n ,λ, fn) ≥ 0, ∀n ∈ N

whereα is the power balancing level.̂pn is thenth element
of the estimated power allocation vectorp̂. φ[k]

n (v
[k]
n ,λ, fn)

follows the definition (IV.10) in previous section. The second
constraint is exactly the non-incremental condition of the
SINR balancing levelρ in the Lagrangian relaxation frame-
work given by (IV.15).

The beamformerv[k]
n only affectsφ[k]

n (v
[k]
n ,λ, fn). We can

maximizeφ[k]
n (v

[k]
n ,λ, fn) over v[k]

n to obtain the beamform-
ing strategy profileV̂. Then for fixedV̂, (PRIP) becomes a
linear programming (LP) problem with respect to the variables
w

[k]
n , ∀n ∈ N , ∀k ∈ K, and can be solved efficiently to obtain

an optimal solutionŴ. It can be shown that̂S = (Ŵ, V̂) is
indeed an optimal, although not necessarily unique, solution
to (PRIP). Denote byW̃(V̂) the conditional feasible set of
W given V̂. Needless to mention,̃W(V̂) is a subset ofW̃ .
For any W ∈ W̃, if (W,V) is a feasible strategy profile
in (PRIP), then (W, V̂) is also feasible. The first constraint
depends only onW. The second constraint is satisfied because
v̂
[k]
n maximizesφ[k]

n (v
[k]
n ,λ, fn) andw

[k]
n is always positive.

Therefore, anyW ∈ W̃ is also an element inW̃(V̂), which
implies W̃ ⊆ W̃(V̂). Together withW̃(V̂) ⊆ W̃ , we obtain
W̃ = W̃(V̂). This means solvingV first will not change the
feasible region ofW nor the optimal value which depends
only onW.

Maximizing φ
[k]
n (v

[k]
n ,λ, fn) over v[k]

n is exactly problem
(PSub

n[k]) in previous section. The optimal solution̂v[k]
n and

optimal valueφ̂[k]
n have been given by (IV.12) and (IV.13), re-

spectively. The beamforming strategy profileV̂ is constructed
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by v̂
[k]
n . The association strategy profilêW is obtained by

solving the following LP problem.

min
α, W∈W̃

α (P′
RIP)

s.t.
∑

n∈N

w[k]
n p̂n ≤ αP [k], ∀k ∈ K

∑

k∈K

w[k]
n φ̂[k]

n ≥ 0, ∀n ∈ N

Ŝ = (Ŵ, V̂) is then an optimal solution to (PRIP). (PRIP) is a
candidate inner problem in the Lagrangian relaxation frame-
work. Although it does not optimizeρ directly, it improves the
performance implicitly, especially in the noise-limited case, by
balancing the transmit power among BSs.

B. Power Balancing based on Group Sparse Optimization

Group sparse optimization is a popular technique for power
control in C-RAN. GSO treats beamformers of the same BS
as a group and aims to sparsify as many groups as possible in
the aggregated beamforming matrix. It is suited to address BS-
centric metrics, such as power budget, backhaul traffic capacity
in [4] and static power consumption in [17].

The GSO-based power balancing problem is similar to
(PRIP), formulated as

min
α, S∈S̃

α (PGSO)

s.t. β̂[k]
∑

n∈N

w[k]
n p̂n ≤ αP [k], ∀k ∈ K

∑

k∈K

w[k]
n φ[k]

n (v[k]
n ,λ, fn) ≥ 0, ∀n ∈ N

In the first constraint, there is a weight

β̂[k] =
1

∑

n∈N ŵ
[k]
n p̂n + τ

(V.3)

where ŵ[k]
n is the estimated solution obtained from last iter-

ation andτ is a small positive regularization constant. Let
p̂[k] =

∑

n∈N ŵ
[k]
n p̂n represent the estimated transmit power

of BS k and rewrite the first constraint as1
P [k] β̂

[k]p̂[k] ≤ α. In
the limiting situation, the left side has two possible outcomes

1

P [k]
β̂[k]p̂[k] →







1

P [k]
, p̂[k] > 0

0, p̂[k] = 0
(V.4)

BSs with largeP [k] allow a smallerα while BSs with small
P [k] tend to be shut down during the minimization ofα.

(PGSO) is solved in the same way as (PRIP). First we solve
(PSub

n[k]) for the beamforming strategy profilêV. Then for fixed

V̂, solve the simplified LP version of (PGSO), which is not
elaborated here, to obtain̂W.

C. Combination of SINR Balancing and Power Balancing

In Section IV, we optimize the asymptotic lower bound of
the SINR Balancing level in the interference-limited case by
ignoring the power constraints. In previous two subsections,
we optimize the power balancing level which has certain

advantage in the noise-limited case. The two objectives can
be combined to achieve a universally better performance.

Consider the following conceptual problem

min
ρ, S∈S̃

ρ (P2)

s.t. G(ρ)p̂ ≥ αη

The constraint is the feasibility condition ofρ based on
statement 1) in Theorem 1 takingp = p̂/α. As before,p̂
is the estimated power allocation vector andα is the power
balancing level such that̂p/α satisfies all power constraints.
The penalty term isλT (αη − G(ρ)p̂) with the Lagrangian
multiplies λ. Recall that (GT (ρ)λ)n = φn(Sn,λ, fn) =
∑

k∈K w
[k]
n φ

[k]
n (v

[k]
n ,λ, fn), if fn is updated to beρλn. The

inner problem that minimizes the penalty term subject to
additional power constraints and non-incremental condition of
ρ is formulated as follows.

min
α, S∈S̃

(λTη)α−
∑

n∈N

p̂n
∑

k∈K

w[k]
n φ[k]

n (v[k]
n ,λ, fn)

s.t.
∑

n∈N

w[k]
n p̂n ≤ αP [k], ∀k ∈ K (Pin

2 )

∑

k∈K

w[k]
n φ[k]

n (v[k]
n ,λ, fn) ≥ 0, ∀n ∈ N

(Pin
2 ) can be considered as a combination of the two inner

problems (PRIP) and (Pin
1′), which minimizes the power balanc-

ing level α and maximizes a weighted sum of signal-minus-
interference in the dual uplink channelφn(·), respectively.
Again, (Pin

2 ) can be solved in two steps. The beamforming
strategy profileV̂ consists ofv̂[k]

n given by (IV.12). Then by
replacingφ[k]

n (v
[k]
n ,λ, fn) with the valueφ̂[k]

n given by (IV.13),
(Pin

2 ) is simplified to an LP problem and solved for̂W.

D. Algorithm Design

Before proposing the iterative Lagrangian relaxation algo-
rithms, we shall address some non-trivial problems, such as the
estimation of the power allocation vectorp̂. p̂ can be updated
by (III.5) in each iteration. In fact,̂p can be scaled arbitrarily
because the actual power allocation vector is adjusted by the
power balancing levelα. Moreover,p̂ is merely an estimation
and need not be precise during intermediate steps. Tested by
simulation, (III.7) is also an eligible candidate. To makep̂
concordant with its role as an estimated power vector, we
formally adopt (III.5) to calculatêp in the algorithm.

Another problem is that the returned solution is in the
relaxed feasible set̃S = W̃ ×V. Each user may be associated
with multiple BSs as a result. When the system architecture,
such as C-RAN, supports data sharing in the backhaul, the
result leads to a dynamic BS clustering scheme. Otherwise,
the returned association strategyW ∈ W̃ should be cast
into a feasible strategyW† ∈ W, which will degrade the
performance inevitably. The casting procedure is simply to
select the BS that provides the largest power, namely, let

w[k]†
n =

{

1, k = arg max
j

w[j]
n

0, otherwise
(V.5)
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If a user is allowed to associate with multiple BSs, a partial
casting procedure is also practicable.w

[k]
n is cast intow[k]†

n

only when max
k

w
[k]
n is larger than some thresholdθ indicating

that usern has a dominant resource provider. Otherwisew
[k]
n

remains unchanged. Such partially cast association strategy is
denoted byW‡ with

w[k]‡
n =







w[k]†
n , max

j
w[j]

n ≥ θ

w[k]
n , otherwise

(V.6)

Both the fully castW† and partially castW‡ are adopted to
evaluate the performance of the algorithms.

Now the algorithms can be consolidated as follows. By
solving the different inner problems (PRIP), (PGSO) and (Pin

2 )
and fully castingW(t) to W

†(t), the algorithms are named as
Algorithm RIP, Algorithm GSO and Algorithm 2, respectively.
By partially castingW(t) to W

‡(t), the algorithms are named
as Algorithm RIP(JP), Algorithm GSO(JP) and Algorithm
2(JP), respectively, where JP stands for joint processing of
the data by multiple BSs.

Algorithm RIP / GSO / 2 (JP)

1 Initialize λ(0) > 0, 1Tλ(0) = 1, andf(0);
2 while |ρ(t)− ρ(t− 1)| > ǫ do
3 Updatet = t+ 1;
4 Solve (PRIP) or (PGSO) or (Pin

2 ) for S(t);
5 Updateλ(t) = x(BT (S(t))), 1Tλ(t) = 1,

ρ(t) = ρ(B(S(t))), f(t) = ρ(t)λ(t), and p̂(t) given
by (III.5);

6 end
7 CastW(t) to W

†(t) or W‡(t);
8 Calculatep∗ by (III.5) for S

∗ = (W†(t),V(t)) or
(W‡(t),V(t));

Output: S
∗ andp∗.

The algorithms proposed in this section inherit the frame-
work of Algorithm 1′ in last section with different inner prob-
lems (PRIP), (PGSO) and (Pin

2 ). These problems do not optimize
ρ directly but improvesρ under an analytical guidance.ρ is
guaranteed to converge. In addition, the stopping criterionǫ
can be adjusted to tradeoff the running time and precision of
the algorithms.

VI. SIMULATION RESULTS

We conduct simulations for Algorithm 1, Algorithm RIP,
Algorithm GSO and Algorithm 2 in downlink MISO systems
with different power budgets. Algorithm 1 and Algorithm
2 are also tested in downlink SISO system for comparison
with the algorithms in the literature [16]. Because we study
a general system architecture in this paper, the channel be-
tween any transmit antenna and any user is generated from
i.i.d. zero-mean unit-variance circularly-symmetric Gaussian
distribution. The noise power and weight of SINR are assumed
to be equal for all users. Specifically, we letγn = 1 and
ηn = η for all n ∈ N . The power budgets of BSs are
heterogeneous. We let the maximum and minimum power
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Fig. 1. Balanced SINR forN = 15, K = 6, M [k] = 8 and power budget
tuple being(100, 100, 10, 10, 10, 10)w.
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Fig. 2. Balanced SINR forN = 15, K = 6, M [k] = 8 and power budget
tuple being(100, 100, 100, 100, 10, 10)w.

budgets be20dB and 10dB, respectively. We monitor the
performance for SNR= min

k
P [k]/η ranging from0 to 30dB.

The demonstrated results are averaged over1000 Monte-Carlo
samples.

In the first three figures, we run the proposed algorithms
and plot the balanced SINRγn/ρ = 1/ρ for the downlink
MISO systems withN = 15, K = 6 and M [k] = 8
for all k ∈ K. The power budget tuples in Fig. 1 to Fig.
3 are(100, 100, 10, 10, 10, 10)w, (100, 100, 100, 100, 10, 10)w
and(100, 80, 60, 40, 20, 10)w, respectively, which are assigned
randomly to the BSs. The upper bound is the balanced SINR
in the absence of noise and power constrains. It can be seen
that Algorithm 1 approaches the upper bound asymptotically
at high SNR. On the other hand, RIP-based and GSO-based
algorithms which focus on power balancing has better perfor-
mance at low SNR. Algorithm 2 exploits the advantageous
features of these algorithms and achieves a comprehensively
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Fig. 3. Balanced SINR forN = 15, K = 6, M [k] = 8 and power budget
tuple being(100, 80, 60, 40, 20, 10)w.
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Fig. 4. Averaged size of BS clusters for casting thresholdθ = 0.9 with the
same system setting as in Fig. 1.

better performance.
In general, partial casting together with joint processing

achieves better performance than full casting. The difference
is evident for Algorithm RIP and Algorithm RIP(JP) in Fig.
1. Fig. 4 shows the average BS cluster size, which is the
average number of associated BS per user, for partial casting
algorithms with a casting thresholdθ = 0.9. It is clear that Al-
gorithm RIP(JP) ends up with larger BS cluster size, compared
with Algorithm GSO(JP) and Algorithm 2(JP). Consequently,
performance degradation is severer for Algorithm RIP(JP)
under inappropriate casting. By inappropriate casting we mean
that a considerable number of users turn out to associate with
the low-power BSs. The problem is alleviated when there are
more high-power BSs in Fig. 2, or when the power budgets
are more balanced in Fig. 3.

The BS cluster size resulted by Algorithm GSO(JP) is
smaller, because GSO-based algorithms tend to shut down as
many low-power BSs as possible. As a result, the performance

is affected less by inappropriate casting. Compared with RIP-
based algorithms, this feature of GSO is advantageous in some
systems as in Fig. 1 and disadvantageous in some systems as
in Fig. 3. In Fig. 2, RIP-based algorithms and GSO-based al-
gorithms are approximately equally good. Nevertheless, GSO-
based algorithms are useful in dealing with other BS-centric
metrics, which is not elaborated in this paper.

Overall, Algorithm 2 is a fairer way to manage imbalanced
power budgets. It has acceptable performance at both low
and high SNR. When joint processing is allowed, Algorithm
2(JP) also yields a more flexible and smaller BS cluster
size. Therefore, we choose Algorithm 1 and Algorithm 2 to
compare with the algorithms DLSum and DLSumA proposed
in [16] for downlink SISO systems. The simulated system has
N = 15 users andK = 12 single-antenna BSs. There are
4 macro BSs with power budget20dB and8 pico BSs with
power budget10dB.

The comparison algorithms DLSum and DLSumA proposed
in [16] are based on uplink-downlink duality. In DLSum, the
assocation strategy is obtained by solving the dual uplink
problem subject to sum power constraint via an iterative
method. Then for fixed association strategy, the power alloca-
tion vector in the downlink is calculated iteratively. The steps
in DLSum are similar to Algorithm 1. The multiple per BS
power constraints are ignored in Algorithm 1 but replaced by
the sum power constraint in DLSum. The power allocation
vector is found by a closed-form solution in Algorithm 1 but
iteratively in DLSum. Therefore, in terms of complexity of
the algorithms, DLSum and Algorithm 1 are essentially the
same, if we had also chosen to find the power allocation
vector iteratively. However, Algorithm 1 outperforms DLSum,
as is shown in Fig. 5. This is because connecting the uplink
and downlink by the same sum power is not adequate in the
presence of multiple per BS power constraints. Rather than
sum power, the performance is more limited by interference
and the tightest power constraint. In some cases where inter-
ference is more vital, ignoring the multiple power constraints
yields better performance than relaxing them to be a single
sum power constraint.

The other comparison algorithm DLSumA is an advanced
version of DLSum. The authors of [16] propose DLSumA
in consideration of the imbalanced power budgets of BSs in
HetNet. DLSumA transfers the imbalanced power budgets to
amplification on CSI and calculates the effective sum power
returned by DLSum. Then DLSum is run again based on
the effective sum power. Although DLSumA remedies the
deficiency due to sum power relaxation to some extent, the
underlying principle is the same as DLSum, namely connect-
ing uplink and downlink by the same sum power. As can
be seen in Fig. 5, DLSum and DLSumA approach the same
asymptotic value at high SNR, which is inferior to the upper
bond achieved asymptotically by Algorithm 1 and Algorithm
2. In terms of complexity, DLSumA is twice as complex as
DLSum. The complexity of Algorithm 2 is difficult to quantify
due to the adopted RIP technique. However, in each iteration
of Algorithm 2, the complexity is bounded by that of an LP
problem. Also, the inner problem in each iteration is well-
grounded to decreaseρ.
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Fig. 5. Balanced SINR forN = 15, K = 12, M [k] = 1 and power budget
tuple being(100, 100, 100, 100, 10, 10, 10, 10, 10, 10, 10, 10)w.

VII. C ONCLUSION

In this paper, we design user-BS association strategy, beam-
forming strategy and power allocation vector to balance SINR
in downlink multicell MISO systems. The problem is divided
into two main steps which solve for the strategies and power
allocation vector separately. We propose algorithms based on
Lagrangian relaxation with various inner problems. In the
interference-limited case, the inner problems minimize the
asymptotic lower bound of the SINR balancing level. We also
design inner problems to minimize the power balancing level,
which improves the balanced SINR implicitly, based on RIP
and GSO. The two objectives are then combined to achieve a
comprehensively better performance. Intuitively, the problems
are designed in consideration of two limiting factors, namely
interference and the tightest power constraint. Theoretically,
the problems are well-founded by statements in Theorem 1
and Lemma 1. Simulation results show that the proposed
algorithms outperform the existing algorithms designed for the
downlink SISO system. In addition, a dynamic BS clustering
scheme is produced as a byproduct. The various designs of
the inner problem exhibit the extensibility of the framework.
For instance, GSO-based algorithms can be extended to allow
for other practical BS-centric metrics in future works.
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