
Fun with Information Engineering and Security
Summer 2024

Day 2 (Aug-01, Thur)

Basic Terminology

• “Crypto”, from Greek, means “hidden” or “secret”

• “graph”, also from Greek, means “write”

• So literally “cryptography” is to write secret

• Cryptocurrency vs 加密貨幣

▫ Hidden currency? What does “加密” mean? Encryption? Or
“With cryptography”?

• Cryptozoology

▫ The study of legendary/hidden creatures

 Existence often disputed/unsubstantiated

▫ Not the study of encrypted animals

Basic Terminology

• Encryption – scramble data in a way that only
authorized parties can understand the information

• A very common (but not the only) way of achieving
confidentiality

• The encryption output usually looks “random” and
unintelligible

Basic Terminology

• Encryption in general can be classified based on the
number of keys involved in a scheme

10. No keys (wrong!)

 That’s not proper encryption, more like encoding

11. “Secret key” crypto (a.k.a symmetric key crypto)

 Communication parties all share the same key

12. “Public key” crypto (a.k.a asymmetric key crypto)

 Each party have a pair of keys

These are not encryption

No keys,
known
(public)
algorithms

Basic Terminology

• Cipher – Algorithms for Encryption & Decryption

• Plaintext – Original Message

• Ciphertext – Transformed (encrypted) Message

• (Secret) Key – Secret used in the transformations

• Correctness – Get the message back from ciphertext
(encrypted under key k), using decryption under the
same key k

▫ Dk (Ek(x)) = x

▫ We want to transform, not “destroy” the message

Shift Cipher

• Cryptanalysis

▫ Can an attacker find K?

 Yes, by a bruteforce attack (do an exhaustive key search)

 Because key space is small (26 possible keys)

• Lessons learnt:

 Key space needs to be large enough

Mono-alphabetic Substitution Cipher

• Key space: all permutations of {A, B, C, ..., Z}

▫ each key is an invertible mapping

• For each letter x in plaintext P, Enck(x):

▫ replace x with k(x)

• For each letter y in ciphertext C, Deck(y):

▫ replace y with k-1(y)

k

AZDBJLZ

Mono-alphabetic Substitution Cipher

• Now exhaustive search is difficult

▫ key space has a size of 26! ≈ 288

• Thought to be unbreakable for many years

• How to break it?

• Use features of the plaintext!

Frequency Analysis

• Each language has certain features:

▫ Frequency of letters/groups of 2+ letters

• Substitution ciphers generally preserve such features

• Hence they’re susceptible to frequency analysis
attacks

Frequency of Letters in English

0

2

4

6

8

10

12

14

a b c d e f g h i j k l m n o p q r s t u v w x y z

Stream Ciphers:

• Idea: stretch a short “random” key into a long
enough “pseudorandom” key

• Use a PRNG: {0, 1}s → {0,1}n n >> s

▫ Deterministic algorithm to expand a short
(e.g., 128-bit) random seed into a long enough key that
“looks random”

• Secret key is the seed

• Ek(m) = m PRNG(k), Dk(c) = c PRNG(k)

PRNG and Stream Cipher

• Security of a stream cipher depends on its PRNG

▫ Some PRNG are weak: knowing some amount of
output bit sequence, can recover seed (key)

 DO NOT use such PRNG to build stream ciphers,
otherwise might lead to key recovery attacks

▫ Some are thought to be cryptographically secure, but
turns out to be biased

 E.g., RC4

PRNG and Stream Cipher

• Security of a stream cipher depends on its PRNG

▫ Want PRNG to generate unpredictable sequences

 Given consecutive sequence of output bits (but not the
seed), the next bit must be hard to predict

▫ Otherwise

c

 m

key stream

G(k)|1,..,i → G(k)|i+1

e.g., fields in message/packet headers
might be easy to figure out

(^ TCP, v HTTP)

Examples of weak PRNGs

• Do not use these for cryptographic needs

Middle-square method

Linear Congruential Generator (LCG)
w/ parameters a, b, p

R[i] = a*R[i-1]+b mod p

R is the sequence of PRN
R[0] = seed

random() in glibc is a variant of LCG
R[i] = R[i-3]+R[i-31] mod 232

output R[i] >> 1

Examples of Stream Ciphers

• RC4: broken, CSS (DVD): broken

• Salsa20 (and ChaCha) has shown good potential

▫ Android’s Google services sometimes use ChaCha

Why Block Ciphers?

• Remember how we got here?

• We were trying to defeat frequency analysis

▫ Use different key value in different position

 Example: stream ciphers

▫ Another way: make the unit of transformation larger,
rather than encrypting letter by letter, encrypting block
by block

 Example: block ciphers

Block Ciphers

• An n-bit plaintext (block) is encrypted to an n-bit ciphertext

▫ P : {0,1}n

▫ C : {0,1}n

▫ K : {0,1}s

▫ E: K ×P → C : Ek: a Pseudo Random Permutation on {0,1} n

▫ D: K ×C → P : Dk is Ek
-1

▫ Block size: n

▫ Key size: s

Ek

How to defeat frequency analysis –
Block Cipher style
• Diffusion

▫ Substitution is done in a way that changing 1 bit in the
plaintext will propagate to as many ciphertext bits as
possible

• Confusion

▫ Each bit of the key will affect as many bits as possible of the
output ciphertext block

• These are the 2 cornerstones of block cipher designs

▫ Also referred to as the “avalanche effect”

Data Encryption Standard (DES)
• Designed by IBM, with modifications proposed by the National Security

Agency, US national standard from 1977 to 2001

• Block size is 64 bits, Key size is 56 bits, Has 16 rounds

• Good diffusion: on average 1 bit change to the input block affects 34
bits of the output block

• Good confusion: on average 1 bit change to the key affects 35 bits of the
output block

• Designed mostly for hardware implementations

▫ Software implementation is somewhat slow

• Considered insecure now

▫ Vulnerable to brute-force attacks

▫ Mainly due to its short key size

AES Features

• Designed to be efficient in both hardware and
software across a variety of platforms.

• Block size: 128 bits

• Variable key size: 128, 192, or 256 bits.

• No known design weaknesses to this date

▫ But there are occasionally some implementation
and deployment issues

Putting block ciphers into good use

• A block cipher encrypts only one block

• Need a way to extend it to encrypt arbitrarily long
messages (more useful)

▫ Block cipher modes of operation

 There are many modes in practice, but for simplicity we
will talk about 2 here.

Block Cipher Operation Modes: ECB

• Electronic Code Book (ECB): each block
encrypted (and decrypted) separately

▫ Message is broken into independent blocks

▫ X = x0 || x1 || x2 || … || xn

▫ C = c0 || c1 || c2 || … || cn

▫ Encryption: ci = Ek(xi)

▫ Decrytion: xi = Dk(ci)

• Both E & D are parallelizable

▫ No data dependencies between
blocks

Properties of ECB

• Deterministic:

▫ the same data block gets encrypted the same way

 reveals patterns of data when a data block repeats

 can think of this as “frequency feature” at the block level

▫ when the same key is used, the same message is
encrypted the same way

• Usage: not recommended to encrypt more than one
block of data

Block Cipher Operation Modes: CBC
• Cipher Block Chaining (CBC):

▫ Uses a random Initial Vector (IV)

▫ Next input depends upon previous output

Encryption: Ci= Ek (MiCi-1), with C0=IV

Decryption: Mi= Ci-1Dk(Ci), with C0=IV

not both E & D are parallelizable

Properties of CBC

• Randomized encryption: repeated input blocks will be mapped
to different ciphertext blocks

• Usage: chooses random IV

▫ Note: the IV is not secret (it is part of ciphertext)

▫ Thus the ciphertext will be at least 1 block longer than the plaintext

Some block cipher modes of operation
need padding

• Recall that a block cipher on its own deals with
transforming (en/decryption) 1 block of input

• What if size(msg) is not a multiple of size(block)?

▫ Well, we can add some number of padding bytes to
make size(msg) = k * size(block)

Introducing PKCS#7 padding

• Pad input with x bytes of hex value x to make the total
size a multiple of size(block)

▫ e.g. size(block) = 8

• What if size(msg) is already a multiple of size(block)?

▫ Can we use no padding in this case?

▫ No, because that’d be ambiguous

 how would the decrypting side know size(padding) = 0?

 the last byte of payload might be misrecognized as padding

… … | DD DD DD DD DD DD DD DD | DD DD DD DD 04 04 04 04 |

Introducing PKCS#7 padding

• If size(msg) is already a multiple of size(block), we
add a whole block of padding, with x = size(block)

▫ e.g. size(block) = 8

• Mathematically

▫ x = size(block) – (size(msg) mod size(block))

• Note: AES has a block size of 16 bytes (128 bits)

• And this is why a CBC ciphertext could be 2 blocks
longer than the plaintext message (IV + padding)

… … | DD DD DD DD DD DD DD DD | 08 08 08 08 08 08 08 08 |

AES CBC in practice

• Fortunately, we usually don’t (and shouldn’t)
implement our own crypto stuff

▫ Think of the development ecosystem as a supply chain;
reuse off-the-shelf components

• AES, CBC, and PKCS7 padding are all implemented
already as libraries (Python packages)

▫ These are what you will use in the challenge

▫ Remember read the documentation

 This is the SOP of many programmers

	Slide 1: Fun with Information Engineering and Security Summer 2024
	Slide 2: Basic Terminology
	Slide 3: Basic Terminology
	Slide 4: Basic Terminology
	Slide 5: These are not encryption
	Slide 6: Basic Terminology
	Slide 7: Shift Cipher
	Slide 8: Mono-alphabetic Substitution Cipher
	Slide 9: Mono-alphabetic Substitution Cipher
	Slide 10: Frequency Analysis
	Slide 11: Frequency of Letters in English
	Slide 12: Stream Ciphers:
	Slide 13: PRNG and Stream Cipher
	Slide 14: PRNG and Stream Cipher
	Slide 15: Examples of weak PRNGs
	Slide 16: Examples of Stream Ciphers
	Slide 17: Why Block Ciphers?
	Slide 18: Block Ciphers
	Slide 19: How to defeat frequency analysis – Block Cipher style
	Slide 20: Data Encryption Standard (DES)
	Slide 21: AES Features
	Slide 22: Putting block ciphers into good use
	Slide 23: Block Cipher Operation Modes: ECB
	Slide 24: Properties of ECB
	Slide 25: Block Cipher Operation Modes: CBC
	Slide 26: Properties of CBC
	Slide 27: Some block cipher modes of operation need padding
	Slide 28: Introducing PKCS#7 padding
	Slide 29: Introducing PKCS#7 padding
	Slide 30: AES CBC in practice

