
Fun with Information Engineering and Security
Summer 2024

Day 2 (Aug-01, Thur)

Basic Terminology

• “Crypto”, from Greek, means “hidden” or “secret”

• “graph”, also from Greek, means “write”

• So literally “cryptography” is to write secret

• Cryptocurrency vs 加密貨幣

▫ Hidden currency? What does “加密” mean? Encryption? Or
“With cryptography”?

• Cryptozoology

▫ The study of legendary/hidden creatures

 Existence often disputed/unsubstantiated

▫ Not the study of encrypted animals

Basic Terminology

• Encryption – scramble data in a way that only
authorized parties can understand the information

• A very common (but not the only) way of achieving
confidentiality

• The encryption output usually looks “random” and
unintelligible

Basic Terminology

• Encryption in general can be classified based on the
number of keys involved in a scheme

10. No keys (wrong!)

 That’s not proper encryption, more like encoding

11. “Secret key” crypto (a.k.a symmetric key crypto)

 Communication parties all share the same key

12. “Public key” crypto (a.k.a asymmetric key crypto)

 Each party have a pair of keys

These are not encryption

No keys,
known
(public)
algorithms

Basic Terminology

• Cipher – Algorithms for Encryption & Decryption

• Plaintext – Original Message

• Ciphertext – Transformed (encrypted) Message

• (Secret) Key – Secret used in the transformations

• Correctness – Get the message back from ciphertext
(encrypted under key k), using decryption under the
same key k

▫ Dk (Ek(x)) = x

▫ We want to transform, not “destroy” the message

Shift Cipher

• Cryptanalysis

▫ Can an attacker find K?

 Yes, by a bruteforce attack (do an exhaustive key search)

 Because key space is small (26 possible keys)

• Lessons learnt:

 Key space needs to be large enough

Mono-alphabetic Substitution Cipher

• Key space: all permutations of {A, B, C, ..., Z}

▫ each key is an invertible mapping

• For each letter x in plaintext P, Enck(x):

▫ replace x with k(x)

• For each letter y in ciphertext C, Deck(y):

▫ replace y with k-1(y)

k

AZDBJLZ

Mono-alphabetic Substitution Cipher

• Now exhaustive search is difficult

▫ key space has a size of 26! ≈ 288

• Thought to be unbreakable for many years

• How to break it?

• Use features of the plaintext!

Frequency Analysis

• Each language has certain features:

▫ Frequency of letters/groups of 2+ letters

• Substitution ciphers generally preserve such features

• Hence they’re susceptible to frequency analysis
attacks

Frequency of Letters in English

0

2

4

6

8

10

12

14

a b c d e f g h i j k l m n o p q r s t u v w x y z

Stream Ciphers:

• Idea: stretch a short “random” key into a long
enough “pseudorandom” key

• Use a PRNG: {0, 1}s → {0,1}n n >> s

▫ Deterministic algorithm to expand a short
(e.g., 128-bit) random seed into a long enough key that
“looks random”

• Secret key is the seed

• Ek(m) = m  PRNG(k), Dk(c) = c  PRNG(k)

PRNG and Stream Cipher

• Security of a stream cipher depends on its PRNG

▫ Some PRNG are weak: knowing some amount of
output bit sequence, can recover seed (key)

 DO NOT use such PRNG to build stream ciphers,
otherwise might lead to key recovery attacks

▫ Some are thought to be cryptographically secure, but
turns out to be biased

 E.g., RC4

PRNG and Stream Cipher

• Security of a stream cipher depends on its PRNG

▫ Want PRNG to generate unpredictable sequences

 Given consecutive sequence of output bits (but not the
seed), the next bit must be hard to predict

▫ Otherwise

c

 m

key stream

G(k)|1,..,i → G(k)|i+1

e.g., fields in message/packet headers
might be easy to figure out

(^ TCP, v HTTP)

Examples of weak PRNGs

• Do not use these for cryptographic needs

Middle-square method

Linear Congruential Generator (LCG)
w/ parameters a, b, p

R[i] = a*R[i-1]+b mod p

R is the sequence of PRN
R[0] = seed

random() in glibc is a variant of LCG
R[i] = R[i-3]+R[i-31] mod 232

output R[i] >> 1

Examples of Stream Ciphers

• RC4: broken, CSS (DVD): broken

• Salsa20 (and ChaCha) has shown good potential

▫ Android’s Google services sometimes use ChaCha

Why Block Ciphers?

• Remember how we got here?

• We were trying to defeat frequency analysis

▫ Use different key value in different position

 Example: stream ciphers

▫ Another way: make the unit of transformation larger,
rather than encrypting letter by letter, encrypting block
by block

 Example: block ciphers

Block Ciphers

• An n-bit plaintext (block) is encrypted to an n-bit ciphertext

▫ P : {0,1}n

▫ C : {0,1}n

▫ K : {0,1}s

▫ E: K ×P → C : Ek: a Pseudo Random Permutation on {0,1} n

▫ D: K ×C → P : Dk is Ek
-1

▫ Block size: n

▫ Key size: s

Ek

How to defeat frequency analysis –
Block Cipher style
• Diffusion

▫ Substitution is done in a way that changing 1 bit in the
plaintext will propagate to as many ciphertext bits as
possible

• Confusion

▫ Each bit of the key will affect as many bits as possible of the
output ciphertext block

• These are the 2 cornerstones of block cipher designs

▫ Also referred to as the “avalanche effect”

Data Encryption Standard (DES)
• Designed by IBM, with modifications proposed by the National Security

Agency, US national standard from 1977 to 2001

• Block size is 64 bits, Key size is 56 bits, Has 16 rounds

• Good diffusion: on average 1 bit change to the input block affects 34
bits of the output block

• Good confusion: on average 1 bit change to the key affects 35 bits of the
output block

• Designed mostly for hardware implementations

▫ Software implementation is somewhat slow

• Considered insecure now

▫ Vulnerable to brute-force attacks

▫ Mainly due to its short key size

AES Features

• Designed to be efficient in both hardware and
software across a variety of platforms.

• Block size: 128 bits

• Variable key size: 128, 192, or 256 bits.

• No known design weaknesses to this date

▫ But there are occasionally some implementation
and deployment issues

Putting block ciphers into good use

• A block cipher encrypts only one block

• Need a way to extend it to encrypt arbitrarily long
messages (more useful)

▫ Block cipher modes of operation

 There are many modes in practice, but for simplicity we
will talk about 2 here.

Block Cipher Operation Modes: ECB

• Electronic Code Book (ECB): each block
encrypted (and decrypted) separately

▫ Message is broken into independent blocks

▫ X = x0 || x1 || x2 || … || xn

▫ C = c0 || c1 || c2 || … || cn

▫ Encryption: ci = Ek(xi)

▫ Decrytion: xi = Dk(ci)

• Both E & D are parallelizable

▫ No data dependencies between
blocks

Properties of ECB

• Deterministic:

▫ the same data block gets encrypted the same way

 reveals patterns of data when a data block repeats

 can think of this as “frequency feature” at the block level

▫ when the same key is used, the same message is
encrypted the same way

• Usage: not recommended to encrypt more than one
block of data

Block Cipher Operation Modes: CBC
• Cipher Block Chaining (CBC):

▫ Uses a random Initial Vector (IV)

▫ Next input depends upon previous output

Encryption: Ci= Ek (MiCi-1), with C0=IV

Decryption: Mi= Ci-1Dk(Ci), with C0=IV

not both E & D are parallelizable

Properties of CBC

• Randomized encryption: repeated input blocks will be mapped
to different ciphertext blocks

• Usage: chooses random IV

▫ Note: the IV is not secret (it is part of ciphertext)

▫ Thus the ciphertext will be at least 1 block longer than the plaintext

Some block cipher modes of operation
need padding

• Recall that a block cipher on its own deals with
transforming (en/decryption) 1 block of input

• What if size(msg) is not a multiple of size(block)?

▫ Well, we can add some number of padding bytes to
make size(msg) = k * size(block)

Introducing PKCS#7 padding

• Pad input with x bytes of hex value x to make the total
size a multiple of size(block)

▫ e.g. size(block) = 8

• What if size(msg) is already a multiple of size(block)?

▫ Can we use no padding in this case?

▫ No, because that’d be ambiguous

 how would the decrypting side know size(padding) = 0?

 the last byte of payload might be misrecognized as padding

… … | DD DD DD DD DD DD DD DD | DD DD DD DD 04 04 04 04 |

Introducing PKCS#7 padding

• If size(msg) is already a multiple of size(block), we
add a whole block of padding, with x = size(block)

▫ e.g. size(block) = 8

• Mathematically

▫ x = size(block) – (size(msg) mod size(block))

• Note: AES has a block size of 16 bytes (128 bits)

• And this is why a CBC ciphertext could be 2 blocks
longer than the plaintext message (IV + padding)

… … | DD DD DD DD DD DD DD DD | 08 08 08 08 08 08 08 08 |

AES CBC in practice

• Fortunately, we usually don’t (and shouldn’t)
implement our own crypto stuff

▫ Think of the development ecosystem as a supply chain;
reuse off-the-shelf components

• AES, CBC, and PKCS7 padding are all implemented
already as libraries (Python packages)

▫ These are what you will use in the challenge

▫ Remember read the documentation

 This is the SOP of many programmers

	Slide 1: Fun with Information Engineering and Security Summer 2024
	Slide 2: Basic Terminology
	Slide 3: Basic Terminology
	Slide 4: Basic Terminology
	Slide 5: These are not encryption
	Slide 6: Basic Terminology
	Slide 7: Shift Cipher
	Slide 8: Mono-alphabetic Substitution Cipher
	Slide 9: Mono-alphabetic Substitution Cipher
	Slide 10: Frequency Analysis
	Slide 11: Frequency of Letters in English
	Slide 12: Stream Ciphers:
	Slide 13: PRNG and Stream Cipher
	Slide 14: PRNG and Stream Cipher
	Slide 15: Examples of weak PRNGs
	Slide 16: Examples of Stream Ciphers
	Slide 17: Why Block Ciphers?
	Slide 18: Block Ciphers
	Slide 19: How to defeat frequency analysis – Block Cipher style
	Slide 20: Data Encryption Standard (DES)
	Slide 21: AES Features
	Slide 22: Putting block ciphers into good use
	Slide 23: Block Cipher Operation Modes: ECB
	Slide 24: Properties of ECB
	Slide 25: Block Cipher Operation Modes: CBC
	Slide 26: Properties of CBC
	Slide 27: Some block cipher modes of operation need padding
	Slide 28: Introducing PKCS#7 padding
	Slide 29: Introducing PKCS#7 padding
	Slide 30: AES CBC in practice

