
Fun with Information Engineering and Security
Summer 2024

Day 3 (Aug-02, Fri)

Why does input validation matter?

• Well, there’s only so much cryptography can do

• In fact, even cryptographic guarantees often depend
upon the correctness of software implementations

▫ Likewise for network (security) protocols

• Vulnerable software not only breaks the desired
security control policies; sometimes allow attackers
to completely take over a device

▫ This is often how botnets are being built

How does software get exploited?

• A lot of the times, a process (a running software)
gets a purposely crafted malicious input from an
attacker

• And because of an insufficiently thorough (or a
complete lack of) input validation, such inputs get
through

▫ Some can then crash the process (breaks availability)

▫ Some can then extract sensitive information (breaks
confidentiality)

▫ Some can then execute arbitrary code (attackers can
do whatever the want)

How does software get exploited?

• Inputs can come in many different forms, e.g.,

▫ Inputs from Web forms

▫ Inputs from command line

▫ Email attachments

▫ Configuration files

▫ Environment variables

▫ Parameters from Inter-Process
Communication (IPC) communication

▫ PDUs (frames/packets/segments)
from network

▫ …

Another example

• Web contents can be dynamically generated by
server-side scripts (e.g., PHP)

▫ “PHP: Hypertext Preprocessor” is a recursive acronym

• In PHP, passthru(string) executes string as command

Another example

• Imagine a simple PHP-based Web page that displays
a user’s usage log (e.g., a Web portal for checking
printing quota)

• Since attacker can choose the username on the Web
page, it can put “;” in the input to run additional
command with the PHP daemon’s user privilege
(depending on the system config, can be root), e.g.,

▫ username = john; rm -rf /home

echo 'Your usage log:
';
$username = $_GET['username'];
passthru(“cat /logs/usage/$username”);

This type of threat is not hypothetical

• A very common threat to Websites, especially those
that uses a relational database

Web

browser

Application

Server

Database

User

Input Query

Web

Page

Result

Set

Cross Site Scripting (XSS)

• A common security threat to Web due to problems
in input validation

• It is a bit different from SQL injection, in the sense
that XSS is more about attacking users of a Website

▫ SQL injection, on the other hand, tends to be more
about attacking the Website itself

A historic example of Stored XSS

• Back in the days, myspace.com was a popular social
network site, and users can post custom HTML code
on their personal pages

• To prevent abuse, myspace blocks many things, e.g.

▫ Tags: <scripts>, <body>,

▫ As well as the onclick event

• However, a clever guy figured out how to
workaround these blocks

A historic example of Stored XSS

• Result = the “Samy worm” aka “JS.Spacehero worm”

▫ Infects anyone who visits an infected myspace page,
and adds Samy as a friend on myspace

▫ Samy got millions of friends within 24 hours

• This kind of problem still occasionally haunts online
forums/message boards, where users are free to
type in long inputs, which will then be stored on the
server and served to other users at a later time

How to defend against these?

• Need to properly encode +
validate user inputs

▫ Sometimes this is easier said
than done; creative attackers
(see the myspace example)

• Learn and use features from
the underlying programming
language to help you

How to defend against these?

• Encoding: “escapes” (preprocess) the user input so
that it will be interpreted as data, not code

• Validation: checks that the user input is expected
w.r.t your assumptions

▫ E.g., not longer than a certain length, not containing
malicious commands

How to defend against these?

• Examples of encoding functions

▫ In PHP: htmlspecialchars(string, flags)

 htmlspecialchars("Test")

 Test

▫ In ASP.NET: Server.HtmlEncode(string)

 Similar to PHP’s htmlspecialchars()

How to defend against these?

• In some programming languages, for specific
scenarios (e.g., Web request), some built-in
validation features exist, e.g.,

▫ In ASP.NET: validateRequest

 Looks for a hardcoded list of patterns (blacklist)

 Crashes the page if it finds
un-encoded HTML code
(such as the <script> tag)
in the request content

SQL Injection

• Many Websites assemble user inputs as part of the
SQL query, without thorough input validation

▫ SQL = structured query language, is a domain-specific language
commonly used to manage data in relational database systems

Phonebook Record

Manager

John

open_sesame

Username

Password

Submit

DeleteDisplay
John’s phonebook

entries are displayed

SELECT * FROM

phonebook WHERE

username = ‘John’
AND password =

‘open_sesame’

SQL Injection

• An attacker can then inject additional logic/command to
bypass checks and/or cause harm

• Use “--” to render rest of the original query ineffective (turn it
into comment)

All phonebook

entries are displayed

SELECT * FROM phonebook

WHERE username = ‘John’

OR 1=1 --’ AND password =

‘not needed’

Phonebook Record

Manager

John’ OR 1=1 --

not needed

Username

Password

Submit

DeleteDisplay

SELECT * FROM phonebook

WHERE username = ‘John’

OR 1=1 --’ AND password =

‘not needed’

SQL Injection

• An attacker can then inject additional logic/command to
bypass checks and/or cause harm

• Use “--” to render rest of the original query ineffective (turn it
into comment)

All phonebook

entries are removed

SELECT * FROM phonebook

WHERE username = ‘John’

OR 1=1 --’ AND password =

‘not needed’

Phonebook Record

Manager

J’; DROP TABLE phonebook; --

not needed

Username

Password

Submit

DeleteDisplay

SELECT * FROM phonebook

WHERE username = ‘J’ ;

DROP TABLE phonebook;

--’ AND password = ‘not

needed’

DO NOT TRY THIS ON REAL WEBSITES
(they should have defenses, but what if they don’t?)

How to defend?

• Be very careful when you assemble user inputs into
SQL commands

▫ Sanitize/filter inputs, strip special symbols

▫ Instead of allowing free text, if possible, perhaps use
elements like radio buttons to limit the input space

What is buffer overflow?

• Can think of it as another input validation problem

• In programming languages (e.g., C/C++) where
memory management is done by the programmer,
inputs related to memory access are not properly
validated

• Because of that, various exploits exist

▫ Sometimes the program can be induced into reading
from unexpected addresses

▫ Sometimes can overwrite existing values stored on the
memory

Memory layout of a C program

• To better understand (and exploit) buffer overflow,
it’s useful to first look at the memory layout

• Text segment: program code

▫ Begins at low address

▫ Normally read-only

• Data segment: global/static
variables + constants

• Heap and stack: dynamically variables

Memory layout of a C program

• Heap: dynamically allocated storage space via the likes of
malloc() and new()

• Stack: local variables +
passing parameters to functions +
return address of a function call

▫ Each function call results in an activation record being
added to the stack

▫ This is also why too many recursions can lead to
segmentation fault

Memory layout of a C program

• Heap vs stack

▫ They share the same space

▫ Grow towards each other

• Note: sometimes the diagram
will be drawn in reverse
(upside down)

▫ pay attention to the position
of high and low addresses

Stack

• Stack is “last in, first out” (LIFO)

• Basic operation: push, pop

▫ Both on to/from the top of the stack

• Each function call results in an activation record
being pushed to the top of the stack

▫ Each function return results in an activation record
being popped from the top of the stack

(Lack of) Input Validation strikes again

• Now we can look at buffer overflow (BOF) attacks

• Imagine a function has buffers
of limited sizes on its stack

• Due to input validation problems,
e.g., no boundary checks, one
could read/write beyond the
boundary of some buffers

void foo(int a, int b, int c) {
 char buffer1[13];
 … …
}
void main() {
 foo(1,2,3);
}

(Lack of) Input Validation strikes again

• In some languages, programmers are expected to
manage memory themselves, and perform their own
boundary checks

 In C, many functions DO NOT have built-in length checks

 strcpy (char *dest, const char *src)

 strcat (char *dest, const char *src)

 gets (char *s)

 scanf (const char *format, ...)

 sprintf (conts char *format, ...)

 … …

No boundary checks …
who’s to blame?

(Lack of) Input Validation strikes again

• Increasingly, many new languages take matter into
their own hands, and feature boundary checks
without bothering the programmer

▫ E.g., Python, Java, Rust, …

▫ Perhaps a better fit for programmer’s expectation

• But loads of important software
still written in C/C++

▫ E.g., OSes, IoT firmware, …

No boundary checks …
who’s to blame?

What’s the harm?

• Here are some possibilities

▫ Overread can lead to exposure of sensitive info

▫ E.g., OpenSSL
heartbleed bug

 Server’s private key
can be stolen

What’s the harm?

• Here are some possibilities

▫ Overwrite some critical variable and change the
program behaviour

 We will try this in the challenge

▫ Overwrite return address with invalid address =>
can crash the program (DoS; breaks availability)

▫ Overwrite return address with meaningful address =>
may lead to arbitrary code execution

How to defend?

• First and foremost, do boundary checks

▫ But programmers keep forgetting

• What else can we do?

▫ StackGuard

▫ NX bit

▫ ASLR

How to defend? (StackGuard)

• A runtime checking technique

• Compiler adds code to a function call’s prologue and
epilogue, to add and check a special “canary” value

▫ “canary in a coal mine”

 detect the presence of carbon monoxide

▫ While smashing the stack, if the “canary”
value doesn’t look right, then the program knows
something is wrong

Now try to give a long input

*** stack smashing detected ***: terminated
Aborted

Stack guard in action

#include <stdio.h>
#include <string.h>

void echo(char *inp) {
int a = 10;
char b1[2];
strcpy(b1, inp);
printf("echo:\n");
printf("%s\n", b1);

}

int main() {
char input[10];
printf("what is your input?\n");
scanf("%s", input);

echo(input);
}

Copy and paste this code to
https://www.onlinegdb.com/online_c_compiler

then click “run”

https://www.onlinegdb.com/online_c_compiler

How to defend? (StackGuard)

• The presence of canary makes it more difficult to
smash the stack, but not impossible

▫ There are different ways of choosing the canary value

 Random? How random?

 Sometimes if the attacker can guess the canary value,
then stack smashing can still work

▫ In some cases, can target the error handler (called
when the canary is dead)

▫ If interested, more technical details can be found at
https://www.coresecurity.com/sites/default/files/private-
files/publications/2016/05/StackguardPaper.pdf

https://www.coresecurity.com/sites/default/files/private-files/publications/2016/05/StackguardPaper.pdf
https://www.coresecurity.com/sites/default/files/private-files/publications/2016/05/StackguardPaper.pdf

	Slide 1: Fun with Information Engineering and Security Summer 2024
	Slide 2: Why does input validation matter?
	Slide 3: How does software get exploited?
	Slide 4: How does software get exploited?
	Slide 5: Another example
	Slide 6: Another example
	Slide 7: This type of threat is not hypothetical
	Slide 8: Cross Site Scripting (XSS)
	Slide 9: A historic example of Stored XSS
	Slide 10: A historic example of Stored XSS
	Slide 11: How to defend against these?
	Slide 12: How to defend against these?
	Slide 13: How to defend against these?
	Slide 14: How to defend against these?
	Slide 15: SQL Injection
	Slide 16: SQL Injection
	Slide 17: SQL Injection
	Slide 18: How to defend?
	Slide 19: What is buffer overflow?
	Slide 20: Memory layout of a C program
	Slide 21: Memory layout of a C program
	Slide 22: Memory layout of a C program
	Slide 23: Stack
	Slide 24: (Lack of) Input Validation strikes again
	Slide 25: (Lack of) Input Validation strikes again
	Slide 26: (Lack of) Input Validation strikes again
	Slide 27: What’s the harm?
	Slide 28: What’s the harm?
	Slide 29: How to defend?
	Slide 30: How to defend? (StackGuard)
	Slide 31: Stack guard in action
	Slide 32: How to defend? (StackGuard)
	Slide 33

