
Lab Exercise 4 – Modern Cipher

The Chinese University of Hong Kong

Department of Information Engineering

Summer Workshop – Fun with Information Engineering and Security

Lab 4 – Modern Ciphers

Introduction

Modern ciphers are advanced encryption algorithms used to secure digital data. Unlike

traditional ciphers, which often rely on simple substitution or transposition methods,

modern ciphers employ complex mathematical techniques to ensure data

confidentiality.

In this lab, we will introduce modern ciphers, showcasing advancements in encryption

technologies used today. We will introduce some common techniques and schemes

used in modern cipher, and work on some hands-on exercises where the encryption

scheme is not applied appropriately.

Lab Exercise 4 – Modern Cipher

Section 1: Modern Ciphers

Similar to classic ciphers, modern cipher is designed to secure data by transforming

readable plaintext into unreadable ciphertext. Compared to classic ciphers, modern

ciphers utilize more complicated mathematical functions and longer keys to align with

the increased computational power. Modern ciphers can be divided into 2 categories:

Symmetric Ciphers: Uses the same key for both encryption and decryption. Examples

include AES and DES. The main types of symmetric ciphers are stream Ciphers and

Block Ciphers

Asymmetric Ciphers: Uses a pair of keys—one public and one private. The public key

encrypts the data, and the private key decrypts it. Examples include RSA and ECC.

Section 1.1: XOR operator

XOR (Exclusive OR) is an operation used in cryptography. It compares two statements

and returns True if they are different; and False if they are the same. The following

shows the truth table of “XOR” operations:

XOR

Statement 1 Statement 2 Output

True (1) True (1) False (0)

True (1) False (0) True (1)

False (0) True (1) True (1)

False (0) False (0) False (0)

*True = 1, False = 0

Consider the following:

0100 XOR 0011

= 0111

Lab Exercise 4 – Modern Cipher

Try it!

You may go to https://iesummerworkshop.github.io/pyodide.html. What are the

results of the following table? Test the operation on the website using Python to get

the result

Statement 1 Operator Statement 2 Output

10112 XOR 01002

01102 XOR 11102

3F16 XOR 4216

2A16 XOR 7B16

Hints: the XOR operator in Python is ^, where 0b declares a binary value and 0x

declares a hexadecimal value. You may use bin() and hex() to encode the output

to binary and hexadecimal values respectively.

XOR operations are widely used in symmetric key encryption. Each bit of the

plaintext combines with the corresponding bit of the key.

Section 1.2: Stream Cipher

In stream cipher, one “letter” (bit) is encrypted at a time. Because each “letter” is

masked by a different “letter”, the frequency feature of the underlying plaintext

language is not preserved. Compare this with shift cipher and monoalphabetic

substitution cipher.

The following examples show how a stream cipher works:

Given the following value:

Plaintext: 101101012

Key: 010111012

https://iesummerworkshop.github.io/pyodide.html

Lab Exercise 4 – Modern Cipher

Encryption

 Most significant bit Least significant bit

Plaintext 1 0 1 1 0 1 0 1

Key 0 1 0 1 1 1 0 1

Output 1 1 1 0 1 0 0 0

Decryption

 Most significant bit Least significant bit

Plaintext 1 1 1 0 1 0 0 0

Key 0 1 0 1 1 1 0 1

Output 1 0 1 1 0 1 0 1

Lab Exercise 4 – Modern Cipher

How do we get the long key stream? Most of the innovation goes into deriving a

cryptographically secure pseudo-random number generator (CSPRNG) that can

expand a short key (used as seed) into a long enough key stream. Whether the

CSPRNG is secure directly affect the security of the resulting stream cipher.

The following are some common stream ciphers:

RC4: Widely used in protocols like WEP/WPA for wireless security. The key length varies

from 8 to 2046 bits. It is known for its simplicity and speed but has vulnerabilities that

make it unsuitable for secure applications today.

ChaCha20: A modern stream cipher designed for high security and performance,

commonly used in protocols like TLS. The key length is 256 bits. It is highly secure as it

is constructed to resist known attacks.

[Optional] Section 1.3: Many time pad

Stream cipher can be vulnerable to attack if the same keystream is used twice or more.

If an attacker knows the ciphertext and the corresponding plaintext of one message,

they can retrieve the keystream by plaintext XOR ciphertext bit by bit. Once the

keystream is known, any other message encrypted with the same keystream can be

easily decrypted by XOR the ciphertext with the keystream. It is a known-plaintext

attack.

For example:

- We have 2 plaintext messages P1 and P2

- Assume P1 and P2 are encrypted with the same key K

Hence:

C1 = P1 ⊕ K

C2 = P2 ⊕ K

Assume the attacker knows or can guess the content of P1, the attacker can compute

Lab Exercise 4 – Modern Cipher

the key by:

K = P1 ⊕ C1

Then, the attacker can decrypt C2 with the key:

P2 = C2 ⊕ K

Try it!

Let’s try to launch a known plaintext attack. You may go to

https://iesummerworkshop.github.io/many-time-pad.html

In this demo page, the following is given:

- 3 completed ciphertext (CT1, CT2, CT3), representing each byte by hexadecimal

value

- 3 partial-completed plaintext correspond to the ciphertext (PT1, PT2, PT3),

representing each byte by hexadecimal value

- 1 partial-completed key, which is used to encrypt PT1 → CT1, PT2→CT2,

PT3→CT3

- 1 set of ciphertext for validating your key [the orange box]

Your task is to guess and recover the key by guessing the possible words in plaintext.

For example:

https://iesummerworkshop.github.io/many-time-pad.html

Lab Exercise 4 – Modern Cipher

In PT3:

The plaintext starts with wisd, what could be the English word starting with wisd?

Let’s try wisdom” ” (adding a space after a word)

After typing om” ”, the demo page computed 2 things for us (computed results are

displayed in blue):

1. The possible byte of the key (with XOR operation) [the green box]

Position Guessing Plaintext Corresponding Ciphertext Possible Key

5th byte o (6f in ASCII) 5c 33

6th byte m (6d in ASCII) 6d 43

7th byte “ ” (20 in ASCII) 75 55

2. The corresponding plaintext (PT1 and PT2 in this case), with the key in the

previous step [the red box]

Position Possible Key CT1 Possible PT1 CT2 Possible CT2

5th byte 33 4a y 47 t

6th byte 43 64 “ ” 2c o

7th byte 55 21 t 32 g

- Does the computed plaintext make sense?

- If yes, we may continue guessing the word. Iterate this process until the key is

completed.

Lab Exercise 4 – Modern Cipher

Next, click on the button.

- What is the decrypted message? It should be a meaningful message

Section 1.4: Block Cipher

Block cipher encrypts data in fixed-size blocks. The plaintext will be divided into chunks

before processing. If the data is not a multiple of the block size, padding will be added

to the final block.

Block cipher masks the underlying frequency feature by making the unit of

transformation larger (1 block at a time), rather than encrypting letter by letter (bit by

bit). As the name suggests, a block cipher encrypts block by block (which can be seen

as a pseudo-random permutation).

Encryption Modes

The encryption modes of block ciphers are techniques used to apply block ciphers to

encrypt data longer than the block size. The following are two commonly used

encryption modes of block ciphers:

1. Electronic Codebook (ECB)

In ECB mode, each block will be encrypted block by block all using the same key. Each

block undergoes encryption to produce the ciphertext blocks. Concatenate all the

ciphertext blocks to get the final result

Lab Exercise 4 – Modern Cipher

As ECB mode relies on simple XOR operation without an initialization vector and

chaining, this feature makes ECB mode vulnerable when used in AES. When 2 blocks

of plaintext are identical, the ciphertext of the 2 blocks will also be the same.

Source: https://crypto.stackexchange.com/questions/20941/why-shouldnt-i-use-ecb-

encryption

2. Cipher Block Chaining (CBC)

In CBC mode, each plaintext block is XORed with the previous ciphertext block before

https://crypto.stackexchange.com/questions/20941/why-shouldnt-i-use-ecb-encryption
https://crypto.stackexchange.com/questions/20941/why-shouldnt-i-use-ecb-encryption

Lab Exercise 4 – Modern Cipher

encryption, introducing dependency between blocks. Initialization Vector (IV) is used

as the first block.

Section 1.5: Stream vs Block cipher

 Stream Ciphers Block Ciphers

Security The security relies heavily

on the randomness and

uniqueness of the

keystream. If the same

keystream is reused, it can

lead to vulnerabilities.

Security can be affected by the

mode of operation.

Performance tend to be faster Tend to be slower and require

more processing power

Complexity tend to be simpler to

implement

Tend more complex to implement

and manage

Lab Exercise 4 – Modern Cipher

Section 2: Challenge Time

Now, please go to https://iesummerworkshop.github.io/rpg/page.html to enjoy your

challenge! Walk in front of the computer and press enter to interact with it. Mark

down the key you get!

Q1 Q2

To Lab 4

To Lab 4

http://127.0.0.1:8082/rpg/page.html

Lab Exercise 4 – Modern Cipher

1. [☆☆☆] AES decryption

Python supports third-party libraries. By using the simple command pip install, we can

install Python packages from the Python Package Index (PyPI) easily. We will be using

the 'cryptography' package to decrypt a ciphertext here. Given the key and IV, decrypt

the ciphertext using AES CBC mode. Make sure you read the hints and read the API

documentation (this is the SOP of most programmers).

2. [☆☆☆☆☆] Breaking LCG PRNG

The LCG PRNG is one of the most popular PRNG, as it is easy to understand and

implement. However, it is also cryptographically insecure (and should not be used in a

stream cipher).

You should complete the function lcg_attack<(sequence, modulus) to guess what is

the next random number based on the given sequence.

The LCG PRNG is defined as:

𝑋𝑛+1 = (𝑎𝑋𝑛 + 𝑐) 𝑚𝑜𝑑 𝑚

Where:

- a is the multiplier

- c is the increment

- m is the modulus

- X0 is the initial value of the random number sequence, also known as the seed

- X is the sequence of random number

This link might help your understanding of breaking LCG PRNG:

https://tailcall.net/posts/cracking-rngs-lcgs/

https://tailcall.net/posts/cracking-rngs-lcgs/

Lab Exercise 4 – Modern Cipher

Interact with this counter to submit the key for lab 3 and lab 4

