Shuytang Tang,
Sherman S. M. Chow
Abstract:
Scalable multi-hop cryptocurrency transactions are enabled by payment
channel networks (PCNs) like the Lightning Network, which execute most
transactions off-chain, greatly reducing on-chain activity. However,
unrestricted channel formation often leads to centralization, creating a
natural oligarchy where a few nodes gain disproportionate influence,
weakening decentralization and raising risks of targeted attacks.
Establishing a structured network in PCNs mitigates this issue by
encouraging users to allocate channels strategically, resisting
partitions.
Reframing PCN connectivity, we introduce a ``strategic mesh channels''
model that strengthens multi-hop connectivity by creating virtual channels
that connect individual channels while retaining user autonomy. Melding
theoretical optimization with practical implementation, our simulations
based on our smart-contract implementation show that, with an appropriate
participation rate, our design significantly enhances decentralization,
connectivity, and attack resilience over standard PCNs. Additionally,
average users receive economic incentives to allocate channels
strategically, driving broader adoption of this structured approach.
Network resilience and fairness thus improve, challenging the assumption
that decentralization requires unregulated, anarchic formation.
References
- N. Alon. Eigenvalues and expanders. Combinatorica, 6:83–96,
1986.
- N. Alon and V. D. Milman. λ1, isoperimetric inequalities for graphs,
and superconcentrators. Journal of Combinatorial Theory, Series B,
38:73–88, 1985.
- L. Aumayr, M. Maffei, O. Ersoy, A. Erwig, S. Faust, S. Riahi, K.
Hostáková, and P. Moreno-Sanchez. Bitcoin-compatible virtual channels. In
SP, pages 901–918, 2021.
- L. Aumayr, S. A. K. Thyagarajan, G. Malavolta, P. Moreno-Sanchez,
and M. Maffei. Sleepy channels: Bi-directional payment channels without
watchtowers. In CCS, pages 179–192, 2022.
- G. Avarikioti, F. Laufenberg, J. Sliwinski, Y. Wang, and R.
Wattenhofer. Towards secure and efficient payment channels. arXiv
1811.12740, 2018.
- G. Avarikioti, R. Scheuner, and R. Wattenhofer. Payment networks as
creation games. In CBT Workshop (co-located with ESORICS), pages 195–210,
2019.
- Z. Avarikioti, E. Kokoris-Kogias, R. Wattenhofer, and D. Zindros.
Brick: Asynchronous incentive-compatible payment channels. In FC-II, pages
209–230, 2021.
- Z. Avarikioti, T. Lizurej, T. Michalak, and M. Yeo. Lightning
creation games. In ICDCS, pages 1–11, 2023.
- A.-L. Barabási and R. Albert. Emergence of scaling in random
networks. Science, 286(5439):509–512, 1999.
- S. S. M. Chow, C. Egger, R. W. F. Lai, V. Ronge, and I. K. Y. Woo.
On sustainable ring-based anonymous systems. In CSF, pages 568–583,
2023.
- F. R. K. Chung. Diameters and eigenvalues. Journal of the American
Mathematical Society, 2:187–196, 1989.
- F. R. K. Chung. Spectral graph theory. American Mathematical
Society, 1997.
- C. Decker, R. Russell, and O. Osuntokun. eltoo: A simple layer2
protocol for Bitcoin. https://blockstream.com/eltoo.pdf, 2018. Last
accessed on September 12, 2024.
- C. Decker and R. Wattenhofer. A fast and scalable payment network
with Bitcoin duplex micropayment channels. In SSS, pages 3–18, 2015.
- S. Dziembowski, L. Eckey, S. Faust, J. Hesse, and K. Hostáková.
Multi-party virtual state channels. In EUROCRYPT Part I, pages 625–656,
2019.
- S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski. Perun:
Virtual payment hubs over cryptocurrencies. In SP, pages 106–123,
2019.
- S. Dziembowski, S. Faust, and K. Hostáková. General state channel
networks. In CCS, pages 949–966, 2018.
- C. Egger, P. Moreno-Sanchez, and M. Maffei. Atomic multi-channel
updates with constant collateral in Bitcoin-compatible payment-channel
networks. In CCS, pages 801–815, 2019.
- P. Erdős and A. Rényi. On random graphs I. Publicationes
Mathematicae Debrecen, 6:290–297, 1959.
- O. Ersoy, J. Decouchant, S. P. Kumble, and S. Roos.
SyncPCN/PSyncPCN: Payment channel networks without blockchain synchrony.
In AFT, pages 16–29, 2022.
- L. R. Ford and D. R. Fulkerson. Maximal flow through a network.
Canadian Journal of Mathematics, 8:399–404, 1956.
- L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais.
SoK: Layer-two blockchain protocols. In FC, pages 201–226, 2020.
- M. Hearn. Micro-payment channels implementation now in bitcoinj.
https://bitcointalk.org/?topic=244656.0, 2013. Last accessed on September
12, 2024.
- A. Hertig. Bitcoin’s lightning network is growing ‘increasingly
centralized,’ researchers find.
https://www.coindesk.com/tech/2020/02/20/bitcoins-lightning-network-is-growing-increasingly-centralized-researchers-find,
2020. Last accessed on September 12, 2024.
- R. Khalil and A. Gervais. Revive: Rebalancing off-blockchain payment
networks. In CCS, pages 439–453, 2017.
- A. Kiayias and O. S. T. Litos. A composable security treatment of
the Lightning network. In CSF, pages 334–349, 2020.
- J. Lin, K. Primicerio, T. Squartini, C. Decker, and C. J. Tessone.
Lightning network: a second path towards centralisation of the bitcoin
economy. arXiv 2002.02819, 2020.
- J. Lind, O. Naor, I. Eyal, F. Kelbert, E. G. Sirer, and P. R.
Pietzuch. Teechain: a secure payment network with asynchronous blockchain
access. In SOSP, pages 63–79, 2019.
- A. Lisi, D. D. F. Maesa, P. Mori, and L. Ricci. Lightnings over rose
bouquets: an analysis of the topology of the Bitcoin Lightning Network. In
COMPSAC, pages 324–331, 2021.
- J. Liu and M. Manulis. Fast SNARK-based non-interactive distributed
verifiable random function with Ethereum compatibility. In AsiaCCS, 2025.
To appear, preliminary version at ia.cr/2024/968.
- Z. Lu, R. Han, and J. Yu. General congestion attack on HTLC-based
payment channel networks. In Tokenomics, pages 2:1–2:15, 2021.
- A. Lubotzky, R. Phillips, and P. Sarnak. Ramanujan graphs.
Combinatorica, 8:261–277, 1988.
- G. Malavolta, P. Moreno-Sanchez, A. Kate, and M. Maffei.
SilentWhispers: Enforcing security and privacy in decentralized credit
networks. In NDSS, 2017.
- G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi.
Concurrency and privacy with payment-channel networks. In CCS, pages
455–471, 2017.
- G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate, and M.
Maffei. Anonymous multi-hop locks for blockchain scalability and
interoperability. In NDSS, 2019.
- P. McCorry, S. Bakshi, I. Bentov, S. Meiklejohn, and A. Miller.
Pisa: Arbitration outsourcing for state channels. In AFT, pages 16–30,
2019.
- W. Meng, J. Wang, X. Wang, J. K. Liu, Z. Yu, J. Li, Y. Zhao, and S.
S. M. Chow. Position paper on blockchain technology: Smart contract and
applications. In NSS, pages 474–483, 2018.
- A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry.
Sprites and state channels: Payment networks that go faster than
Lightning. In FC, pages 508–526, 2019.
- A. Mizrahi and A. Zohar. Congestion attacks in payment channel
networks. In FC Part II, pages 170–188, 2021.
- M. Morgenstern. Existence and explicit constructions of q + 1
regular Ramanujan graphs for every prime power q. J. of Comb. Theory,
Series B, 62:44–62, 1994.
- C. Ndolo and F. Tschorsch. Payment censorship in the Lightning
network despite encrypted communication. In AFT, pages 12:1–12:24,
2024.
- L. K. L. Ng, S. S. M. Chow, D. P. H. Wong, and A. P. Y. Woo. LDSP:
Shopping with cryptocurrency privately and quickly under leadership. In
ICDCS, pages 261–271, 2021.
- R. Pass and a. shelat. Micropayments for decentralized currencies.
In CCS, pages 207–218, 2015.
- J. Poon and T. Dryja. The Bitcoin Lightning network: Scalable
off-chain instant payments, version 0.5.9.2.
https://lightning.network/lightning-network-paper.pdf, 2016. Last accessed
on September 12, 2024.
- r/CryptoCurrency. Research shows lightning network vulnerable to
split attacks and congestion attacks.
https://www.reddit.com/r/CryptoCurrency/comments/f7csud/research_shows_lightning_network_vulnerable_to,
2020. Last accessed on September 12, 2024.
- S. Roos, P. Moreno-Sanchez, A. Kate, and I. Goldberg. Settling
payments fast and private: Efficient decentralized routing for path-based
transactions. In NDSS, 2018.
- V. Sivaraman, S. B. Venkatakrishnan, M. Alizadeh, G. Fanti, and P.
Viswanath. Routing cryptocurrency with the Spider network. In HotNets,
pages 29–35, 2018.
- S. Tang and S. S. M. Chow. Towards decentralized adaptive control of
cryptocurrency liquidity via auction. In ICDCS, pages 910–919, 2023.
- R. M. Tanner. Explicit concentrators from generalized N-gons. SIAM
Journal on Algebraic and Discrete Methods, 5:287–293, 1984.
- R. E. Tarjan. A note on finding the bridges of a graph. Information
Processing Letters, 2(6):160–161, 1974.
- S. Tochner, A. Zohar, and S. Schmid. Route hijacking and DoS in
off-chain networks. In AFT, pages 228–240, 2020.
- Trustnodes. Lightning Network DDoS sends 20% of nodes down.
https://www.trustnodes.com/2018/03/21/lightning-network-ddos-sends-20-nodes,
2018. Last accessed on September 12, 2024.
- P. Wang, H. Xu, X. Jin, and T. Wang. Flash: Efficient dynamic
routing for offchain networks. In CoNEXT, pages 370–381, 2019.
- D. J. Watts and S. H. Strogatz. Collective dynamics of ‘small-world’
networks. Nature, 393(6684):440–442, 1998.
- H. W. H. Wong, J. P. K. Ma, and S. S. M. Chow. Secure multiparty
computation of threshold signatures made more efficient. In NDSS,
2024.
- P. Zabka, K. Förster, C. Decker, and S. Schmid. Short paper: A
centrality analysis of the Lightning network. In FC, pages 374–385,
2022.