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▪What are the basic encryption techniques?

▪ Interestingly, we can learn it from (old) “insecure” cryptography!

▪ Explore the limitations of classical ciphers from “old cryptography”

▪A salesperson is selling you a “perfectly secure” encryption 
system, do you believe the claim and buy it?

▪ How about a “military-grade system”?

▪ Is security by obscurity ever justified?

Questions to Ponder
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▪ Showcase humanity's age-old need for secure comm.

▪Military uses of diplomatic concerns

▪Cryptography has a long history:

▪ its origin dates back to ancient 12th-9th centuries BC

▪ Polybius square originally used for fire signaling

▪ a device invented by Cleoxenus and Democleitus

▪ made famous by Polybius (Greek historian and scholar)

▪ two variants (number/text)

A Taste of (Old) Cryptography
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https://en.wikipedia.org/wiki/Polybius_square

https://cryptii.com/pipes/polybius-square
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▪ Romans employed such an “encryption” scheme

▪ Consider the 26 alphabets of English

▪ Encoded them as a number in [0, 25]

▪ E(m) → m + k mod 26

▪ D(c) → c – k mod 26

▪ my salad -> qc wepeh (k = 4)

▪ Vulnerable to Frequency Analysis
▪ with knowledge of plaintext distribution

▪ cryptii.com/pipes/caesar-cipher

▪ crypto.interactive-maths.com/frequency-analysis-breaking-the-code 

Caesar Cipher
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Review concepts:

Encoding (is not encryption)

Modular arithmetic

(mod operation: finding remainder)

https://cryptii.com/pipes/caesar-cipher
https://crypto.interactive-maths.com/frequency-analysis-breaking-the-code


▪ Idea: not always map a plaintext to the same ciphertext

▪ Plaintext (m): AttackAtDawn (case insensitive)

▪ Key (k): Lemon

▪ Key “Sequence” (s): LEMONLEMONLE

▪ Ciphertext (c): LXFOPVEFRNHR

▪ How to attack?

▪ index of coincidence to figure out the key length (if not known) [**]

Vigenère Cipher: a variant of Caesar Cipher
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s l e m o n l e m o n l e

m a t t a c k a t d a w n

c l x f o p v e f r n h r

Concept to be revisited later:

Generating a longer 

pseudorandom sequence

https://en.wikipedia.org/wiki/Index_of_coincidence


▪Caesar and Vigenère Ciphers are both “polyalphabetic”

▪ Based on Substitution

▪ So does Enigma

▪employed by

▪ Nazi Germany

▪ during World War II

Enigma
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Photo taken at Bletchley Park

https://en.wikipedia.org/wiki/Enigma_machine


“Rail-Fence” Cipher via Transposition
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DISGRUNTLED EMPLOYEE

D   R   L   E   O   

I G U T E   M L Y E

S   N   D   P   E 

DRLEOIGUTE MLYESNDPE

▪ (will revisit transposition when we talk about block cipher)



▪Making the nebulous concept of “security” concrete

▪ Breaking the vicious circle of “cat-and-mouse” games

▪We will try to model the attacker as “powerful” as possible

▪ Keep this in mind: we define (i.e., limit) our problems

▪We first define the problem and the system

Defining Security
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“To define is to limit.” 
—Oscar Wilde 

(Irish poet and playwright)
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“Private” (Confidential) Communication

▪ Decryption

   recovers 

   m from c

Alice

▪ Plaintext: m

▪ Ciphertext: c

▪ Encryption turns m into c

▪ Eavesdropper

   can (passively)

   observe the

   communication

▪ (easily doable in

     the real world) EveEve

▪ Decryption

   recovers 

   m from c

Bob
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▪We want Bob to be able to decrypt c

▪but Eve to not be able to decrypt c

▪ For now, Eve has unbounded computational power

▪ She has an eternity life to launch a brute-force attack

▪ We will consider “realistic” (looking ahead, PPT) attackers later

▪Hide the details of the Enc() and Dec() algorithms secret?

▪ how crypto was done throughout most of the last 2000 years

▪ Well, maybe before 1970’s

▪ but it has major drawbacks!

Secret, or secrecy of the algorithms?

12th December 2024 IEMS5710 Crypto. Info Sec & Privacy 10/56



▪ should not depend on the ignorance of potential adversaries

▪ but rather on the possession of specific: e.g., keys or passwords
▪ Secrets must be stored somewhere: human/machine (external) 

memory
▪ Secrets are hard to protect, keep it minimal for easier protection.
▪ Unrealistic to attempt to maintain secrecy for any system

▪ especially when you expect it receives wide distribution.

▪ This decoupling of protection mechanisms from protection keys 
permits the mechanisms to be examined by many reviewers
▪ without concern that the review may itself compromise the 

safeguards

▪ Question: name one everyday “system” with open design

Open Design for Security
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▪ A system designer wants the system to be widely used.

▪ It is hard to keep a secret (e.g., reverse engineering).

▪ If details of Enc() and Dec() are leaked, what can we do?

▪ Invent a new encryption system!

▪ Inventing even a good one is already hard enough!

▪ [The method] must not be required to be secret, and it must be 
able to fall into the enemy’s hands without causing inconvenience.

▪ Bottom line: Design your system to be secure even if the attacker 
has complete knowledge of all its algorithms.

▪ vs. security by obscurity

Kerckhoffs’ Principle
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“Il faut qu’il n’exige pas le 
secret, et qu’il puisse sans 

inconvénient tomber entre 
les mains de l’ennemi.”



▪ A crypto scheme/construction is a collection of algorithms

▪ we may refer to the entire scheme by a single variable, e.g., Σ

▪ Symmetric-key encryption Σ = (KeyGen, Enc, Dec)

▪ Key generation algorithm (KeyGen(1λ) → k)

▪ Input: security parameter λ (λ is lambda, 1λ to be explained)

▪ Output: a key k

▪ Enck(m) → c, Deck(c) → m

▪ i.e., they are key-ed function

▪ All these algorithms are supposed to be public

What constitutes an encryption scheme?
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▪We call the inputs/outputs (i.e., the “function signature”) 
of the various algorithms the syntax of the scheme.

▪ KeyGen is a probabilistic/randomized algorithm

▪ An algorithm that uses randomness to influence its output.

▪ Knowing the details (i.e., source code) of a randomized 
algorithm does not mean you know the specific output 
it gave when it was executed

▪ (Later, Enc() will be randomized for “higher” security)

Syntax also forms the basis of Security
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▪ Code as in codeword (not coding as in writing a program)

▪ HKID check digit, a checksum for ensuring a HKID is “valid” 

▪ Can you create a “valid” HKID number?

▪ Cyclic redundancy check (CRC) code?

▪ An error-detecting code, like the role of check digit in HKID #

▪ Encoding/decoding methods is not encryption

▪ e.g., What is “b25seSBuZXJkcyB3aWxsIHJlYWQgdGhpcw==”?

▪ encoding algorithm it is not a key-ed function

▪ it is easy to decode, under Kerckhoffs’ principle

▪ P.S. This chapter isn’t about one-time password for authentication

“Code” (encoding is not encryption)
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▪ The fact that Alice is sending something to Bob

▪ We only want to hide the contents of that message

▪ Steganography hides the existence of a communication channel

▪How c reliably gets from Alice to Bob

▪We aren’t considering an attacker that tampers with c 
(causing Bob to receive and decrypt a different value)

▪ We will consider such integrity attacks later, though

What are outside our model’s protection?
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▪ How Alice and Bob actually obtain a common secret key

▪ e.g., physically meeting or use a trustworthy courier to send a USB drive

▪ How they can keep them secret while (keep) using it

▪ How to uniformly sample random (bit-)strings?

▪ No randomness, no cryptography

▪ Obtaining uniformly random bits from

   deterministic computers is

   extremely non-trivial

What it takes in the “real world”?
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“Any one who considers 
arithmetical methods of 

producing random digits is, 
of course, in a state of sin.”

— John von Neumann



▪ “Deem” only a break when…

▪ Whole m is recovered
▪ (Weakest security level)

▪ Some part of m is recovered
▪ (Slightly stronger)

▪ “1 bit information” of m is leaked
▪ (Strongest)
▪ May not be the actual bit of m

▪ Consider m is known to be “yes” or “no”

▪ Recover the plaintext m

▪ Recover a part of the 
plaintext m
▪ (Weaker adversary)
▪ To protect against a weaker 

adversary, a weaker 
scheme may suffice

▪ The weaker scheme might 
be more efficient

▪ Recover the secret key
▪ (Stronger adversary)

Attackers’ Goal vs. Strength of Encryption
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▪ Bit: the basic unit of information, either 0 or 1,

▪ Byte: formed by 8-bit, 2^8 = 256 possibilities
▪ Represented by two hexadecimal values since 256 = 16 * 16

▪ Exclusive OR (XOR): For b1 ⊕ b2 where bi is a bit
▪ All possibilities: 0 ⊕ 0 = 0, 0 ⊕ 1 = 1, 1 ⊕ 0 = 1, 1 ⊕ 1 = 0

▪ a logical operator that returns 1 (true) if the number of 1 (true) inputs is odd

▪ XOR is also addition modulo 2 (1 + 1 = 2, 2 mod 2 = 0)

▪ For bit-string operation S1 ⊕ S2, ⊕ in a bit-by-bit manner

▪ Example: m = 01001101

▪ (decimal = 77, ASCII = M)

▪ (Less than half of those 256 is “visible”, others are like control codes)

▪ https://www.asciitable.com

Bit Operations
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https://www.asciitable.com/


▪ Does perfectly-secure encryption exist?
▪ Yes, it does (but not really a “usable” one)
▪ There is only one such scheme, called one-time pad.

▪ OTP = {KeyGen, Enc, Dec}

▪ KeyGen(1λ):
▪ uniformly sample k from the set of λ-bit strings
▪ output k

▪ Enc(k, m) → c = m ⊕ k;
▪ (m is λ-bit long)

▪ Dec(k, c) → m = c ⊕ k

One-Time Pad (OTP) based on XOR

XOR 
⊕

0 1

0 0 1

1 1 0
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b1

b2



▪OTP-encrypt the 20-bit plaintext m below under a key k:

▪OTP-decrypt the 20-bit ciphertext c below under a key k:

Example
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▪ One-Time usage applies to the encryptor and decryptor separately

▪ i.e., encryptor uses the key for once

▪ and never reuses it for another encryption

▪ so does the decryptor, only uses the key for decryption for once

▪ Analogy: “locking” a letter with a unique key

▪ and throwing the key away after use

▪ Cons of “Real-World Analogy”:

▪ oscillate across practical (e.g., running encryption) and theoretical (e.g., 
uniform distribution) aspects, on top of “unrelated”/“imprecise” analogy

Analogy of One-Time Usage
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▪ I have provided concrete examples (don’t say I didn’t :), 
but, what did you learn by these examples?

▪ You saw how Enc() (or Dec()) works for a particular input

▪ You get a sense of correctness (m = Dec(k, Enc(k, m)))

▪ But how can you argue about its security?

Running a crypto. algorithm on paper
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▪ Security is a global property about the behavior of a system 
across all possible inputs.

▪ You can’t demonstrate security by example, 

▪ and there’s nothing to see in a particular execution of an algorithm.

▪ Security is about a higher level of abstraction.

▪ (and some students might not be comfortable with it)

▪ Most security definitions in this course are essentially:

▪ “the thing is secure if its outputs look like random junk.” 

▪ i.e., any example just look like meaningless garbage

Why Cryptography is difficult?
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▪ {0, 1}n : the set of n symbols, each of the n symbols is 0 or 1

▪ 0n or 1n is a string with n “copies” of 0’s or 1’s

▪ i.e., 0n, 1n are both in {0, 1}n

▪ (but we usually use 2n as a number to talk about, say, number of 
elements in {0, 1}n)

▪ || is the string-concatenation operator

▪ (to be used in the next chapter)

Notations about Strings
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▪ For all k, m ∈ {0, 1}λ, it is true that Dec(k, Enc(k, m)) = m.

▪ More precisely: For all m in the message space M (= {0, 1}λ) and all k 
in the key space K (= {0, 1}λ), Pr[Dec(k, Enc(k, m)) = m] = 1

▪ ∀k ∈ K and all m ∈ M, Pr[Dec(k, Enc(k, m)) = m] = 1
▪ written in terms of the probability since (later) Enc() could be randomized

▪ Proof:

▪    Dec(k, Enc(k, m))

▪ = Dec(k, k ⊕ m)

▪ = k ⊕ (k ⊕ m)

▪ = (k ⊕ k) ⊕ m // ⊕ is associative: (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c) 

▪ = 0λ ⊕ m = m (// denotes comment)

Correctness (one can always recover m)
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XOR 
⊕

0 1

0 0 1

1 1 0



▪ (patented in 1919, but recently discovered in an 1882 text)

▪ The security crucially depends on sampling k uniformly at 
random from the set of λ-bit strings
▪ The security would not hold if it is under other (key) distribution.

▪ (This step in) KeyGen() is the only source of randomness
▪ we’ll see using randomness “more” (e.g., in more algorithms) later

▪ Enc() and Dec() are “essentially” the same algorithm
▪ but it is more of a coincidence than something truly fundamental

▪Message space, key space, are just the ciphertext space
▪ a special case again, other schemes won’t necessarily be like this

Cautions: OTP is unique in its own ways
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▪ “Cryptographic guarantees”/“Provable security”:

▪ What happens (or what cannot happen) in the presence of certain 
well-defined classes of attacks

▪ What if the model is too restrictive (in defining the attacks)?
▪ Hence, we try to model the attacker as “powerful” as possible

▪ not a magic spell that solves all security problems

▪ providing solutions to cleanly defined problems

▪ often abstract away important but messy real-world concerns

▪ What if the “real-world” attackers don’t follow the “rules”?

▪ We fix the real-world matter: e.g., implementation, deployment

▪ or we propose a more comprehensive (but still abstract) definition

What (Modern) Cryptography is?
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▪ Identification of the problem / application scenario

▪ Identification of the primitive which may be useful

▪ Do not re-invent the wheel

▪ Extending existing primitives

▪ Relation between primitives (one implies another?)

▪ Definition of Functional Requirements

▪ A suite of algorithms / protocols, their input & output behavior / interfaces

▪ System model: what entities are involved, which entity executes which algorithm/protocols

▪ Definition of Security requirements

▪ Relation of security notions (one implies another?)

▪ Construction of the schemes

▪ Analysis of the proposed construction

▪ Security Proof: Provable Security

▪ Efficiency (Complexity Analysis and/or Experiment on Prototype Implementation)

Tasks of Crypto. Study ([*] / [**])
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Notation in the Slides

[*]: slightly complicated,

slides did not give full details,

but it should make sense to you.

[**]: advanced materials,

not much details provided,

“out-of-syllabus”



▪ “Because of the specific way the ciphertext was generated, it 
doesn’t reveal any information about the plaintext to the 
attacker, no matter what the attacker does with the ciphertext.”

▪ We need to first specify how the ciphertext is generated.

▪ Didn’t we? It is the encryption algorithm

▪ (which relies on KeyGen())

▪ But it was from the point of view of “honest” users Alice and Bob

▪ How can I predict “what the attacker does with the ciphertext”?

▪ Yes, but at least we need to specify what ciphertext does it see.

What are we going to prove
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▪ We always treat the attacker as some (unspecified) process 
that receives output from an algorithm (eavesdrop here).

▪ not what the attacker does (in the dark) 

▪ but rather the process

  (carried out by honest users)

  that produces what the attacker sees

Modelling what the adversary sees
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Encrypt
Honest user

m

eavesdrop(m)

m

trying to eavesdrop

manipulate then 
eavesdrop



▪ Our goal: “the output of eavesdrop doesn’t reveal the input m.”

▪ If you call eavesdrop several times, 

▪ even on the same input, 

▪ you are likely to get different outputs.

▪ Instead of thinking of “eavesdrop(m)” as a single string, 

▪ think of it as a probability distribution over strings.

▪ Each time you call eavesdrop(m),

▪ you see a sample from the distribution.

Probabilistic Alg. & its Output Distribution
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Query m

Response

m

Attacker
algorithm

“Simulated”
honest user



▪ λ = 3 and consider eavesdrop(010) and eavesdrop(111).

(Toy) Example
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k is chosen uniformly at 
random from {0, 1}λ

every string in the 
ciphertext space 
({0, 1}λ) appears 
exactly once, with 
the same (1/8) 
probability

a. k. a. uniform 
distribution over 
{0, 1}λ



▪Nothing special about 010 or 111 in the above examples.

▪ The distribution eavesdrop(m) is the uniform distribution 
over the ciphertext space {0, 1}λ.

▪ Let’s formalize this argument (without tabulating 23 times).

▪ Let’s first formalize what we want to prove:

▪ “For every m ∈ {0, 1}λ, the distribution eavesdrop(m) is the 
uniform distribution on {0, 1}λ.”

▪Corollary: For every m, m’ ∈ {0, 1}λ, the distributions 
eavesdrop(m) and eavesdrop(m’) are identical.

Some conclusions
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The Exact Proof from the Textbook
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▪ “For every m ∈ {0, 1}λ, the distribution eavesdrop(m) is the 
uniform distribution on {0, 1}λ”; (or, “more layman terms” :)
▪ “If an attacker sees a single ciphertext, 

▪ encrypted with one-time pad, where the key 

▪ is chosen uniformly and kept secret from the attacker, 

▪ then the ciphertext appears uniformly distributed.”

▪ Suppose someone chooses a plaintext m.

▪ You (the attacker) get to see the resulting ciphertext — 

▪a sample from the distribution you can sample by yourself

▪even if you don’t know m!

What did we prove? (Part I)

12th December 2024 IEMS5710 Crypto. Info Sec & Privacy 36/56



▪ The “real” ciphertext doesn’t carry any information about m if it 
is possible to sample without even knowing m! 

▪ “Paradox” 1: “One can always recover m [from c]” contradicts 
with “c contains no information about m.”

▪ The correctness proof assumes one w/ the knowledge of k

▪ “Paradox” 2: “eavesdrop(m) does not depend on m” is 
blatantly false simply because it takes m as an input!

▪ Our example shows that, when m is different, 

   the tabulated outputs indeed are different (m’s “effect”)

▪ The claim is about they are being the same distribution.

Security of OTP, and some discussions
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▪ For every m, m’ ∈ {0, 1}λ, the distributions eavesdrop(m) 
and eavesdrop(m’) are identical.
▪ “If an attacker sees a single ciphertext, 

▪ encrypted with one-time pad, where the key 

▪ is chosen uniformly and kept secret from the attacker, 

▪ for every two possibilities of the plaintext,

▪ the resulting ciphertext appears from the same distribution”

▪ The attacker’s “view” is the same no matter what m is

▪and no matter what the plaintext distribution is!
▪ (cf., Caesar cipher…)

What did we prove? (Part II)
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▪ “For every m ∈ {0, 1}λ, the distribution eavesdrop(m) is the 
uniform distribution on {0, 1}λ”

▪Here, we consider some hypothetical “ideal” world:

▪Any attacker essentially sees only a source of uniform bits.

▪No keys and no plaintexts can possibly be recovered.

▪We often use the “ideal world” expectation to model 
security in the real world.

What did we prove? (Part III)
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▪ “For every m ∈ {0, 1}λ, the distribution eavesdrop(m) is the 
uniform distribution on {0, 1}λ”

▪ Nothing was said about the attacker’s goal!

▪ e.g., recovering the plaintext or the key

▪ Looking ahead, we may do that in alternative definitions or cases

▪ but we still want to be general enough

▪ What we prove: Any attacker, who saw an OTP ciphertext in the 
real world, has a point of view like in our hypothetical world!

▪ Or, it is a “modest” goal: detect that ciphertexts don’t follow a 
uniform distribution (so harder goals are out of reach)

What did we prove? (fin.)
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1. It can only be used once (to encrypt a single plaintext).

▪Note that the eavesdrop procedure provides no way for 
a caller to guarantee that two calls will use the same key.

▪ So, we did not prove anything about reusing the key.

2. The key is as long as the plaintext (can be proven [**])

▪Chicken-and-egg dilemma in practice:

▪ If two users want to privately convey a λ-bit message, 

▪ they first need to privately agree on a λ-bit string.

▪ We’ll tackle this issue shortly (pseudorandom generator)

Limitations of One-Time Pad
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▪ Pedagogical: It illustrates fundamental ideas that appear in most 
forms of encryption in this course.
▪ (recall the “Cautions” slide though)

▪ In “real-world”: the only “perfectly secure” encryption scheme
▪ imagine if someone sells a “perfect” encryption scheme to you…

▪ We propose the first solution, it may not be “ideal” (e.g., inefficient)

▪ then we try to “twist” it to make it achieve some “better trade-offs”
▪ How “innovation” work sometimes

▪ What if the attacker has bounded computation power?

▪ What if we manage to have some “pseudorandom strings”?
▪ We’ll study “computationally-secure” pseudorandom number generator

Then why teach OTP?
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▪ how to understand & interpret them

▪ how to demonstrate insecurity w.r.t. the security definition
▪ w.r.t.: with respect to

▪ We just talked about a specific encryption scheme (OTP).

▪ We’ll consider definitions for a general encryption scheme Σ
▪ (restrictive now: the key is still used for encrypting once)

▪ (we’ll study “regular”/“multi-use” encryption soon)

▪ Correctness doesn’t imply security

▪ e.g., the scheme Σ’ below is always correct but won’t be secure
▪ Σ’.Enc(k, m) = m (∀k ∈ Σ’.K and ∀m ∈ Σ’.M) // adversary knew the algorithm

Security Definition
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“Human ingenuity cannot concoct a cipher 
which human ingenuity cannot resolve.”

— Edgar Allan Poe, 
“A Few Words on Secret Writing”, 1841



▪ Security always consider the attacker’s view of the system.

▪ What is the “interface” that honest users expose to the attacker 
by their use of the cryptography?

▪ And does that particular interface benefit the attacker?

▪ We’ll consider “Real-or-Random”
▪ There may be other reasonable ways to formalize security
▪ We’ll see “Left-or-Right” (about two messages) in the next chapter

▪ We use notations like Σ.KeyGen, Σ.Enc, Σ.Dec, Σ.K, Σ.M, and Σ.C to 
refer to algorithms and spaces of the encryption scheme Σ.

The Spirit of Security Definition
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▪ There are two inputs to Enc(): the key and the plaintext

▪ The key is our source of randomness and hence security

▪ The key, generated according to KeyGen(), is kept secret

▪ For now, we still assume each key is used to encrypt once

▪ The view we said for OTP:

A General Encryption Algorithm Model

▪A general interface:

Abstract

Instantiate
nitty 
gritty

syntax
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Library/Oracle: Interface for Attacking (SKE)

▪Adversaries can submit plaintexts via an “encryption oracle”

▪ receiving their corresponding ciphertexts.

▪An oracle is an abstract entity that responds to “queries”

▪ a controlled environment simulating access to a specific 
cryptographic operation

▪ without revealing the full knowledge of the underlying secret

▪A “pessimistic” choice ⇒ Giving more power to attackers

▪ If an SKE scheme is secure against a “powerful” attacker

▪ then it’s also secure in “more realistic scenarios”

▪ where the attacker has some uncertainty about the plaintexts.
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▪ Real-or-Random: make sure ciphertexts look “nonsense”

▪ Left-or-Right: break the “linkage” to the 2 known possibilities

▪ Both trying to achieve the “goal of secure encryption”

▪ (There might be diff. styles or diff. ways to formalize for each style.)

Two Styles of Security Definition

12th December 2024 IEMS5710 Crypto. Info Sec & Privacy 47/56



▪ “Encryption doesn’t reveal any information about the plaintext 
to the attacker.”

▪ “An encryption scheme is a good one if its ciphertexts look like 
random junk to an attacker when …”

▪ “each key is secret and used to encrypt only one plaintext, even 
when the attacker chooses the plaintexts.”

▪ Consider the attacker as a calling program to subroutine:

▪ can choose the input argument (m ∈ Σ.M), but 

▪ can’t see values of privately-scoped variables
▪ e.g., key k, let alone internal random coins of KeyGen()

▪ (like eavesdrop, a fresh k is chosen each time)

Real vs. Random (more specific)
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▪ This ctxt subroutine should have the same effect on every 
calling program (i.e., our attacker) as a ctxt subroutine that 
(explicitly) samples its output uniformly.

▪ “Σ is secure if, when you plug its KeyGen and Enc algorithms 
into the template of the ctxt subroutine, the below two 
implementations of ctxt induce identical behavior in every 
calling program.”

Real vs. Random (“final” verbal desc.)

vs.real random
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A Simple Proof that OTP is RoR-secure

vs.
real random

vs.

By the properties of XOR (⊕), 

if k is chosen uniformly at random, so does c, no matter what m is

(The output of the left and that of the right shares the same distribution, cf., p.33)
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“One-time Uniform Ciphertexts” (RoR)
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the “$” symbol denotes

“random” as in coin tossing

(One-time RoR-)Security of OTP:

(Lotp-real and Lotp-rand will be

recalled in this chapter later)

(uniform as a shorthand of

uniformly random)

the superscript Σ means the library is 

“parameterized” by scheme Σ



“Σ is secure if, encryptions of mL look like encryptions of mR 

to an attacker, when each key is secret and used to 

encrypt only one plaintext, even when the attacker 

chooses mL and mR.”

Left vs. Right
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RoR: “an encryption scheme is a good one if its ciphertexts 

look like random junk to an attacker when each key is 

secret and used to encrypt only one plaintext, even when 

the attacker chooses the plaintexts.”

OTP is also LoR-secure



▪ LoR ensure ciphertexts for 
two different plaintexts are 
indistinguishable.

▪ The attacker chooses two 
plaintexts mL and mR,

▪and must determine 
whether the ciphertext 
corresponds to mL or mR.

▪ RoR ensures ciphertexts 
appear indistinguishable 
from random values.

▪ The attacker must 
determine if ciphertexts 
are real or random junk.

▪ Real: encrypted from the 
actual plaintext.

Real-vs.-Random (RoR) vs. Left-vs.-Right (LoR)
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▪ Both aim to formalize encryption security but differ in how 
they model the attacker’s ability to distinguish ciphertexts.
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▪ Consider a tiny change to OTP: use bitwise-AND.

▪ To break uniform ctxt: how to choose m to make c non-uniform?

▪ To break left-or-right secrecy: choose two “differentiating” m’s?

▪ You only need to find 1 flaw! Core observation of pattern/insecurity:

   It can never encrypt a (plaintext) bit 0 into a (ciphertext) bit 1.

Example of Insecure Encryption Scheme Σ
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& 0 1

0 0 0

1 0 1

Dec() is omitted.



▪One-time pad security: Perfect secrecy if the key is used 
only once and is as long as the plaintext.

▪One-time pad is the only scheme that is perfectly secure

▪ But it is inconvenient, if not impractical, to use in practice.

▪ Kerckhoffs’ Principle: Systems should remain secure even if 
algorithms are public.

▪What will happen if we reuse a one-time pad key?

Key Takeaways
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Feature Caesar Cipher One-Time Pad (OTP)

Key Single value (fixed shift) A different random bit for each 
position

Key Usage Reused for all character Used only once

Security Vulnerable to frequency analysis Perfect secrecy

Ciphertext Deterministic (same p.txt, same c.txt) Random-looking even w/ same p.txt

Practicality Easy to implement Impractical key length

One-Time Pad vs. Caesar Cipher
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OTP “degenerates” into Caesar cipher
if the key is reused across different plaintext!

e.g., OTP by itself is still deterministic
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