Fun with Information Engineering and Security
Summer 2024

Day 3 (Aug-02, Fri)

- § Department of
8 Information Engineering



Why does input validation matter?

* Well, there’s only so much cryptography can do

* In fact, even cryptographic guarantees often depend
upon the correctness of software implementations

= Likewise for network (security) protocols

e Vulnerable software not only breaks the desired
security control policies; sometimes allow attackers
to completely take over a device

= This is often how botnets are being built



How does software get exploited?

e A lot of the times, a process (a running software)
gets a purposely crafted malicious input from an
attacker

* And because of an insufficiently thorough (or a
complete lack of) input validation, such inputs get
through

= Some can then crash the process (breaks availability)

= Some can then extract sensitive information (breaks
confidentiality)

= Some can then execute arbitrary code (attackers can
do whatever the want)



How does software get exploited?

e Inputs can come in many different forms, e.g.,

o [nputs from Web forms

Email Sign Up Form
We would love to be in touch with you! Please sign up to r

o |[nputs from command line

Please complete all information below:

o Email attachments
= Configuration files
o Environment variables

(000) 000-000

= Parameters from Inter-Process
Communication (IPC) communication

= PDUs (frames/packets/segments)
from network



Another example

 Web contents can be dynamically generated by
server-side scripts (e.g., PHP)

o “PHP: Hypertext Preprocessor” is a recursive acronym

e In PHP, passthru(string) executes string as command

passthru

(PHP 4, PHP 5, PHP 7, PHP 8)
passthru — Execute an external program and display raw output

Description

passthru(string $command, int &$result_code = null): ?false

The passthru() function is similar to the exec() function in that it executes a command. This function should be used in place of exec() or
system() when the output from the Unix command is binary data which needs to be passed directly back to the browser. A commaon use for
this is to execute something like the pbmplus utilities that can output an image stream directly. By setting the Content-type to image/gif and

then calling a pbmplus program to output a gif, you can create PHP scripts that output images directly.




Another example

e Imagine a simple PHP-based Web page that displays
a user’s usage log (e.g., a Web portal for checking
printing quota)

echo 'Your usage log:<br />';
Susername = S_GET['username'];
passthru(“cat /logs/usage/Susername”);

* Since attacker can choose the username on the Web
page, it can put “;” in the input to run additional
command with the PHP daemon’s user privilege
(depending on the system config, can be root), e.g.,

= username = john; rm -rf /home



R E————————————
This type of threat is not hypothetical

A very common threat to Websites, especially those
that uses a relational database

Application
\éVeb User Server
o "OWSET Input Query Database
& |
Web Result

Page Set



R E————————————
Cross Site Scripting (XSS)

« A common security threat to Web due to problems
in input validation

e It is a bit different from SQL injection, in the sense
that XSS is more about attacking users of a Website

= SQL injection, on the other hand, tends to be more
about attacking the Website itself



A historic example of Stored XSS

e Back in the days, myspace.com was a popular social
network site, and users can post custom HTML code
on their personal pages

e To prevent abuse, myspace blocks many things, e.g.
o Tags: <scripts>, <body>, <a href=javascript:foo()>
= As well as the onclick event

 However, a clever guy figured out how to
workaround these blocks



A historic example of Stored XSS

e Result = the “Samy worm” aka “JS.Spacehero worm”

= |Infects anyone who visits an infected myspace page,
and adds Samy as a friend on myspace

= Samy got millions of friends within 24 hours

* This kind of problem still occasionally haunts online
forums/message boards, where users are free to
type in long inputs, which will then be stored on the
server and served to other users at a later time



How to defend against these?

 Need to properly encode +

validate user inputs )
’ @ovase g

= Sometimes this is easier said
than done; creative attackers Preventing Cross-Site Scripting
(see the myspace example)

Prevention?

* Never trust user input
* Never trust user input
* Never trust user input

e Learn and use features from . Never st weer inout
. . * Never trust user input
the underlying programming . Never trust user input

* Never trust user input

|anguage tO hEIp you « Never trust user input



How to defend against these?

e Encoding: “escapes” (preprocess) the user input so
that it will be interpreted as data, not code

e Validation: checks that the user input is expected
w.r.t your assumptions

= E.g., not longer than a certain length, not containing
malicious commands



How to defend against these?

e Examples of encoding functions

= In PHP: htmlspecialchars(string, flags)

Performed translations

Character Replacement

&(ampersand)  samp;

" (double squot ;, unless ENT_NOQUOTES is set
quote)

' (single quote) &#039; (for ENT_HTML401) or 5apos; (for ENT_XML1, ENT_XHTML or ENT_HTMLS), but only when
ENT_QUOTES is set

< (less than) &lt;

> (greater than) sgt;

- htmlspecialchars("<a href="test'>Test</a>")
- &lt;a href=&#039;test&#039;&gt; Test&It;/a&gt;
= In ASP.NET: Server.Html|Encode(string)

* Similar to PHP’s htmlspecialchars()



How to defend against these?

e [n some programming languages, for specific
scenarios (e.g., Web request), some built-in
validation features exist, e.g.,

= In ASP.NET: validateRequest
* Looks for a hardcoded list of patterns (blacklist)

* Crashes the page if it finds
un-encoded HTML code

° A potentially dangerous Request.Form value was detected from the client (_ctil="<script").
(SUCh as the <script> tag) rEmE - R
lllllllllllll v i« asirpt).
. Sewrce Error:
IN the reauest content . P E———————————
iocatien of the exception can be idencified uPiDg the eACEpTion BTack trace beliow.
Stack Trace:
B potential dangerces Reguest.Form value was detected from
tpRequest.val idateString(String 5, Siring valuehame, String collectionName)
ccccccccccccccccc tionName)

.........
.gat_Formi
-------




R EECE—————
SQL Injection

 Many Websites assemble user inputs as part of the
SQL query, without thorough input validation

o SQL = structured query language, is a domain-specific language
commonly used to manage data in relational database systems

SELECT * FROM

phonebook WHERE
username = ‘John’
AND password =
‘open_sesame’
o @

John’s phonebook
entries are displayed




SQL Injection

e An attacker can then inject additional logic/command to
bypass checks and/or cause harm

oo

e Use “--” to render rest of the original query ineffective (turn it
into comment)

SELECT * FROM phonebook
WHERE username = ‘John’

John’ OR 1=1 -- OR 1=1

not needed

All phonebook
entries are displayed




SQL Injection

e An attacker can then inject additional logic/command to
bypass checks and/or cause harm

oo

e Use “--” to render rest of the original query ineffective (turn it
IntO Comment) DO NOT TRY THIS ON REAL WEBSITES

(they should have defenses, but what if they don’t?)

SELECT * FROM phonebook
WHERE username = ‘J’;
DROP TABLE phonebook;

J’ ; DROP TABLE phonebook; --

@

s All phonebook

entries are removed




How to defend?

e Be very careful when you assemble user inputs into
SQL commands

= Sanitize/filter inputs, strip special symbols

o |Instead of allowing free text, if possible, perhaps use
elements like radio buttons to limit the input space

(® Option A
Option B
Option C

Option D



What is buffer overflow?

e Can think of it as another input validation problem

e In programming languages (e.g., C/C++) where
memory management is done by the programmer,
inputs related to memory access are not properly
validated

e Because of that, various exploits exist

= Sometimes the program can be induced into reading
from unexpected addresses

= Sometimes can overwrite existing values stored on the
memory



Memory layout of a C program

e To better understand (and exploit) buffer overflow,
it’s useful to first look at the memory layout

e Text segment: program code 20000

Text Low Address

= Begins at low address Data

Heap

= Normally read-only

« Data segment: global/static OxEEEE | o | High Address
variables + constants

 Heap and stack: dynamically variables



Memory layout of a C program

e Heap: dynamically allocated storage space via the likes of
malloc() and new()

#include <stdio.h=
int main()

{ char *p=(char*)nalloc(sizeof (char));  /* memory allocating in heap segnent +/ |~  C  [\@exen| OV Address
} B Data
Heap
o Stack: local variables + :
passing parameters to functions + ;
return address of a function call OxEEEE | g g |High Address

= Each function call results in an activation record being
added to the stack

= This is also why too many recursions can lead to
segmentation fault



Memory layout of a C program

e Heap vs stack

= They share the same space

= Grow towards each other 0x0000  [NEIIIN Low Address

Data

Heap

* Note: sometimes the diagram
will be drawn in reverse OxEEEE | o | High Address
(upside down)

o pay attention to the position
of high and low addresses



I EEEEEEEE———————————.
Stack

e Stack is “last in, first out” (LIFO)
e Basic operation: push, pop
= Both on to/from the top of the stack

e Each function call results in an activation record
being pushed to the top of the stack

o Each function return results in an activation record
being popped from the top of the stack



(Lack of) Input Validation strikes again

« Now we can look at buffer overflow (BOF) attacks

e Imagine a function has buffers void foo(int a, int b, int c) {
of limited sizes on its stack char buffer1[13];

* Due to input validation problems, |’ ain( {
e.g., no boundary checks, one foo(1,2,3);
could read/write beyond the }
boundary of some buffers




(Lack of) Input Validation strikes again

* In some languages, programmers are expected to
manage memory themselves, and perform their own
boundary checks

* In C, many functions DO NOT have built-in length checks
* strcpy (char *dest, const char *src)

* strcat (char *dest, const char *src)

o getS (Char *S) No boundary checks ...

who’s to blame?

* scanf (const char *format, ... )

* sprintf (conts char *format, ...)




(Lack of) Input Validation strikes again

* Increasingly, many new languages take matter into
their own hands, and feature boundary checks
without bothering the programmer

= E.g., Python, Java, Rust, ...
= Perhaps a better fit for programmer’s expectation

e But loads of important software
. . . No boundary checks ...
still written in C/C++ who' to blame?

= E.g., OSes, loT firmware, ...




What’s the harm?

 Here are some possibilities

= Overread can lead to exposure of sensitive info

o E.g., OpenSSL

e
heartbleed bug

S Example: TLS heartbeat + heartbleed
* Server’s private key 3
» The lack of a message length check

can be stolen can be used to induce a
buffer over-read

e Attack can obtain chunks of
server’s memory

= might contain private keys and other sensitive data
(e.g. passwords or previous messages sent by clients)

 Led to all kinds of key revocation and new
certificates being issued ...




EEES—S——————————————.
What’s the harm?

 Here are some possibilities

= Overwrite some critical variable and change the
program behaviour

* We will try this in the challenge

= Qverwrite return address with invalid address =>
can crash the program (DoS; breaks availability)

o Overwrite return address with meaningful address =>
may lead to arbitrary code execution



How to defend?

 First and foremost, do boundary checks
= But programmers keep forgetting
e What else can we do?
o StackGuard
s NX bit
o ASLR



————
How to defend? (StackGuard)

* A runtime checking technique

e Compiler adds code to a function call’s prologue and
epilogue, to add and check a special “canary” value

= “canary in a coal mine”

- detect the presence of carbon monoxide

= While smashing the stack, if the “canary”
value doesn’t look right, then the program knows
something is wrong

Frame 2 Frame 1




Stack guard in action

#include <stdio.h>
#include <string.h>

void echo(char *inp) {
int a = 10; Copy and paste this code to
char b1[2]; https://www.onlinegdb.com/online ¢ compiler
strcpy(bl, inp);
printf("echo:\n");
printf("%s\n", bl);

then click “run”

}

int main() { Now try to give a long input

char input[10];
printf("what is your input?\n");
scanf("%s", input);

*¥** stack smashing detected ***: terminated
Aborted

echo(input);



https://www.onlinegdb.com/online_c_compiler

How to defend? (StackGuard)

e The presence of canary makes it more difficult to
smash the stack, but not impossible

= There are different ways of choosing the canary value

« Random? How random?

* Sometimes if the attacker can guess the canary value,
then stack smashing can still work

= In some cases, can target the error handler (called
when the canary is dead)

o |f interested, more technical details can be found at

https://www.coresecurity.com/sites/default/files/private-
files/publications/2016/05/StackguardPaper.pdf



https://www.coresecurity.com/sites/default/files/private-files/publications/2016/05/StackguardPaper.pdf
https://www.coresecurity.com/sites/default/files/private-files/publications/2016/05/StackguardPaper.pdf




	Slide 1: Fun with Information Engineering and Security Summer 2024
	Slide 2: Why does input validation matter?
	Slide 3: How does software get exploited?
	Slide 4: How does software get exploited?
	Slide 5: Another example
	Slide 6: Another example
	Slide 7: This type of threat is not hypothetical
	Slide 8: Cross Site Scripting (XSS)
	Slide 9: A historic example of Stored XSS
	Slide 10: A historic example of Stored XSS
	Slide 11: How to defend against these?
	Slide 12: How to defend against these?
	Slide 13: How to defend against these?
	Slide 14: How to defend against these?
	Slide 15: SQL Injection
	Slide 16: SQL Injection
	Slide 17: SQL Injection
	Slide 18: How to defend?
	Slide 19: What is buffer overflow?
	Slide 20: Memory layout of a C program
	Slide 21: Memory layout of a C program
	Slide 22: Memory layout of a C program
	Slide 23: Stack
	Slide 24: (Lack of) Input Validation strikes again
	Slide 25: (Lack of) Input Validation strikes again
	Slide 26: (Lack of) Input Validation strikes again
	Slide 27: What’s the harm?
	Slide 28: What’s the harm?
	Slide 29: How to defend?
	Slide 30: How to defend? (StackGuard)
	Slide 31: Stack guard in action
	Slide 32: How to defend? (StackGuard)
	Slide 33

