
Scored Anonymous Credentials

Sherman S. M. Chow1⋆ , Jack P. K. Ma1, and Tsz Hon Yuen2

1 Department of Information Engineering
The Chinese University of Hong Kong,

Shatin, N.T., Hong Kong
2 Department of Computer Science

The University of Hong Kong,
Pokfulam, Hong Kong

{smchow,mpk016}@ie.cuhk.edu.hk,thyuen@cs.hku.hk

Abstract. Securely maintaining “credits” of users judging their behav-
ior in past authenticated sessions is vital to encourage user participation,
but doing it over anonymous credentials is non-trivial, especially when
users would avoid claiming negative credit and escape from blocklisting.
Prevalent designs impose an authentication cost linear in the blocklist
size or a stringent requirement of sequential and timely judgment of each
session without retrospective adjustment, as a single unjudged session
curbs the authentication of all users. We propose scored anonymous cre-
dentials, a new design storing a number of active sessions with volatile
scores downgradable before finalized. Sessions can be judged in any or-
der and at varying times without affecting all users. Any backlog of un-
judged sessions only affects the users behind them. We achieve efficiency
and flexibility using verifiable shuffle, which is hardly used in existing
anonymous blocklisting/reputation enforcement systems.

1 Introduction

Anonymity has always been an important issue on the Internet. In the early days,
most people (wrongly) assumed anonymity on the Internet by using pseudonyms,
but the service provider (SP) might use IP addresses to identify the users.
Anonymity networks [29,36] were then developed to make tracing IP addresses
more difficult. However, this may not be directly applicable to services that re-
quire users to register and authenticate. Using the same registered pseudonym to
access the service each time links user behavior across sessions. It is possible to
uniquely profile a user across different services by collecting this information [41].

Anonymous credentials [18] ensure unlinkable authentications. However, users
may “misbehave” in some sessions exploiting their anonymity. To illustrate,
⋆ Sherman Chow is supported in part by the General Research Funds (CUHK 14210621

and 14209918), University Grants Committee, Hong Kong, and is also grateful for
their recognition in granting the Early Career Award on “Accountable Privacy in
Online Communication” (CUHK 439713). We thank Kin-Ying Yu for inspiration
from his Ph.D. thesis, and Russell Lai and reviewers for their helpful comments.

https://orcid.org/0000-0001-7306-453X
https://orcid.org/0000-0002-0629-6792


2 Sherman S. M. Chow , Jack P. K. Ma, and Tsz Hon Yuen

Wikipedia users (contributors/reviewers) may prefer their identities to be masked
so that their views would not represent any belonging organizations or commu-
nities (e.g., a company/political party) and avoid their online behavior causing
any consequence in their “real” life, especially in places with restricted freedom
of speech. On the other hand, Wikipedia has its own set of “subjective” policies
and guidelines (e.g., concerning copyright) that users must follow. Users who
violate such policies repetitively and deliberately should be penalized.

It is challenging to support subjective revocation (cf., legal contract) in anony-
mous authentication without relying on any trusted third party (TTP). Some
systems only support objective revocation based on mathematically or algorith-
mically evaluable claims of misbehavior (cf., smart contract), such as double
spending in e-cash [37,23] or double voting [24]. Revocable anonymous creden-
tials [19,17,3,2,28] often assume users to be revoked had been deanonymized
by some external means. TTP-based approaches, such as group/traceable sig-
natures, require a revocation authority to use a non-public database gathered
when the user first joins the system [22,7] or a secret key to recover the signer
identity [26,7] or create a tracing token [1,48]. The TTP is assumed not to violate
user privacy unnecessarily. Simply, “off-the-shelf” credentials themselves do not
support TTP-free subjective revocation [44].

Generalizing revocation, reputation can be used as a basis for granting privi-
leges to special services or imposing limitations on users based on their behaviors.
It is important to encourage participation, especially when participation may po-
tentially incur a revocation or real-life consequences. A large-scale online anony-
mous community has already been developed. For example, Bernstein et al. [10]
showed that over 90% of posts are anonymous on 4chan.org, which has a million
posts per day3 and 22+ million unique monthly users. However, registration is
not needed for posting anonymously in these forums currently. So, reputation
cannot be maintained. We refer to [35] for a survey on reputation management.

Updatable anonymous credential is useful for adding reputation. Each user
is associated with a reputation score, an aggregated sum of all individual rep-
utations decided by the SP (possibly after hearing from other users) one gains
from each contribution. A high reputation could mean the user has successfully
helped many others and can be considered more trustworthy. Reputation can
also somewhat mitigate sybil attacks since an attacker would need to give up
any previously earned reputation for registering anew.

1.1 A Critical Review of Existing Systems

Existing (updatable) anonymous credential systems with subjective revocation,
however, are designed for applications with lower traffic and anonymity needs
(e.g., assuming anonymity is needed for 20% of all Wikipedia posts and is meant
to handle about 100, 000 anonymous posts per day [4,5]). They are not suitable
for a large-scale community with millions of posts per day, e.g., Reddit.

3 Statistic at https://4stats.io

https://orcid.org/0000-0001-7306-453X
https://orcid.org/0000-0002-0629-6792
https://4stats.io


Scored Anonymous Credentials 3

All works reviewed below assume one SP serving many clients. There is no
separate (trusted) entity for revocation. For simplicity, this line of works assumes
the SP is both the credential issuer and verifier, and has the final say in the score
for each session, which can be published on a public bulletin board.

After a successful user authentication, the SP will assign a publicly-known
session identifier. The user credential will be attached to a ticket associated to the
session identifier. These two terms are often used interchangeably in this paper.

Table 1 compares known systems in terms of their desired properties.

Blocklisting/Reputation with Linear (Proving) Cost. BLAC [44] and EPID [13]
are two early TTP-free systems. Their blocklist consists of “deterministic tags”
directly available from the authentication transcripts of sessions that should be
blocklisted. Revocation is done by proving that the user secret in the credential
could not have generated any tag in the blocklist. This takes O(L) time, where
L is the blocklist size. Moreover, the blocklist never shrinks. It can become
very long quickly since malicious users are motivated to keep damaging (e.g.,
spamming or committing vandalism) in a short period before getting caught.
The whole system keeps slowing down as times go by, affecting all (honest) users.

BLACR [5] extends BLAC to also support reputation with three lists, L+,
L−, and LB, storing the tags of positively scored, negatively scored, and blocked
sessions, respectively. Authentication now runs in O(|L+| + |L−| + |LB|) time,
which is even worse than BLAC’s O(L) time complexity, where L = |LB|.

SNARKBlock [43] improves BLAC with an optimized zkSNARK-based proof
protocol that allows reusing proofs against chunks of unchanged blocklist. If a
session is later unblocked, all must recompute the proof w.r.t. the affected chunk.

Discouraging Infrequent Users. To tackle the linear complexity, BLACR was
extended into BLACR-Express [5] with checkpoints. Suppose a user has passed
an authentication after the i-th checkpoint in the blocklist; the SP marks the
value i on the credential. Any future blocklist checking of this updated credential
only needs to be done with respect to ∆L entries put into the blocklist after the
i-th checkpoint. This discourages infrequent users from logging in since their
authentication request before catching up with the latest checkpoint will be
slower and stand out from the crowd, degrading their anonymity. Users are
motivated to rush to get their express passes, forcing the SP to handle a burst
of requests at each checkpoint, which might result in a denial of service.

Stringent Timelines for Blocklisting. PEREA [45] changes the authentication
semantic for reducing the O(L) complexity to O(K), where K is the fixed number
of tickets in a credential. Each authentication replaces the oldest of the K tickets
with a new one, so misbehavior must be caught within the “revocation window”
of K authentications. Since malicious users are motivated to wash off their bad
records, it imposes a stringent requirement for the SP to evaluate each session
sequentially and timely. The same applies to FAUST [38] and PERM [4]. In
Table 1, PERM is marked to have no score consistency since the washing-out
problem makes the credential score inconsistent with the judgment intention.



4 Sherman S. M. Chow , Jack P. K. Ma, and Tsz Hon Yuen

Table 1. Summary of Related Work: Halt-free systems should have complexity inde-
pendent on any global list, without halting authentication due to a single hard-to-judge
session; SNARKBlock is like BLAC, and PEREA is like PERM in this table.

Scheme Halt-free Score Consistency Rate Limit Cred. Update Dynamic Judgment
BLAC ✗ ✗ ✗ Full Flexibility
BLACR ✓ ✗ Non-“Checkpointed”
PERM ✗ ✗ ✗ ✓ Block-then-Forgive
PE(AR)2 ✓ ✗ ✓ Block-then-Forgive
FARB ✗ ✓ ✓ ✓ Block-then-Forgive
SAC ✓ ✓ ✓ ✓ Before Finalization

Block First, Forgive Later. PERM and PE(AR)2 [47], which do not prove w.r.t.
the whole global list, only support score upgrades – an easy option as a user is
motivated to claim them. Indeed, PE(AR)2 does not force redeeming of negative
scores by itself. Also, the SP might take strict “block-first-forgive-later” measures.

Unavoidably Halting Innocent Users. PERM [4] takes the revocation-window
model further, which forces the session identifiers to increase sequentially. The
goal is to remove the use of accumulator in PEREA [45] for reducing user com-
putation (albeit with a slightly higher server-side cost) via using a global judg-
ment pointer pointing to the latest authenticated session that has been judged
(e.g., free from misbehavior). The eldest unjudged session of every credential
should not be “too far away” from the global pointer for successful authentica-
tion. FARB [46] further exploits the sequential order assumption, which replaces
K disjunctive proofs (judged or unjudged) with simply one range proof.

Such an authentication semantic forbids any user from redeeming the judged
session in an arbitrary order (or it violates the increasing-identifier invariant).
The existence of one hard-to-judge session will affect “innocent” users who have
nothing to do with that session to an even greater extent than PEREA (which
essentially maintains a local judgment pointer compared by counting).

Moreover, even when the global halting is “lifted,” i.e., that controversial
session is eventually finalized, all users are motivated to redeem all redeemable
sessions in a rush, similar to the checkpoint design of BLACR-Express [5].

We stress that this is a design oversight of all these systems under the
revocation-window model, creating a technical restriction incompatible with op-
erational characteristics. In other words, ideally, the fact that some sessions take
longer to judge should only affect their originators but not all system users.

1.2 Our Contribution

We propose scored anonymous credentials (SAC) with a number of features.

Avoiding Queue Structure or Disjunctive Proof. All K tickets a user holds are
assigned with an initial score, e.g., 0, at their creation time. These tickets are
marked as “active” and can only be removed from the credential when the SP

https://orcid.org/0000-0001-7306-453X
https://orcid.org/0000-0002-0629-6792


Scored Anonymous Credentials 5

finalizes them. This is in contrast to PERM/PEREA, which always removes the
oldest ticket and adds a new one to the credential upon authentication.

To assure the SP of the ticket statuses in a credential, authentication requires
proving that each ticket is either an active one with a volatile score, a judged
one with a finalized score, or a dummy ticket. Instead of the apparent need for a
disjunctive proof (extensively used in PERM/PEREA), we employ a signature-
based set membership proof for each ticket (with its optimization and complexity
to be described shortly) against a global ticket list with volatile/finalized scores.

Shuffling and Summing Up All Tickets. The user can redeem (and remove) any
finalized or dummy tickets. To highlight a novelty of our new design, we do
not use complicated zero-knowledge proof (ZKP) to explicitly force a user to
redeem/claim a session that is finalized or with its volatile score downgraded.
Instead, we use the same signature-based set membership proof to force the
inclusion of all tickets (of any status) via a summation of all (volatile/finalized)
scores. To privately prove/update this metadata, we employ verifiable shuffle and
dummy tickets so the SP/user can judge/redeem tickets in an arbitrary order.
To the best of our knowledge, no related systems so far use verifiable shuffle.

Solving the Global-halting Problem. As a major innovation, SAC deviates from
the two prevalent designs – reliance on a global judgment pointer (e.g., PERM)
or global checkpoints (e.g., BLACR), while still being efficient. The SP can keep a
“problematic” session pending prolonged judgment “active” with a volatile score.
A credential is only blocked from further authentication if it has K unjudged
sessions. Users who are not involved with the problematic cases just authenticate
as usual. This leads to “intelligent” rate-limiting tracing back to originating users.

Flexibility of Scoring. Supporting active sessions allows an assignment of volatile
scores before finalization, making SAC scoring mechanism highly flexible and free
from any chronological order of judgment. The SP could temporarily assign a
negative score to the session in question, leading to a more natural and benign
authentication semantic in which a user with a higher reputation (many prior
positive scores) is less likely to be blocked abruptly due to one potential wrong-
doing. Yet, once the wrongdoing is confirmed, the session status can be changed
from active to finalized, and the user could still be (permanently) banned. More-
over, our efficient ZKP over the status of all sessions in a credential also enables
downgradable scores, while prior works might support only block-then-forgive.

Flexible Anonymity-Efficiency Trade-off. The use of verifiable shuffle ensures
an updated credential remains unlinkable to its old version sharing some old
tickets. SAC thus features a dynamic buffer size4 K. Users with fewer/more than
K tickets can pad/remove dummy tickets during each authentication. Frequent
users are more willing to choose a larger K, either actually storing many active
sessions or having some of them being dummy sessions of score 0. Less frequent
4 It is non-trivial to reduce the queue size of PEREA/PERM while preserving privacy.



6 Sherman S. M. Chow , Jack P. K. Ma, and Tsz Hon Yuen

users can opt for a smaller K, which leads to a faster authentication time. This
is similar to ring signatures or related techniques [23], in which one can choose
which user groups (cf., those using a particular suggested buffer size in SAC) to
hide inside. As the SP knows the number of tickets to be removed, the users can
agree to remove one (dummy or judged) ticket per authentication for anonymity.

High Efficiency via Optimized Cryptographic Techniques. As explained, a key
idea to support redeeming of judged sessions in an arbitrary order is to leverage
verifiable shuffle, a building block yet to be explored by the research line of TTP-
free anonymous credentials with blocklist and reputation. This ensures that the
set of sessions is correctly shuffled across the old credential and an updated one.
A breakthrough of Bayer and Groth [9] features a “minimal” communication
bandwidth of O(

√
K) for shuffling K commitments with almost linear complex-

ity in proving and verification. Recent advances in (succinct) zero-knowledge
argument of knowledge (e.g., Bulletproofs [14]) reduce the communication costs
to O(logK) with higher computational costs for the prover and verifier.

Our construction also includes some other optimization for better efficiency.
Recall that each authentication ZK-proves that some of its past tickets are in
the active ticket list. Like PERM, we do not use pairing-based accumulators [2];
but instead of enforcing a sequential ticket order in a credential to simplify the
membership proof, we use a constant-size signature-based set membership proof,
albeit without incurring global halting caused by one controversial session.

To claim the score of judged tickets, PERM uses ZKP of signatures, which
results in O(K) pairings and exponentiations. We equip our signatures with an
efficient batch verification algorithm accompanied by its zero-knowledge version.
It takes O(K) exponentiation and O(1) pairing only, which greatly improves the
efficiency. The use of disjunctive proofs in PERM prevents batching operations.

Finally, we empirically show that SAC outperforms existing related systems,
given the simplicity of our design and the cryptographic techniques we employed.

Concurrent Work. SMART [39] extends FARB [46] into a multi-queue design
to alleviate the time pressure of finalizing a hard-to-judge session. Each queue
keeps tickets that have undergone the same number of transient judgments. A
transient judgment takes its effect or is “redeemed” in each authentication, which
moves the corresponding ticket from one queue to another. As a credential can be
seen as multiple credentials (using the implicit queue design of FARB) bundled
together, sequential judging is still enforced per queue but does not affect other
queues. This reduces the global-halting effect of sequential judging with a linear
cost in the number of queues. However, it requires a more complex ZKP to hide
the queue number during redemption. On the other hand, SMART marks the
“version” of each transient judgment independently, while enforcing score updates
in SAC involves expiring all previously signed judgments and issuing new ones
(Section 3.5). In Table 1, SMART shares the same characteristics as SAC.

https://orcid.org/0000-0001-7306-453X
https://orcid.org/0000-0002-0629-6792


Scored Anonymous Credentials 7

2 Definitions

2.1 Syntax of Scored (or Blocklistable) Anonymous Credentials

We first formulate an abstract definition for anonymous credentials, modeling
the two kinds of interactions between users and the service provider (SP). After
the SP sets up the whole system, each user registers with the SP anonymously
to obtain a credential. A user can then use it to authenticate to the SP. For SAC,
the SP updates the public information to reflect the new score or status assigned
to each session according to the action carried out by its user.

We use an existing notation [47] of 2PC(U(inU ),S(inS))→ {U(outU ),S(outS)}
to represent parties U and S interact via the respective U and S portion of the
2-party computation protocol 2PC taking ini and outputting outi for i ∈ {U ,S}.

Definition 1. Anonymous credentials involve the algorithms/protocols below.
Setup(1λ)→ (pp, sk): The SP inputs in a security parameter λ, and outputs

a secret key sk for the SP itself and the public parameter pp.
Reg(U(pp),S(pp, sk)) → {U(cred,A),S(pp′)}: The user U inputs the public

parameter pp, while the SP S takes pp and the secret key sk as input. Upon
completion, the user outputs a credential cred and an attribute set A, while the
SP outputs an updated public parameter pp′.

Auth(U(pp, cred,A, f),S(pp, sk, f))→ {U(b, cred′,A′), S(b, pp′)}: The user U
inputs the public parameter pp, its credential cred, its attributes A, and the same
access policy f , while the SP S inputs the public parameter pp, the secret key sk,
and an access policy f . Upon completion, U outputs a bit b indicating whether au-
thentication is successful, an updated credential cred′, and updated attributes A′,
while S outputs the same bit b and an updated public parameter pp′.

Update(pp, sk, aux)→ pp′: The SP inputs the public parameter pp, the secret
key sk, and auxiliary information aux, capturing the score assigned to a certain
session as recorded by Auth in pp′. It outputs an updated public parameter pp′.

Prior Formulations. Earlier works [45,38,5,4] never explicitly give a syntactic
framework of blockable anonymous credentials or those also supporting reputa-
tion. A notable exception is PE(AR)2 [47], which features a standalone redemp-
tion protocol that updates a credential according to the SP-side update given
by two separate algorithms for revocation and scoring (a session) run by the SP.

Our SAC formulation forces the redemption of any negative finalized score
(not supported by PE(AR)2) and hence encapsulates the redemption protocol in
Auth, the authentication protocol. For a generic treatment, we also encapsulate
all kinds of assignments of score/status into one Update algorithm run by the SP.

In contrast to the different designs of prior works, our definition is generic
for an abstract authentication semantic purely based on an attribute set A as a
user secret input and an authentication policy f as a common public input.

In what follows, we will also supplement details specific to SAC, e.g., what
are in pp, with discussions of alternatives in some prior works.



8 Sherman S. M. Chow , Jack P. K. Ma, and Tsz Hon Yuen

Credential Attributes. In SAC (and systems like PERM/PEREA), the credential
encoding attributes A stores session identifiers U = {t1, . . . , tK} originated from
each session (e.g., a forum post or a Wikipedia edit) and score(s) s to be checked
against the access policies, e.g., whether they exceed certain thresholds.

Session Judgment. Public session judgments made by the SP are reflected in the
updatable public parameter pp. In SAC, pp contains a list LA = {(tj , sj , σj)} of
active judgments and a list LJ = {(tj , σ̂j)} of finalized, judged tickets, where tj
is a ticket unique to each session and sj is the session score. PERM maintains
only LA; while PEREA also maintains LJ as a list of blocked tickets.

All entries are accompanied by σj or σ̂j , possibly different forms of signatures
issued by the SP. The use of signature varies according to instantiations, which
we omit for brevity in parts of our later discussion. Particularly, for SAC, the
signatures in LJ are for set membership proof. We often use a “compact” form
L = {(ti, si, σi, ∅/σ̂i} that combines L{A,D,J}. For ti ∈ LA \LJ, the last entry is ∅.

In alternative formulation (e.g., PEREA), LJ could contain a single (public)
cryptographic object, e.g., accumulator, instead of many signatures. LA might
also be a cryptographic object storing key-value pairs.

Workflow. Below supplements details of SAC calling the (abstract) algorithms:

1. (SAC.Setup) The service provider (SP) setups the credential system.
– It runs KGen(1λ)→ (pp, sk), where sk is the secret credential-issuance key.
– For public parameters pp, its static part contains the cryptographic pa-
rameters and the public (verification) key corresponding to sk. It also defines
default values like the list LD of dummy tickets, and the base score s0 for
the initial attributes A0. Its dynamic part contains initially empty lists LA

and LJ of active and judged tickets with scores, and a set for recording the
nonce revealed by the user during authentication.

2. (SAC.RegU ↔ SAC.RegS) A user registers to the SP to obtain a credential.
– The user and SP run Reg(U(pp),S(pp, sk))→ {U(cred,A0),S(pp′)}.
– The initial attributes A0 = (x, q, s0,U) contain user secret x, a nonce q
(both kept secret from the SP), an initial score s0, and a user ticket set U,
which will be initialized with a set of dummy tickets UD (as defined by pp).

3. (SAC.AuthU ↔ SAC.AuthS) A user who holds a valid credential from SAC.Reg
authenticates via Auth(U(pp, cred,A, f),S(pp, sk, f)), where policy f checks:
– Nonce q has not been previously used by any authentication.
– Judged tickets in UJ = (U ∩ LJ) are (required5 to be) cleared out.
– The credential score s plus the score of all tickets in U satisfies f .
It outputs ⊥ if the check fails; otherwise, it updates the credential attributes:
– Judged or dummy ticket(s) are removed from U. (Users can redeem any
number of dummy tickets, i.e., the set T containing tickets from (UD ∪UJ).)
– Nonce q is replaced by a new one (unknown to the SP) chosen by the user.
– Their scores are accumulated to s.
– A new ticket t, chosen by the SP, is appended to the user’s credential.

5 In PERM/PEREA, the oldest ticket would be removed even if it is not yet judged.

https://orcid.org/0000-0001-7306-453X
https://orcid.org/0000-0002-0629-6792


Scored Anonymous Credentials 9

– Dummy tickets are padded to maintain |U| = K (if needed).
The SP assigns t with an initial score 0 and updates LA with (t, s, σ) applied
as an active (and unjudged) session. The SP also records q in pp′.

4. (SAC.Update) The SP can judge the ticket t with a score s using its key by
running Update(pp, sk, (t, s))→ pp′ that appends (t, s) (with a signature) to
list LA. Alternatively, it can also finalize t by adding it to list LJ. The list of
signatures on (t, s) (and t) is made public and is managed by the SP.

2.2 Security Requirements

We consider the requirements of blocklistable anonymous credentials [45,38,5,4].
At a high level, SAC should satisfy the following properties:

– Completeness. An honest user can be authenticated by an honest SP if its
credential satisfies the access policy, i.e., fpp(A) = 1.

– Soundness. A user must hold a valid credential encoding A, i.e., fpp(A) = 1,
to authenticate. The updated attribute A′ follows specifications in Auth.

– Anonymity. The SP can only learn whether an authenticating user satis-
fies the authentication policy. The SP cannot distinguish the authentication
requested by user i ∈ {0, 1} with attributes Ai if fpp(A0) = fpp(A1).

Soundness. We consider soundness against malicious users similar to and largely
relies on the soundness of the underlying ZKP. It covers scoring consistency, i.e.,
a malicious user cannot claim a ticket owned by others or a wrong score.

In SAC, although a user can choose to “procrastinate” in claiming the score of
judged sessions U∩LJ, the scores of all tickets in U are still counted toward the
authentication policy. All tickets are initially in an active state, e.g., (ti, sti , σti) ∈
LA for all tickets ti in the system. Scoring consistency requires the score s′

computed as a sum of users’ current score s (taking one attribute slot in the
credential) and those of the past tickets

∑
t∈U st is consistent with LA and LJ.

Anonymity. Anonymity is defined against a passive SP (strictly stronger than
eavesdroppers) trying to deanonymize a user who is invoking an authentication
instance. Due to the correct functionality, the authentication policy f can dis-
tinguish whether (the credential of) a user satisfies the required score threshold.
The best anonymity guarantee only holds modulo what is inferrable from f .

Active attacks manipulating f or the score of a session are excluded. For ex-
ample, the SP, leveraging its role, could put a session of question to the blocklist
for identifying if the user being authenticated has originated the now blocked
session. Such manipulations are noticeable publicly and leave evidence. A user
can refuse to carry out the authentication and possibly complain against the SP.

In more detail, SAC is anonymous if any adversary can only win the anonymity
game below with probability negligibly better than a random guess:

1. Adversary A runs Setup and outputs the public parameter pp.
2. A can instruct a user controlled by challenger C to run Reg with A. If the

protocol outputs a valid credential, C stores it with a unique user identifier.



10 Sherman S. M. Chow , Jack P. K. Ma, and Tsz Hon Yuen

3. A can instruct registered users controlled by C to run Auth over a policy f
with A as the SP. If the user’s credential does not pass f , C outputs ⊥ to A.

4. A picks two users u0, u1, and sends them to C.
5. C checks if both u0, u1 pass the policy check f . If so, it flips a coin b ∈ {0, 1}

and runs Auth using ub’s credential, else it outputs ⊥.
6. A wins if it guesses b correctly and C does not output ⊥ in Step 5.

One might consider unlinkability, in which the SP cannot tell whether the
same user is authenticating. The unlinkability game can be captured by having
the adversary pick a user u in Step 4, and the challenger randomly authenticates
with a random valid user or u. Intuitively, it is captured by anonymity since the
SP only learns if fpp(A) returns 1 during authentication. This is similar to the
equivalence between “left-or-right” and “real-or-random” formulations.

Alternatively, one could formulate a simulation-based definition, requiring the
transcript of different Auth instances to be uncorrelated from those of the same
user or the Reg instance. More formally, it asks for a probabilistic polynomial-
time simulator that can simulate the view of a corrupted SP in Auth. The ideal
functionality is in Appendix D.

3 Proposed System

3.1 Building Blocks

Zero-Knowledge Proof-of-Knowledge (ZKPoK). We use a ZKPoK system with
correctness, soundness, knowledge extraction, and zero-knowledgeness. It in-
volves a three-move commit-challenge-response Σ-protocol. In the random oracle
model, it can be converted into non-interactive signatures/proofs of knowledge.

We use the notation from Camenisch and Stadler [20], like PoK{(α, ρ) : z =
gαhρ}, to denote such proof of (α, ρ) where z = gαhρ holds. Multiple ZKPoK
protocols could be chained into a bigger one for multiple conditions. Compared
to ZKPoK, a zero-knowledge argument of knowledge (ZKAoK) is a proof system
that satisfies soundness property against any computationally-bounded prover.

Set Membership Proof. Given a commitment C = gihρ with g, h ∈ G1 to a
value i and randomness ρ, a set membership proof is a ZKPoK that i belongs to
some discrete set Φ. The proof PSet of Camenisch et al. [16] uses the selectively-
secure Boneh–Boyen (BB) signature [11]. The SP with the signature key pair
(x,w = fβ) ∈ Zp ×G2 alongside with (g′, g′β) ∈ G2

1 (required by the underlying
simulator) publishes signatures σ̂i = g

1
β+i ∈ G1 \ {1G1} on values i in set Φ. The

prover picks r ∈R Zp, and computes V = σ̂r
i and V ′ = V −igr. The proof consists

of (V ̸= 1G1
, V ′) and the PoK: PoK{(i, r, ρ) : C = gihρ; V ′ = V −igr} as follows.

1. The prover picks s, t, u ∈R Zp and sends a = V −sgt, D = gshu to the verifier.
2. The verifier returns a random challenge c ∈R Zp.
3. The prover sends zi = s− ic, zr = t− rc, and zρ = u− ρc.
4. The verifier checks if a = V ′cV −zigzr , D = Ccgzihzρ , and ê(V,w) = ê(V ′, f).

In SAC, we also use BB signature to certify the judged status of a session.

https://orcid.org/0000-0001-7306-453X
https://orcid.org/0000-0002-0629-6792


Scored Anonymous Credentials 11

Range Proof. A range proof can be viewed as a special case of set membership
proof [15] by defining the set as the range, say, integers in [A,B]. This imposes
an upper bound value, so we do not need to handle the wrap-around issue in Zp

even though p is public.This range-proof system is also simple and efficient.

Bulletproofs. Bulletproofs proposed by Bünz et al.. [14] is a non-interactive zero-
knowledge proof protocol without a trusted setup, featuring a proof size only
logarithmic in the witness size. Bulletproofs are well suited for proofs for general
arithmetic circuits and inner-product relations. Range proof over the interval
[0, 2n) can be done using inner product arguments over a committed value v,
i.e., PoK{(v, ρ) : C = gvhρ ∧ (0 ≤ v < 2n)}. Two interval proofs can be combined
as a range proof on the arbitrary range [A,B] using a standard trick [15]. At a
high level, for 2b−1 < B < 2b, the prover proves v −A, v −B + 2b are in [0, 2b).
For SAC, we also set the upper limit (say, [0, 264 − 1]) to cover possible scores.

Zero-knowledge Argument of a Shuffle. A shuffle of commitments {C1, . . . , CN}
of messages {a1, . . . , aN} is a set of commitments {C ′

1, . . . C
′
N} of {b1, . . . , bN}

committing to the same set of messages but in a permuted order, i.e., bi = aπ(i)
for some permutation π : [N ] → [N ]. If we treat the messages as the roots of
two polynomials of degree N , one can test for a random z (can be picked by the
verifier) if

∏N
i=1(ai − z) =

∏N
i=1(bi − z) holds for AoK of permutation. As an

arithmetic circuit, this requires 2(N −1) multiplication gates and is readily sup-
ported by the Bulletproofs. The prover and verifier computation are both linear
in N but with logarithmic proof size (excluding the commitments). Appendix B
reviews the ZK shuffle argument by Bayer and Groth [9] as an alternative.

Verifiable shuffle is used in SAC authentication after the client’s list of session
identifiers is updated. Its purpose is to provide anonymity to the user.

BBS+ Signatures. BBS+ signature of Au, Susilo, Mu, and Chow [6] extends the
BBS signature of Boneh, Boyen, and Shacham [12] with multiple message blocks
and efficient ZK protocols for signing and verification. It is existentially unforge-
able against adaptive chosen message attacks under the q-SDH assumption over
pairing groups [16] with no efficient isomorphism between G1 and G2.

Let h0, h1, . . . , hℓ+1 be generators of G1 and f be a generator of G2. The
signer’s secret key is γ ∈ Zp and the public key is w = fγ . To sign on blocks of
messages (m1, . . . ,mℓ) ∈ Zℓ

p, the signer randomly picks e, y ∈ Zp and computes
A = (h0h

m1
1 · · ·h

mℓ

ℓ hy
ℓ+1)

1
γ+e . The signature is (A, e, y), and one can verify it by

checking if ê(A,wfe) = ê(h0h
m1
1 · · ·h

mℓ

ℓ hy
ℓ+1, f) holds.

BBS+ signatures mostly serve as credentials in many privacy-preserving sys-
tems. In SAC, they also link the ticket with its score.

Protocol PIss. It allows a user to obtain a signature from the signer on a block of
values (m1, . . . ,mℓ) without revealing them. It is used in SAC registration and
credential update during authentication.



12 Sherman S. M. Chow , Jack P. K. Ma, and Tsz Hon Yuen

Table 2. Major Notations for User-side and SP-side Data Structures

Notation Description
x, q, s user long-term secret key, nonce used for authentication, credential score
cred, σ credential over A = (x, q, s,U), signature from the SP, e.g., on A

U list of session identifiers (or tickets) kept by a user’s credential
L list of sessions ((ti, si, σi, I) tuples) maintained and published by the SP

LI, UI sub-lists of L or U containing sessions of a specific status I ∈ {J, A, D},
meaning Judged, Active, or Dummy, respectively

1. The user computes CM = hm1
1 hm2

2 · · ·h
mℓ

ℓ hy′

ℓ+1 for some randomly generated
y′ ∈ Zp, and sends CM to the signer with the following proof:

PoK
{
({mi}i∈[1,ℓ], y

′) : CM = hm1
1 hm2

2 · · ·h
mℓ

ℓ hy′

ℓ+1

}
.

2. The signer aborts if the proof does not verify; otherwise, randomly picks
e, y′′ ∈ Zp, computes A = (h0CMhy′′

ℓ+1)
1

e+γ , and returns (A, e, y′′) to the user.

3. The user aborts if ê(A,wfe) ̸= ê(h0h
m1
1 · · ·h

mℓ

ℓ hy′+y′′

ℓ+1 , f). Otherwise, the
user outputs σ as (A, e, y = y′ + y′′).

Protocol PSig. It enables proving the knowledge of a signature σ = (A, e, y) on
message blocks (m1, . . . ,mℓ) without revealing the signature nor the messages.
The prover can also disclose messages contained in D ⊂ {m1, . . . ,mℓ}. The prover
randomizes the signature with ρ1 ∈ Z∗

p by setting A′ = Aρ1 . It also computes
b = h0h

s
ℓ+1

∏ℓ
i=1 h

mi
i = Aγ+e, Ā = A′−e · bρ1 , and ρ3 = 1/ρ1. It then picks

r2 ∈ Zp and sets d = bρ1 · h−ρ2

ℓ+1 and s′ = s− ρ2 · ρ3. The prover computes:

PoK{({mj}, e, ρ1, ρ2, ρ3, s′) :Ā/d = hρ2

ℓ+1/A
′e ∧ h0

∏
mi∈D

hmi
i

∏
mj /∈D

h
mj

i = dρ3h−s′

ℓ+1}.

The above proof is performed as follows:

1. The prover picks re, r1, r2, r3, rs′ , rm1 , . . . , rmℓ
∈ Zp and sends to the verifier

R1 = A′−rehr2
ℓ+1 and R2 = dr3h

−rs′
ℓ+1

∏
mj /∈D h

−rmj

i .
2. The verifier returns a random challenge c ∈R Zp.
3. The prover sends ze = re − ce, zs′ = rs′ − cs′, zi = ri − cρi for i ∈ [1, 3], and

zmj
= rmj

− cmj for j such that mj /∈ D.
4. The verifier checks Ā

d = Rc
1A

−zehz2
ℓ+1, h0

∏
mi∈D hmi

i = Rc
2h

−zs′
ℓ+1 /

∏
mj /∈D h

zmj

i .

The proof consists of (A′, Ā, d, π) and can be verified by checking A′ ̸= 1G1

and ê(A′, w) = ê(Ā, f). The signer needs to publish (ḡ, ḡγ) for ḡ ̸= 1G1
(for

the zero-knowledge simulator). It is used in SAC authentication for proving the
credential on attribute sets and proving the score of each authenticated session.

https://orcid.org/0000-0001-7306-453X
https://orcid.org/0000-0002-0629-6792


Scored Anonymous Credentials 13

3.2 Key Ideas

Setup. In Setup, the SP runs the key generation of all underlying signature
schemes (the choices will be specified in Section 3.3). All the signing keys are put
to the secret key sk, and the public keys are put to the public parameter pp, along
with the list L, and system parameters including the threshold score sth, score
−Smax for blocklisting, and the buffer sizes K with Kmax being the maximum.

List L contains tuples for the sessions, which includes:

– a set LD of dummy sessions, each with a score of 0,
– a set LA for storing active sessions with (dynamically) rated scores, and
– a set LJ for judged sessions with finalized, judged scores.

Table 2 lists the major notations. Only L in the table is public. Each entry of
L is of the form (ti, si, σti,si , state), storing a session identifier ti, its score si, a
signature σti,si (for the integrity of L), and its state information state, which is

– an empty string if the state is active, or
– a signature on ti for judged or dummy (so later authentication can redeem it).

Suppose sth = 0. Initially, the SP puts Kmax dummy sessions of score 0, each
in the form of (ti, 0, σ, σ̂), into LD, where σ signs on (ti, 0) and σ̂ signs on ti.

Registration. In Reg, each eligible user chooses a credential size K ∈ K, randomly
chooses two Zp values as the long-term secret x and the (first) nonce q for
showing the freshness of the credential, and prepares an attribute set of size
(K + 3) as A = (x, q, s = 0, t1, . . . , tK), where s is the (initial) score of the user,
and UD = (t1, . . . , tK) is a subset of dummy session identifiers from LD in pp.

Let U denote the set of session identifiers kept by a credential. Just after
registration, U = UD. This will make a newborn credential indistinguishable (in
size) from ones with the same number of sessions while some of them are active
or judged. The user proves in ZK that attribute set A is well-formed:

– Knowledge of x, q, which are hidden from the SP;
– s = 0 (or any base score agreed between the user and the SP);
– (t1, . . . , tK) are dummy tickets, by showing ti ∈ LD (via PoK of signatures).

The SP then completes the signature issuance via the ZK signature issuance pro-
tocol PIss, which produces a signature σA on A, serving as a user credential cred.

Authentication. In Auth, the user ZK-proves that credential cred on attribute set
A = (x, q, s, t1, . . . , tK) satisfies the access policy (to be made explicit in Sec-
tion 3.3), except q is revealed in clear. Let U = (t1, . . . , tK). The proof consists of:

– Credential Validation. The user ZK-proves via PSig that it has a signature σA

on A, but reveals nonce q to show that it is not a replay of past credentials.
– Score Satisfaction. For set U of size K in A certified by cred, the user proves

in ZK, for each ta ∈ U, that the session ta has score sta as specified in list L
by proving via PSig σta,sta

is a signature on (ta, sta). This proof can be done
in a batch for efficiency. The user can then prove in ZK that s+

∑
t∈U st > sth

for some agreed threshold sth. The SP cannot learn U = {ta}.



14 Sherman S. M. Chow , Jack P. K. Ma, and Tsz Hon Yuen

cred x q sold t1 t2 t3 t4 t5

σ

x q snew t1 t2 t tD t5

cred′ x q′ snew t′1 t′2 t′3 t′4 t′5

σ′

sold +
∑5

i=1 si ≥ sth

snew = sold+s3+s4

Fig. 1. Suppose t3 is judged and t4 is dummy. The user authentication now redeems
T = {t3, t4} to get a new score snew. A ticket t for this session is added to the credential.
The user (with help from the SP) adds a dummy ticket tD to maintain the credential size.
The user proves that (t1, t2, t, tD, t5) is shuffled to (t′1, t

′
2, t

′
3, t

′
4, t

′
5) where the SP remains

oblivious to the session type of all the ti’s and information like whether they are old.

After some authentications and before any judgment is finalized, U trans-
forms to UA ∪ UD, with some active tickets added. Over time, the SP will mark
some sessions as judged. U then transforms to UJ∪UA∪UD (similar to the SP-side
public session list L = LJ ∪ LA ∪ LD). Also, a user may adjust UD to make the
size of U equal to some other allowed value K ′ ∈ K.

The protocol should also ensure that the credential is updated faithfully:

– Credential Update.
1. The SP chooses and publishes t′ as the current session identifier.
2. The user picks a set of tickets T ⊆ U and uses the set membership proof

PSet to ZK-prove that they are either judged or dummy, e.g., T ⊂ LJ∪LD.
3. The user updates U to U′ = (U\T)∪U′

D∪{t′}, where U′
D ⊂ LD pads6 the

number of sessions of U′ to K ′, for a possibly new size K ′ (for K ′ ∈ K).
4. The user picks a fresh random nonce q′ and proves in ZK that the shuffled

U′ and the new aggregated score s′ are well-formed w.r.t. sessions in T.
5. The SP and user engage in credential issuance protocol PIss for a new

credential cred′ on the new attributes A′ = (x, q′, s′,U′).
For the new U′ with U′

D and t′ added and T removed, verifiable shuffle is
applied to permute their order, i.e., the positions of T in U. Figure 1 depicts
an example where the updated ticket set (t1, t2, t, tD, t5) is verifiably shuffled.

Finally, the SP updates pp by adding an entry (t′, 0, σt′,0, ∅) into list L,
meaning that session t′ has an initial score 0 (or any default) and an active state.

Session Score Update. In Update, the SP rates a session t by updating an entry
(t, sold, σt,sold , ·) in list L into (t, snew, σt,snew , ·), meaning that the new score of
the session t is snew, which can be less than sold, negative, or even −(Smax + 1)

6 Dummy sessions are judged with a default (zero) score, allowing users to pad U with
some dummy tickets from U to T to hide the judged ones among them.

https://orcid.org/0000-0001-7306-453X
https://orcid.org/0000-0002-0629-6792


Scored Anonymous Credentials 15

for revoking a credential, where Smax is the maximum possible score of any
credential7 (and the threshold for maintaining unrevoked status is 0). To finalize
a session t, the SP updates (t, ·, ·, ∅) to (t, ·, ·, σ̂) in L, where σ̂ is a signature on t.

A user can keep a ticket t in its credential as long as it can provide a valid
membership proof of t against LA. If t is finalized, the score for t in both LA and
LJ should be consistent. This way, the user credential score is correctly accounted
for during authentication, and keeping tickets would not harm the system.

3.3 Instantiation

Setup(1λ) → (pp, sk): On input of the security parameter λ, the SP generates
public parameter pp and the secret key sk as follows:

1. The SP chooses the bilinear map context over groups of prime order p (a
poly(λ)-bit prime) with pairing ê : G1 ×G2 → GT .

2. The SP creates the key for BBS+ signature by randomly picking γ ∈ Zp,
generators h0, h1, . . . , hKmax+4 ∈ G1 and f0 ∈ G2, and computing w0 = fγ

0 .
3. The SP creates the keys for set membership proofs by randomly picking

β ∈ Zp, generators g ∈ G1, f1 ∈ G2, and computing w1 = fβ
1 .

4. The SP maintains a list of sessions L = {(t, s, σ, state)}, where t is the
session identifier, s is the score, σ is the BBS+ signature on (t, s), and state

is the status of the session (either an empty string for active, or a Boneh-
Boyen signature on t, for judged or dummy). The SP initializes L by adding
Kmax dummy sessions (t, 0, σ, σ̂) with a different identifier t, where:
– σ = (A = (h0h

t
1h

y
3)

1
γ+e , e, y) is a BBS+ signature for random e, y ∈ Zp.

– σ̂ = g
1

β+t denotes a Boneh-Boyen signature on t.
5. The SP runsK(1λ), the algorithm for generating the common reference string

crs for the ZKPoK protocol PoK (to be defined below). In particular, it
contains the set of Boneh-Boyen signatures {σ̂i} needed by the signature-
based membership proof PSet.

6. The SP sets secret key sk = (γ, β) and public parameters

pp = (crs, g, h0, . . . , hKmax+4, f0, f1, w0, w1,K, Smax,L).

Reg(U(pp),S(pp, sk)) → {U(cred,A),S(pp′)}: The user obtains a credential
from the SP via an authenticated channel as follows:

1. (Preparation:) The user randomly picks x′, q ∈ Zp, and selects K ∈ K.
The user prepares attributes of size K + 3 as A = (x′, q, s = 0, t1, . . . , tK),
where ti ∈ LD for i ∈ [1,K]. The user generates the commitment C ′

M =

hx′

1 hq
2h

t1
4 · · ·h

tK
K+3h

y′

K+4 for some random y′ ∈ Zp and sends C ′
M to the SP.

2. (Signing:) The SP randomly picks x′′ ∈ Zp, computes CM = C ′
M · hx′′

1 , and
sends x′′ to the user. The user secret is then computed by x = x′+x′′. They
then engage in the protocol PIss of the BBS+ signature for the commitment
CM using the public key (h0, . . . , hK+4, f0, w0). In the end, the user obtains
a BBS+ signature σA. The public parameter pp′ = pp remains unchanged.

7 The SP can derive it from Kmax with an appropriate upper limit for each session.



16 Sherman S. M. Chow , Jack P. K. Ma, and Tsz Hon Yuen

3. (Credential Generation:) The user stores the credential cred = σA and the
attributes A = (x, q, s = 0,U = {t1, . . . , tK}).

Auth(U(pp, cred,A, f),S(pp, sk, f)) → {U(b, cred′,A′), S(b, pp′)}: With cred
on attributes A = (x, q, s,U := {t1, . . . , tK}), the user attempts to prove that a
credential with a score above sth given in the access policy f as follows:

1. (Nonce revelation:) The user reveals q privately to the SP. If q is fresh, the
SP picks t′ and publishes it as the identifier of the new (active) session for
this user authentication. Otherwise, the SP aborts as it is a replay.

2. (Proof about authentication requirements:) To prove to the SP, the user runs
a combined ZKPoK PoK, which is a conjunction of several ZKPoK’s:
(a) PSig: knowing a signature σA on the attributes A = (x, q, s, {t1, . . . , tK});
(b) PSig: knowing sti , σti,sti

where σti,sti
is a BBS+ signature on the ticket ti

and the score sti , for ti ∈ U;
(c) Range proof8: sth ≤ s+

∑K
i=1 sti ≤ Smax.

Note that the range proof considers the current scores for all tickets irre-
spective of their status, even if a downgraded score has not been redeemed.

3. (Updated credential:) The combined ZKPoK PoK also proves about knowing:
(a) (many copies of) PSet: a set of judged or dummy session identifiers T, via

a signature-based membership proof that for all ti ∈ T, there exists a
Boneh-Boyen signature σ̂i (only presents for a judged or dummy session);

(b) commitment on a new nonce q′ ∈ Zp;
(c) Ĉi = gtihri

0 ∀ti ∈ U′, where (U′, s′) ← Redeem(U ∪ {t′},T,K ′) to be
defined shortly, and K ′ ∈ K, which the user can choose to have K ′ = K.

(d) Ĉ ′
i is a shuffle π of Ĉi, which means Ĉ ′

i = gtπ(i)h
r′i
0 for all ti ∈ U′;

(e) C ′
M is a new commitment on (x, q′, s+s′, Û), where Û = {tπ(1), . . . , tπ(K′)}.

Redeem(U,T,K) is for redeeming scores in T within U and puts dummy
sessions into U′ if needed to make |U′| = K ′. Note that U′ = U∪{t′}\T is of
size |U′| = K + 1− |T|. If it is less than K ′, U′ will be padded with dummy
sessions {d} ⊆ LD. It also outputs a new score s′ =

∑
tj∈T stj .

4. (New credential generation:) The SP issues a BBS+ signature cred′ on A′ =

(x, q′, s+ s′, Û) by using the protocol PIss on C ′
M .

5. (List update:) The SP adds the entry (t′, 0, σ, ∅) to list T, where σ is a BBS+
signature on the message (t′, 0).

Appendix C provides a concrete instantiation using signature-based range proof
PSet, verifiable shuffle [9], and batch BBS+ signatures (in Appendix A).

Update(pp, sk, aux)→ pp′: To assign a new score s to a session t given in aux,
the SP issues a new BBS+ signature σ on (t, s) for the new or updated entry
(t, s) in L. (See Section 3.5 for the signature timestamping issue.) To block, the
SP assigns the lowest possible negative score −(Smax + 1).

When no more change is needed for a session t, the SP changes the status of
the session to “judged” by computing σ̂t = g

1
β+t and putting (t, ·, ·, σ̂t) on L.

8 It involves commitments of s and sti for ti ∈ U if it is instantiated by Bulletproofs.

https://orcid.org/0000-0001-7306-453X
https://orcid.org/0000-0002-0629-6792


Scored Anonymous Credentials 17

3.4 Efficiency and Flexibility Highlights

Achieving Efficiency for Many Active Sessions. The user needs to store all its
active session identifiers and construct proof about them for claiming the scores
of all the sessions, i.e., the computation complexity grows with the size of user-
side storage. We use a few interesting techniques to improve user-side efficiency:

1. Users can remove session identifiers from the credential once they are judged.
Their scores will be permanently aggregated to the finalized score field s of
the credential. Low-usage users can choose to keep a small buffer size K.

2. The score of each session is signed by BBS+ signature, which support efficient
ZK proof (without proving pairing relation) and batch verification.

3. The same proof asserts the ticket status without disjunctive proof and the
involved commitments needed by PERM/PEREA for proving unjudged ses-
sions (ti − jp < N or knowledge of a judgment on ti). This saves approxi-
mately K range proofs without requiring sequential judging.

Fair Rate-Limiting. SAC supports a (set of) maximum buffer size K (K). The
SP is required to finalize the judgment on at least one of these sessions when all
K active session slots are used up by the user. Any user is only rate-limited by
its own previously unjudged tickets. Besides, the number of unjudged tickets sets
an upper bound to the cardinality of the to-redeem ticket set T. PERM/PEREA
can be treated as a special case where |T| = 1 (“redeeming” the first ticket).

Removal of Old Judgments. Signatures that were too old could be removed. The
SP can still keep only the session identifier and score. If an infrequent user even-
tually claims those sessions, it can still be done without affecting correctness but
just anonymity. This is more flexible than the existing blocklist-based approach,
in which truncating the blocklist may forgive some bad users for free.

3.5 Discussion on Privacy and Security Issues

Variations of User Authentication/Redemption Behavior. The SP and the users
can judge and redeem scores from the sessions, respectively, in an arbitrary or-
der. From an anonymity perspective, suppose a user always redeems the first
few sessions in its credential during authentication while another user always
redeems the last few; their difference in behavior may compromise anonymity.
Verifiable shuffle is thus used to ensure obliviousness to any pattern of redemp-
tion. Anonymity holds among users using the same size parameters, specifically,
K (the number of sessions in the credential) and |T| (the size of the ticket to
redeem) with the system-wide choices of size K and many dummy tickets LD.

Retrieval of Signatures. Similar to redemption in PERM, users should also re-
trieve the signatures corresponding to others’ sessions to hide in the crowd. The
download can be amortized, such as getting a random subset after each interac-
tion (e.g., browsing on a forum), or can be done via private information retrieval,



18 Sherman S. M. Chow , Jack P. K. Ma, and Tsz Hon Yuen

like what is necessary for other privacy-preserving applications (e.g., getting the
list of bridges for Tor [40]). Compared with BLAC/EPID, which performs expen-
sive cryptographic operations against each blocklist entry, our “allowlist” does
not need to be downloaded during the authentication.

Credential “Hijacking” Prevention. A user can freely choose the nonce for each
credential update. If a user picks a used nonce, it cannot be used to authenticate.
This brings a subtle issue if a malicious user somehow learns the victim’s creden-
tial nonce. A malicious user can block a victim user by using the victim’s nonce
as the nonce of a new credential and authenticate using it before the victim.

The issue can be prevented by slightly extending the protocol so the SP can
contribute a part of the nonce randomness. The SP and user respectively pick
q′, q′′. The new nonce will be set to q′ + q′′ during credential generation. The
probability of hitting a used nonce is negligible if the nonce space is exponentially
large, which is our case. In the rare event that results in a used nonce, the user
can reveal q′′ and rerun the credential generation part with the SP.

Signatures Timestamping/Expiry. SAC needs to expire old signatures when the
score is updated. This is a general problem of timestamping signatures, which
has been studied thoroughly in different contexts with multiple solutions, e.g.,
outsourced and authenticated data structure which supports membership query
and update [42]. Solutions for timestamping signatures can be plugged into SAC
generically. We describe below a simple (but not necessarily optimal) solution.

The SP issues a new set of signatures for each session in predefined intervals.
The interval identifier can be signed together with the updated score via the
multi-block feature of BBS+ signature. The proof will require proving the inter-
val to be the current one, as how proofs are made on other messages certified.

This simple solution requires the SP to generate multiple signatures for mul-
tiple updates. Nevertheless, the SP is supposed to be more resourceful and can
use online/offline signatures with preparation done offline. The SP would not
update indefinitely as the scores of active sessions will eventually be finalized.
Only the most-updated signatures or the finalized ones should be kept.

Expiry of signatures is only needed for volatile scores. If a session can only
be changed from unjudged to finalized, signature expiry is not needed at all.

3.6 Integration with Other System Components

Precondition for Registration. To prevent unauthorized sharing of credentials,
the standard practice is to embed valuable secrets to credentials such that sharing
them means sharing the secret too. The SP can require the user to post the public
key of a cryptocurrency account, prove the knowledge of its secret key to the
SP, and use it as the user secret in the SAC credential.

Multi-SP and Decentralization. A 1-out-of-n disjunctive (or membership) proof
can be used to prove the validity of cred and judgments under a set of authorized
SPs’ public keys. With homomorphic commitments, judgments from different

https://orcid.org/0000-0001-7306-453X
https://orcid.org/0000-0002-0629-6792


Scored Anonymous Credentials 19

SPs can be combined arithmetically. However, one cheating SP can ruin the sys-
tem by issuing malformed credentials. Threshold BBS+ signature [30] with blind
signing protocol can be applied to achieve t-out-of-n threshold signing, where t-
out-of-n signing parties (SPs) are needed to issue/update user credentials.

Enforcement vs. Voting. SAC is for privacy-preserving reputation enforcement
(PPRE). The basic setting assumes the SP decides the score. Alternatively,
privacy-preserving reputation voting (PPRV), often called “privacy-preserving
reputation” [33], aims for the privacy of (peer) voters who cast votes of a score
for other users. They may use cryptographic techniques such as linkable ring
signatures [25,32] for double-voting detection [24]. Some require a TTP, or users
can request votes from many voters via secure multi-party computation.

Among many PPRV approaches, “reputation transfer” [33] overlaps with
PPRE. A user can use a claiming mechanism to link scores cast by voters to
a new pseudonym. Nevertheless, users are not forced to claim every (negative)
rating. Some work discusses the usage of ZKP, which should cover all ratings and
brings us back to linearly processing a global list we strive to avoid. In general,
incorporating PPRV with PPRE may not be straightforward.

A concurrent work [23] outlined a “decentralized anonymous social networks”
construction supporting both PPRE and PPRV, with a focus on sustainability.

Keyed-Verification Anonymous Credentials (KVAC). In many scenarios, the SP
also acts as the verifier without the need for public verifiability offered by SAC.
In KVAC [21], verifying the proof of possession of a credential requires the is-
suer’s secret (issuance) key. KVAC [21,8,27] does not consider credential updates
based on previously committed (and authenticated) messages. Moreover, revo-
cable KVAC [34] assumes a TTP revocation authority using traceable-tag tech-
niques [22,6,1]. Finally, KVAC [21,8,27] could still use public-key algebraic-group
operations. We leave more efficient constructions using KVAC as future work.

4 Performance

4.1 Computation and Communication Complexities

We select PERM with one score category (ℓ = 1) [4] as the representative to
compare. We set |T| = 10 (the set of tickets to be redeemed). New dummy
sessions will be appended and shuffled with currently active sessions to maintain
the credential buffer size. The size for the shuffle proof via Bulletproofs consists
of the input and output commitments and the logarithmic size (inner-product)
proof (1601 bytes for K = 200). An authentication needs to prove (K+3) BBS+
signatures for the accumulated score. PERM needs extra K (possibly simulated)
range proofs for its ZKP of partial knowledge. Since we utilize succinct (sublinear
size) ZKAoK, the communication overhead is relatively small compared to the
ZKP on the BBS+ signatures (a few KBs versus hundreds of KBs).



20 Sherman S. M. Chow , Jack P. K. Ma, and Tsz Hon Yuen

0 50 100 150 200
0

10

20

30

40

Number of Stored Sessions (K)

A
ut

h.
T

im
e

(s
ec

.)

SAC User
SAC SP
PERM User
PERM SP

Fig. 2. Computation time of the service provider and user with |T| = 10: (i) PERM
only supports redeeming the first ticket, i.e., |T| = 1. (ii) BBS+ signatures over Type-3
curves feature batch ZKP verification, which our implementation does not employ.

4.2 Empirical Results

We run SAC and PERM [4] over a desktop PC equipped with Ryzen 7 3700X
and 96GB RAM running Ubuntu 20.04 (on Windows Subsystem for Linux 2).
We modified the Rust libraries9 that implemented the BBS+ signature over
the pairing-friendly curve BLS12-381, and the Bulletproofs implementation10

for BLS12-381. For SAC, the set of possible buffer sizes is K = {10, 30, . . . , 200}.
We compare SAC with running PERM on different window sizes Kmax = K.

Figure 2 outlines the authentication time. For the user side, SAC takes
0.714s/5.91s when K = 10, 200. Meanwhile, PERM takes 1.90s and 34.0s when
K = 10, 200. For K = 50, SAC still performs better than PERM at K = 10.

For the SP side, SAC takes 0.612s/5.97s when K = 10/200. Comparatively,
PERM takes 0.625s and 11.3s when K = 10, 200. For K ≥ 90, the SP computa-
tion cost for PERM is like twice of SAC for the same number of stored sessions.

For data transfer, we suppose each session score and the maximum repu-
tation score of a user are in a 64-bit range. Furthermore, the total number of
authentications is less than 264. The serialized size of a Zp, G1, and G2 element
is 32, 48, and 96 bytes, respectively. Each entry in our list L is 176 bytes for
active sessions and 80 bytes for judged or dummy sessions. The total downlink
complexity is 176|LA|+80(|LD|+ |LJ|) bytes. Here, the signature of the SP used
in the range proof is put in the public parameters as in PERM. Dummy sessions
in SAC never change. Users can download them during registration.

To compare with PERM, suppose the number of anonymous authentications
per day is 20,000, and the same number of authentications is judged (which only

9 https://github.com/docknetwork/crypto
10 https://github.com/dalek-cryptography/bulletproofs

https://orcid.org/0000-0001-7306-453X
https://orcid.org/0000-0002-0629-6792
https://github.com/docknetwork/crypto
https://github.com/dalek-cryptography/bulletproofs


Scored Anonymous Credentials 21

adds an extra 80 bytes to L). A user of PERM and SAC would need to download
respectively 3.5MB and 5MB of data a day to keep up-to-date without decoys.

For each authentication, a user of both PERM and SAC proves possession of
O(K) BBS+ signature on stored sessions with the scores accumulated, which is
about 368 KBytes for K = 200. PERM runs ZKP for K disjunctive statements,
which consist of signature possession and range proof. We instantiated the range
proof with Bulletproofs; the extra communication overhead of PERM is around
3676 bytes per session. On the other hand, the proof of shuffle using Bulletproofs
in SAC is 1601 bytes (for K = 200) and the total size with commitments is 96 ·K
bytes. The extra ZKP on a BB signature has around 240 · |T| bytes (|T| ≤ K).
Thus, we have a lower authentication communication cost than PERM.

5 Conclusion

We propose scored anonymous credentials (SAC), a new and intuitive credential
design supporting revocation and reputation. Unlike the two existing designs of
either checking every session that ever happened (e.g., BLAC(R) [44,5]) or as-
suming sequential judgments (e.g., PEREA [45], PERM), we directly deal with
the user sessions via verifiable shuffle and other optimized cryptographic tech-
niques. We also support downgrading the score of a session until it is finalized,
while existing updatable anonymous credentials (e.g., PE(AR)2 [47], PERM)
only support score upgrade. We evaluate the efficiency of our proposed system
SAC and show that it outperforms existing related systems, given the simplicity
of our design and cryptographic techniques. We thus resolved the open problem
of devising an anonymous credential with (reputation and) revocation mecha-
nism that does not halt the entire system due to just one misbehaving user.

References

1. Abe, M., Chow, S.S.M., Haralambiev, K., Ohkubo, M.: Double-trapdoor anony-
mous tags for traceable signatures. Int. J. Inf. Sec. 12(1), 19–31 (2013)

2. Acar, T., Chow, S.S.M., Nguyen, L.: Accumulators and U-Prove revocation. In:
Financial Cryptography and Data Security. pp. 189–196 (2013)

3. Acar, T., Nguyen, L.: Revocation for delegatable anonymous credentials. In: Public
Key Cryptography. pp. 423–440 (2011)

4. Au, M.H., Kapadia, A.: PERM: Practical reputation-based blacklisting without
TTPs. In: CCS. pp. 929–940 (2012)

5. Au, M.H., Kapadia, A., Susilo, W.: BLACR: TTP-free blacklistable anonymous
credentials with reputation. In: NDSS (2012)

6. Au, M.H., Susilo, W., Mu, Y., Chow, S.S.M.: Constant-size dynamic k-times anony-
mous authentication. IEEE Systems Journal 7(2), 249–261 (2013)

7. Backes, M., Hanzlik, L., Schneider-Bensch, J.: Membership privacy for fully dy-
namic group signatures. In: CCS. pp. 2181–2198 (2019)

8. Barki, A., Brunet, S., Desmoulins, N., Traoré, J.: Improved algebraic MACs and
practical keyed-verification anonymous credentials. In: Selected Areas in Cryptog-
raphy (SAC). pp. 360–380 (2016)



22 Sherman S. M. Chow , Jack P. K. Ma, and Tsz Hon Yuen

9. Bayer, S., Groth, J.: Efficient zero-knowledge argument for correctness of a shuffle.
In: EUROCRYPT. pp. 263–280 (2012)

10. Bernstein, M.S., Monroy-Hernández, A., Harry, D., André, P., Panovich, K., Var-
gas, G.G.: 4chan and /b/: An analysis of anonymity and ephemerality in a large
online community. In: AAAI Conf. on Web & Social Media (ICWSM) (2011)

11. Boneh, D., Boyen, X.: Short signatures without random oracles and the SDH as-
sumption in bilinear groups. J. Cryptology 21(2), 149–177 (2008)

12. Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: CRYPTO. pp.
41–55 (2004)

13. Brickell, E., Li, J.: Enhanced Privacy ID: A direct anonymous attestation scheme
with enhanced revocation capabilities. In: WPES. pp. 21–30 (2007)

14. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs:
Short proofs for confidential transactions and more. In: S&P. pp. 315–334 (2018)

15. Camenisch, J., Chaabouni, R., abhi shelat: Efficient protocols for set membership
and range proofs. In: ASIACRYPT. pp. 234–252 (2008)

16. Camenisch, J., Drijvers, M., Hajny, J.: Scalable revocation scheme for anonymous
credentials based on n-times unlinkable proofs. In: WPES. pp. 123–133 (2016)

17. Camenisch, J., Kohlweiss, M., Soriente, C.: Solving revocation with efficient update
of anonymous credentials. In: SCN. pp. 454–471 (2010)

18. Camenisch, J., Lysyanskaya, A.: An efficient system for non-transferable anony-
mous credentials with optional anonymity revocation. In: EUROCRYPT. pp. 93–
118 (2001)

19. Camenisch, J., Lysyanskaya, A.: Dynamic accumulators and application to efficient
revocation of anonymous credentials. In: CRYPTO. pp. 61–76 (2002)

20. Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups (ex-
tended abstract). In: CRYPTO. pp. 410–424 (1997)

21. Chase, M., Meiklejohn, S., Zaverucha, G.: Algebraic MACs and keyed-verification
anonymous credentials. In: CCS. pp. 1205–1216 (2014)

22. Chow, S.S.M.: Real traceable signatures. In: Selected Areas in Cryptography
(SAC). pp. 92–107 (2009)

23. Chow, S.S.M., Egger, C., Lai, R.W.F., Ronge, V., Woo, I.K.Y.: On sustainable
ring-based anonymous systems. In: IEEE Computer Security Foundations (CSF)
Symposium (2023), to appear.

24. Chow, S.S.M., Liu, J.K., Wong, D.S.: Robust receipt-free election system with
ballot secrecy and verifiability. In: NDSS (2008)

25. Chow, S.S.M., Susilo, W., Yuen, T.H.: Escrowed linkability of ring signatures and
its applications. In: VIETCRYPT. pp. 175–192 (2006)

26. Chow, S.S.M., Zhang, H., Zhang, T.: Real hidden identity-based signatures. In:
Financial Cryptography and Data Security. pp. 21–38 (2017)

27. Couteau, G., Reichle, M.: Non-interactive keyed-verification anonymous creden-
tials. In: Public Key Cryptography. pp. 66–96 (2019)

28. Derler, D., Hanser, C., Slamanig, D.: A new approach to efficient revocable
attribute-based anonymous credentials. In: IMACC. pp. 57–74 (2015)

29. Dingledine, R., Mathewson, N., Syverson, P.F.: Tor: the second-generation onion
router. In: USENIX Security Symposium. pp. 303–320 (2004)

30. Doerner, J., Kondi, Y., Lee, E., abhi shelat, Tyner, L.: Threshold BBS+ signatures
for distributed anonymous credential issuance. In: S&P. pp. 2095–2111 (2023)

31. Ferrara, A.L., Green, M., Hohenberger, S., Pedersen, M.Ø.: Practical short signa-
ture batch verification. In: Crypto. Track at RSA (CT-RSA). pp. 309–324 (2009)

32. Fiore, D., Garms, L., Kolonelos, D., Soriente, C., Tucker, I.: Ring signatures with
user-controlled linkability. In: ESORICS Part II. pp. 405–426 (2022)

https://orcid.org/0000-0001-7306-453X
https://orcid.org/0000-0002-0629-6792


Scored Anonymous Credentials 23

33. Gurtler, S., Goldberg, I.: SoK: privacy-preserving reputation systems. Proc. Priv.
Enhancing Technol. 2021(1), 107–127 (2021)

34. Hajny, J., Dzurenda, P., Marques, R.C., Malina, L.: Privacy ABCs: Now ready for
your wallets! In: PerCom Workshops. pp. 686–691 (2021)

35. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decis. Support Syst. 43(2), 618–644 (2007)

36. Lai, R.W.F., Cheung, K., Chow, S.S.M., So, A.M.: Another look at anonymous
communication. IEEE Trans. Dependable Secur. Comput. 16(5), 731–742 (2019)

37. Lai, R.W.F., Ronge, V., Ruffing, T., Schröder, D., Thyagarajan, S.A.K., Wang,
J.: Omniring: Scaling private payments without trusted setup. In: CCS. pp. 31–48
(2019)

38. Lofgren, P., Hopper, N.: FAUST: efficient, TTP-free abuse prevention by anony-
mous whitelisting. In: WPES. pp. 125–130 (2011)

39. Ma, J.P.K., Chow, S.S.M.: SMART credentials in the multi-queue of slackness
(or Secure management of anonymous reputation traits without global halting).
In: IEEE European Symposium on Security and Privacy (EuroS&P) (2023), to
appear.

40. Mittal, P., Olumofin, F.G., Troncoso, C., Borisov, N., Goldberg, I.: PIR-Tor: scal-
able anonymous communication using private information retrieval. In: USENIX
Security Symposium (2011)

41. Narayanan, A., Shmatikov, V.: De-anonymizing social networks. In: IEEE Sympo-
sium on Security and Privacy. pp. 173–187 (2009)

42. Papamanthou, C., Tamassia, R., Triandopoulos, N.: Optimal verification of oper-
ations on dynamic sets. In: CRYPTO. pp. 91–110 (2011)

43. Rosenberg, M., Maller, M., Miers, I.: SNARKBlock: Federated anonymous block-
listing from hidden common input aggregate proofs. In: IEEE Symposium on Se-
curity and Privacy (S&P). pp. 1290–1307 (2022)

44. Tsang, P.P., Au, M.H., Kapadia, A., Smith, S.W.: Blacklistable anonymous cre-
dentials: Blocking misbehaving users without TTPs. In: CCS. pp. 72–81 (2007)

45. Tsang, P.P., Au, M.H., Kapadia, A., Smith, S.W.: PEREA: Towards practical
TTP-free revocation in anonymous authentication. In: CCS. pp. 333–344 (2008)

46. Xi, L., Feng, D.: FARB: Fast anonymous reputation-based blacklisting without
TTPs. In: WPES. pp. 139–148 (2014)

47. Yu, K.Y., Yuen, T.H., Chow, S.S.M., Yiu, S.M., Hui, L.C.K.: PE(AR)2: Privacy-
enhanced anonymous authentication with reputation and revocation. In: European
Symposium on Research in Computer Security (ESORICS). pp. 679–696 (2012)

48. Zhang, T., Wu, H., Chow, S.S.M.: Structure-preserving certificateless encryption
and its application. In: Crypto. Track at the RSA Conf. (CT-RSA). pp. 1–22 (2019)

A Batch BBS+ Signature

The original ZKP for a BBS+ signature [6] is performed as follows.

Protocol PSig. It allows a prover to prove that it knows a signature σ = (A, e, y) on
blocks of messages (x1, . . . , xℓ) without revealing the signature nor the messages.



24 Sherman S. M. Chow , Jack P. K. Ma, and Tsz Hon Yuen

1. The prover randomly generates rA ∈ Zp, sets β = rAe, and sends A1 =

AĥrA , A2 = hrA
1 to the verifier along with the following proof Π:

PoK



({xi}i∈[1,ℓ],e, y, rA, β) :

(A2 = hrA
1 ) ∧ (1 = A−e

2 hβ
1 ) ∧

ê(A1, w)

ê(h0, f)
= ê(h1, f)

x1 · · · ê(hℓ, f)
xℓ · ê(hℓ+1, f)

y·

ê(ĥ, w)rA · ê(ĥ, f)β/ê(A1, f)
e


.

2. Upon receiving (A1, A2, Π), the verifier outputs 1 if proof Π is valid.

Details such as its construction can be found in [6].

Batch BBS+ Signatures. We construct batch BBS+ (B-BBS+) featuring a batch
verification algorithm for BBS+ signatures and its zero-knowledge version. With-
out loss of generality, we illustrate with two-message blocks (s1,m1) ∈ Z2

p (suf-

fices for SAC). The signature (A1 = (h0h
s1
1 hm1

2 hy1

3 )
1

γ+e1 , e1, y1) can be verified by:

ê(A1, wf
e1) = ê(h0h

s1
1 hm1

2 hy1

3 , f).

For i ∈ [1,K], let (Ai, ei, yi) be the signature on (si,mi). To batch verify,
pick (δ1, . . . , δK) as a random vector of ℓb-bit elements from Zp and test if:

ê(

K∏
i=1

Aδi
i , w) · ê(

K∏
i=1

Aeiδi
i , f) = ê(h

∑K
i=1 δi

0 · h
∑K

i=1 siδi
1 · h

∑K
i=1 miδi

2 · h
∑K

i=1 yiδi
3 , f).

which takes 2 pairings, 2K+4 exponentiations in G1, and 2K+2 multiplications
in G1. Since 1 pairing takes roughly the time of 5 exponentiations, and non-batch
verifications take 2K pairings, 4K exponentiations in G1, and 4K multiplications
in G1 for K signatures, the batch verification speeds up by 4.5× for large K.

Theorem 1. For security level ℓb, the above algorithm is a batch verifier for
BBS+ signatures with the probability of accepting an invalid signature being 2−ℓb .

The batching technique for BBS+ basically follows from [31][Theorem 3.2].
BBS+ signature is weakly secure in the standard model under the q-SDH as-
sumption [6]. Below is the batched zero-knowledge proof PBvfy for B-BBS+.

Protocol PBvfy. It allows proving the knowledge of K signatures σi = (Ai, ei, yi)
on messages (si,mi) for i ∈ [1,K].

1. Let δi be an ℓb-bit element picked by the verifier in Zp. The prover randomly
generates µi ∈ Zp, computes Bi = hµi

1 , Di = Aiĥ
µi , ιi = µiei, and sends

https://orcid.org/0000-0001-7306-453X
https://orcid.org/0000-0002-0629-6792


Scored Anonymous Credentials 25

Bi, Di to the verifier along with the proof Π:

PoK



({si,mi, µi, ei, yi, ιi}i∈[1,K]) :

K∧
i=1

(
Bi = hµi

1 ∧ 1 = B−ei
i hιi

1

)
∧

ê(
∏K

i=1 D
δi
i , w)

ê(h
∑K

i=1 δi
0 , f)

=ê(h1, f)
∑K

i=1 δisi · ê(h2, f)
∑K

i=1 δimi ·

ê(h3, f)
∑K

i=1 δiyi · ê(ĥ, w)
∑K

i=1 δiµi ·

ê(ĥ, f)
∑K

i=1 δiιi/ê(

K∏
i=1

Dδiei
i , f)



.

2. Upon ((B1, D1), . . . , (BK , DK), Π), the verifier outputs 1 if proof Π is valid.

B Alternative for Zero-knowledge Argument of a Shuffle

Let Ci = Epk(Mi; ρi) for i ∈ [1, N ], a ciphertext created from encrypting message
Mi under public key pk using randomness ρi. Homomorphic encryption allows
simple multiplications of encrypted Mi and Mj without decrypting it first via
simple multiplication of ciphertexts: Epk(Mi; ρi)Epk(Mj ; ρj) = Epk(MiMj ; ρi+ρj).
There are efficient zero-knowledge arguments for showing a shuffling of cipher-
texts produced by homomorphic encryption, i.e., for all i ∈ [N ], decrypting C ′

i

is the same as decrypting Cπ(i), where π : [N ]→ [N ] is the permutation.
We review a recent scheme by Bayer and Groth [9]. The first step is to

commit to permutation π. The prover receives a challenge x and commits to
xπ(1), . . . xπ(N). The prover will give an argument of knowledge of openings of the
commitments to permutations of 1, . . . , N and x1, . . . , xN . The prover demon-
strates that the same permutation has been used in both cases using random
challenges y and z. By using the homomorphic properties of the commitment,
the prover can compute commitments to d1−z = yπ(1)+xπ(1)−z, . . . , dN −z =
yπ(N)+xπ(N)−z, in a verifiable manner, then uses a product argument to show:

N∏
i=1

(di − z) =

N∏
i=1

(yi+ xi − z).

These are two identical degree-N polynomials in z (with the roots permuted).
By Schwartz-Zippel lemma, the prover has a negligible chance over the choice
of z of making a convincing argument unless there is a permutation π such that
di = yπ(i)+xπ(i) for i ∈ [1, N ]. Furthermore, there is negligible probability over
the choice of y of this being true unless the first commitment contains π(i) and
the second commitment contains xπ(i) for i ∈ [1, N ].



26 Sherman S. M. Chow , Jack P. K. Ma, and Tsz Hon Yuen

The prover has commitments to xπ(i) and uses the multi-exponentiation ar-
gument to show there exists a ρ such that

N∏
i=1

Cxi

i = Epk(1; ρ)
N∏
i=1

Cxπ(i)

i .

Since the encryption E is homomorphic, the verifier can deduce that
∏N

i=1 M
xi

i =∏N
i=1 M

xπ(i)

i for some permutation π. Since x is a random challenge chosen by
the verifier, we have a correct shuffle with overwhelming probability.

Depending on the implementation, there is a trade-off between the round
complexity, communication complexity, and the computation time of the users
and the SP [9]. In principle, we can apply any zero-knowledge arguments of
a shuffle. For efficiency, we will require the shuffle and the commitments (to
session identifiers) to be in the same group. For our construction, we can use the
homomorphic ElGamal encryption of a message M with pk = (h, u) is (Muρ, hρ),
which fits with Bayer-Groth’s argument [9]. Since decryption is not needed in
our case, we can encode a ticket t by M = ht, and only include the first part of
the ciphertext. It is easy to see that it preserves the homomorphic property.

C Authentication using Batch-BBS+ and Range Proof

The signature-based range proof can be constant-size if the threshold score sth
and the maximum score smax is short, e.g., ℓb-bit integers for ℓb = 10. Let g ∈ G1,
u ∈ G1 (for the shuffle), and f2 ∈ G2 be generators. The SP picks a random
α ∈ Zp, and computes w2 = fα

2 . The SP puts BB signatures Yj = g
1

α+j for all
j ∈ [sth, smax] in the public parameters. (One can instead apply Bulletproofs [14].)

1. Let σA = (A, e, y) be the credential on attributes A = (x, q, s, {t1, . . . , tK}).
Let J be a set of M = |J| indexes where tj ∈ T for all j ∈ J. The user sends
the parameters K, M , and q to the SP. The SP returns a new identifier t′.

2. The SP randomly picks δ1, . . . , δK , ζi, ιi for i ∈ [1,K −M ] and ℓb-bits num-
bers {θj}j∈J and sends to the user.

3. The user picks rA, rt, re, rβ , rx, rs, r1, . . ., rK in Zp, computes β = rAe and:

A1 = AĥrA , A2 = hrA
1 , T1 = hrt

1 , T2 = A−re
2 h

rβ
1 ,

Rx = grx , Rs = grs , R1 = gr1 , . . . , RK = grK ,

R = ê(h1, f)
rx · ê(h3, f)

rs · ê(h4, f)
r1 · · · ê(hℓ, f)

rK ·

ê(hℓ+1, f)
ry · ê(ĥ, w)rt · ê(ĥ, f)rβ/ê(A1, f)

re .

https://orcid.org/0000-0001-7306-453X
https://orcid.org/0000-0002-0629-6792


Scored Anonymous Credentials 27

For i ∈ [1,K], let (Ai, ei, yi) be the B-BBS+ signature for ticket ti and
score si in L. The user randomly picks µi, rsi , rµi

, rβi
in Zp, and computes

βi = µiei, Di = Aiĥ
µi , Bi = hµi

1 , Si = grsi , T̄i = h
rµi
1 , W̄i = B

−rei
i h

rβi
1 ,

RL = ê(h1, f)
∑K

i=1 δiri · ê(h2, f)
∑K

i=1 δirsi ê(h3, f)
∑K

i=1 δiryi · ê(ĥ, w0)
∑K

i=1 δirµi

ê(ĥ, f)
∑K

i=1 δirβi/ê(

K∏
i=1

D
δirei
i , f).

Let s∗ = s+
∑K

i=1 si. The user computes a range proof of s∗ with v, rv ∈ Zp:

V = Y v
s∗ , R∗ = ê(V, f2)

−rs−
∑K

i=1 rsi · ê(g, f2)rv .

For all j ∈ J, the user randomly picks vj , rvj in Zp and computes:

Vj = σ̂
vj
j , RJ = ê(

∏
j∈J

V
−θjrj
j , f) · ê(g, f)

∑
j∈J θjrvj .

The user runs Redeem(U ∪ {t′},T,K ′) as follows. Suppose w.l.o.g. U =
{t1, . . . , tK} and T = {tK−M+1, . . . , tK}. So J = {K −M + 1, . . . ,K}. Sup-
pose U′ = {t′1, . . . , t′K′−1, t

′} is selected where t′i = ti for i ∈ [1,K −M ],
t′K−M+1 = t′, and t′i is a random element in LD, i ∈ [K−M+2,K ′]. The user
computes s′ =

∑
j∈J sj , and the encryption for tickets t′1, . . . t′K−M+1, by ran-

domly picking ρi ∈ Zp for i ∈ [1,K −M +1] and setting Ĉi,1 = gt
′
iuρi , Ĉ2 =

g
∑K−M+1

i=1 ζiρi . The user picks a permutation π : [K ′] → [K ′]. Let t̂i = t′π(i)
for i ∈ [1,K −M +1]. The user also computes the homomorphic encryption
by randomly picking ρ′i ∈ Zp and setting Ĉ ′

i,1 = gt̂iuρ′
i , Ĉ ′

2 = g
∑K−M+1

i=1 ιiρ
′
i .

For updating the credential, the user randomly picks r̂1, . . . , r̂K−M and sets:

C ′
M = hx

1h
q′

2 h
s+s′

3 ht̂1
4 · · ·h

t̂K−M+1

K−M+4h
y′

K′+4,

R′
M = hrx

1 h
rq′
2 h

rs+
∑

j∈J rsj
3 hr̂1

4 · · ·h
r̂K−M+1

K−M+4h
ry′

K′+4,

R̂1 = gr̂1 , . . . , R̂K−M+1 = gr̂K−M+1

and sends SP set J, dummies (t′K−M+2, . . . , t
′
K′−1), and the commitments:

A1, A2, T1, T2, Rx, Rs, R1, . . . , RK , R, {Di, Bi, Si, T̄i, W̄i}i∈[1,K], RL, V,R
∗,

{Vj}j∈J, RJ, {Ĉi,1, Ĉ
′
i,1, R̂i}i∈[1,K−M+1], Ĉ2, Ĉ

′
2, C ′

M , R′
M .

The user can now perform the ZK argument for shuffling Ĉi,1, Ĉ2 to Ĉ ′
i,1, Ĉ

′
2.

Details can be found in [9].
4. If (t′K−M+2, . . . , t

′
K′−1) are dummies, the SP returns challenge c ∈ Zp.



28 Sherman S. M. Chow , Jack P. K. Ma, and Tsz Hon Yuen

5. The user computes and sends the following with q to the SP:

zx = rx + cx, zs = rs + cs, zA = rt + crA,

ze = re + ce, zv = rv + cv, zq′ = rq′ + cq′,

zβ = rβ + crAe, zy′ = ry′ + cy′, zy = ry + cy.

For i ∈ [1,K],

zi = ri + cti, zsi = rsi + csi, zyi
= ryi

+ cyi,

zei = rei + cei, zµi
= rµi

+ cµi, zβi
= rβi

+ cµiβi.

For j ∈ J, zvj = rvj + cvj .

For l ∈ [1,K −M ], ẑl = r̂l + ct̂l.

6. The SP checks if T1A
c
2 = hzA

1 , T2 = A−ze
2 h

zβ
1 ,

R(
ê(A1, w)

ê(h0, f)ê(h2, f)q
)c = ê(h4, f)

z1 ê(h5, f)
z2 · · · ê(hK+3, f)

zK ê(h1, f)
zx ·

ê(h3, f)
zs ê(hK+4, f)

zy ê(ĥ, w)zA ê(ĥ, f)zβ/ê(A1, f)
ze ,

RL(
ê(
∏K

i=1 D
δi
i , w0)

ê(h
∑K

i=1 δi
0 , f)

)c = ê(h1, f)
∑K

i=1 δizi ê(h2, f)
∑K

i=1 δizsi · ê(h3, f)
∑K

i=1 δizyi ·

ê(ĥ, w0)
∑K

i=1 δizµi · ê(ĥ, f)
∑K

i=1 δizβi/ê(

K∏
i=1

D
δizei
i , f),

R∗ · ê(V,w2)
c = ê(V, f2)

−zs−
∑K

i=1 zsi · ê(g, f2)zv ,

R′
MC ′

M
c
= hzx

1 h
zq′
2 h

zs+
∑

j∈J zsj
3

K−M+1∏
i=1

hẑi
i+3h

zy′

K′+4,

RJ · ê(
∏
j∈J

V
θj
j , w1)

c = ê(
∏
j∈J

V
−θjzj
j , f)ê(g, f)

∑
j∈J θjzvj .

It checks T̄iB
c
i = h

zµi
1 , W̄i = B

−zei
i h

zβi
1 for i ∈ [1,K] and the zero-knowledge

argument for the shuffling [9].
The SP computes: A′ = (h0C

′
Mh

t′K−M+2

K−M+5 · · ·h
t′
K′−1

K′+2h
t′
K′
K′+3h

y′′

K′+4)
1

e′+γ for ran-
dom e′, y′′ ∈ Zp, and sends (A′, e′, y′′) to the user.
The SP then adds the entry (t′, 0, σ, ∅) to list T, where σ = (A, e, y) is the
B-BBS+ signature with A = (h0h

t′

1 h
y
3)

1
γ+e for some random e, y ∈ Zp.

7. The user gets σ′
A = (A′, e′, y′ + y′′) and updates its attributes to A′ =

(x, q′, s+ s′, {t̂1, . . . , t̂K−M+1, t
′
K−M+2, . . . , t

′
K′}).

D Security

D.1 Simulation-based Model

We use the simulation-based security definition following the literature [45,4].
We consider a security game where an environment E , which can schedule the

https://orcid.org/0000-0001-7306-453X
https://orcid.org/0000-0002-0629-6792


Scored Anonymous Credentials 29

invocation of the functionalities of SAC at its wish, is asked whether it is inter-
acting with the real world or the ideal world. In the real world, all honest players
communicate as specified in the protocol description. In the ideal world, the same
players also follow the protocol except that they interact via a trusted party T ,
responsible for handling all the inputs and outputs for them. The adversary A
in the real world takes control of some of the players and can communicate arbi-
trarily with environment E . But A does not know the communications between
honest parties and the origin of messages received by A.

Roughly, SAC is secure if, for any probabilistic polynomial time (PPT) algo-
rithms A and E , there exists another algorithm S, which has black-box access
to A, controlling the same players in the ideal world as A does in the real world,
such that E cannot distinguish if it is interacting with A or S. In other words,
it also cannot distinguish between the real world and the ideal world. We first
specify the functionalities of SAC in the real world and the ideal world, respec-
tively:

1. Setup. The system starts when E specifies the set of honest and dishonest
users and the SP (static model).
– Real World. The SP generates (pp, sk) and gives pp to all players.
– Ideal World. The trusted party T initializes a database that stores the

registration and authentication transcripts of all users. It also keeps track
of the attributes of each user, and the public parameter pp, which con-
tains the status/score of each session.

2. Registration. E asks user i to register with the SP.
– Real World. User i registers with the SP, and both parties output indi-

vidually the output of this interaction to E . If user i has already been
registered, the honest SP will reject the request. Similarly, an honest user
discards the credential from the SP if it has successfully registered before.

– Ideal World. User i sends a registration request to T , who informs the
SP about the request and whether user i has obtained a credential be-
fore. T forwards the decision of the SP to user i. The user and the SP
individually send the output of this interaction to E . If the SP accepts
the request and user i has not registered before, T stores this transcript
in its database.

3. Authentication. E asks user i to authenticate and redeem some sessions.
– Real World. User i authenticates with the SP w.r.t. the access policy f

like a threshold score sth and redeems the scores of sessions specified by
E . Both user i and the SP pass the local output of this interaction to E .

– Ideal World. User i sends an authentication request to T , who checks
according to pp whether the user i satisfies the authentication condition.
In more detail, T maintains a database of the current and past tickets
for each user, where the score of a user should match with the current pp.
T informs the SP that some anonymous user wants to authenticate and
whether the user satisfies the authentication condition. The SP replies
with a new session identifier t or reject to T , and T forwards it to user
i. If the authentication is successful, T removes the redeemed sessions



30 Sherman S. M. Chow , Jack P. K. Ma, and Tsz Hon Yuen

(T specified by the user) from the user’s attributes and updates its score.
It also adds an entry for the active session t with score 0 to the database,
and stores t as one of the user’s session identifiers. The user and the SP
individually send the output of this interaction and t (if not reject) to E .

4. Update. E asks the SP to update the score s to, or finalize, a session t.
– Real World. The SP runs the update algorithm as instructed by E .
– Ideal World. T updates its database accordingly as instructed by E .

In the ideal world, all sessions are anonymous and unlinkable from the SP’s
view, and T verifies whether the authenticating user satisfies the authentication
condition. These capture completeness, anonymity, and soundness.

Definition 2. Let RealE,A(λ) (resp. IdealE,S(λ)) be the probability that E out-
puts 1 when it runs in the real world (resp. ideal world) with adversary A (resp.
S having black-box accesses to A). SAC is secure if, for all PPT algorithms,
|RealE,A(λ)− IdealE,S(λ)| is negligible in λ.

D.2 Proof

Theorem 2. Our scheme is secure if the BBS+ and weak BB signatures are ex-
istentially unforgeable, and the range proof, set membership proof, zero-knowledge
argument of shuffling, PIss, PSig, PSet, and ZKPoK protocols are secure.

We describe how to construct S in detail, except with the details of the un-
derlying building blocks omitted (e.g., how to extract what S needs from the
ZKPoK). Firstly, S maintains a list of credentials issued to A during the life span
of the system. S also acts as an ideal-world adversary to the trusted party T .
S simply forwards any messages between E and A. We consider two cases for S:

Case 1: The SP is honest:

1. Setup. S generates (pp, sk) and sends pp to A.
2. Registration. S acts as a dishonest user i (in the ideal world) to T and an

honest SP to A as a dishonest user in the real world. Using the knowledge
extractor of the ZKPoK protocol, S extracts the value of x from A. This
value will be used to identify the dishonest user i. S sends the request to T
on behalf of the user i. If T replies accept, S issues the credential to A and
also stores that credential.

3. Authentication. S acts as a dishonest user i to T and an honest SP to A.
S extracts and uses the value x during authentication to determine user i.
Two worlds are indistinguishable except in the rare events below:
– During registration, S fails to extract x from A. This happens with

negligible probability by the soundness property of PIss.
– During a successful authentication, S fails to extract x from A. This

happens with negligible probability by the soundness property of PSig.
– There exists a successful authentication from A such that S outputs

accept on behalf of an honest SP, but T indicates the authenticating
user does not satisfy the policy.

https://orcid.org/0000-0001-7306-453X
https://orcid.org/0000-0002-0629-6792


Scored Anonymous Credentials 31

The last case implies that A successfully did one of the following:
– forged a credential on attributes that has never been issued,
– obtained a credential on attributes with a ticket that is neither originated

from the past version of the credential nor any dummy sessions,
– created one fake proof in authentication.

All these happen with negligible probability due to the following:
– BBS+ signatures are existentially unforgeable and PSig is sound,
– the set membership proof is sound,
– the argument of shuffling is (computationally) sound, and
– the zero-knowledge proof is sound.

Since S may need to run the extractor of the ZKPoK protocol, we require
that the registration and authentications are run sequentially. A similar re-
striction also applies to PEREA, BLACR, and PERM.

Case 2: The SP is dishonest:

1. Setup. S is given pp by A.
2. Registration. S acts as a dishonest SP to T (in the ideal world) and an honest

user i to A. When T requests registration for user i, S runs the registration
protocol with A using the simulator of PIss. If S does not obtain a valid
credential from A, then S replies reject to T .

3. Authentication. S acts as a dishonest SP to T and an honest user to A. When
T requests authentication for an anonymous user, S runs the authentication
protocol with A. If T proceeds and satisfies the authentication policy, S uses
the simulator of the ZKPoKs and shuffling protocol to simulate the view of
A using the random number q. If A rejects, S replies reject to T .

The simulation provided to A is correct due to the zero-knowledge property
of the ZKPoK protocols and shuffling protocol and the hiding property of the
commitment scheme. The behavior of S in the ideal world is the same as that
of A in the real world.


	Scored Anonymous Credentials

