1.1 Basic Number Theory

1.1.1 Modular Arithmetic

- Consider $\mathbb{Z}_n = \{0, 1, 2, \ldots, n-1\}$ and $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$.
- We say that “a is congruent to b modulo n”, or $a \equiv b \pmod{n}$, if $a = nx + b$ for some $x \in \mathbb{Z}$.
- Usual arithmetic rules apply:
 1. $a \equiv a \pmod{n}$
 2. if $a \equiv b \pmod{n}$, then $b \equiv a \pmod{n}$
 3. if $a \equiv b \pmod{n}$ and $b \equiv c \pmod{n}$, then $a \equiv c \pmod{n}$
 4. if $a \equiv b \pmod{n}$ and $c \equiv d$, then $a + c \equiv b + d \pmod{n}$ and $ac \equiv bd \pmod{n}$
 5. if $a \equiv b \pmod{n}$, then $a + c \equiv b + c \pmod{n}$ and $ac \equiv bc \pmod{n}$
 6. if $a \equiv b \pmod{n}$, then $a^k \equiv b^k \pmod{n}$ for all positive integer k
- Except:
 - if $ac \equiv bc \pmod{n}$, then $a \equiv b \pmod{n/d}$ where $d = \gcd(c, n)$

1.1.2 Euclidean Algorithm

Notations and Terminologies:

- The greatest common divisor (GCD) d of two integers a and b is the maximum of the integers that divides both a and b, denoted as $d = \gcd(a, b)$.
- The integers a and b are said to be coprime if $\gcd(a, b) = 1$.
- $a \mid b$ means “a divides b”. $a \nmid b$ means “a does not divide b”.

Lemma 1.1 If $a = qb + r$, then $\gcd(a, b) = \gcd(b, r)$.

Proof: Let $d = \gcd(a, b)$, then $d \mid a$ and $d \mid b$. Then $d \mid (r = a - qb)$. Suppose c is a common divisor of b and r, then $c \mid (a = qb + r)$. By definition of d, $c \leq d$. Therefore $d = \gcd(b, r)$. ■

Theorem 1.2 For non-zero integers a and b, there exists integers x and y such that $\gcd(a, b) = ax + by$.

Proof: We provide a constructive proof, *i.e.* we state the (extended) Euclidean algorithm which computes the GCD, x and y. Without loss of generality, assume $a > b > 0$. Compute the following:

\[
\begin{align*}
 a &= q_1 b + r_1 & 0 < r_1 & \leq b \\
 b &= q_2 r_1 + r_2 & 0 < r_2 & \leq r_1 \\
 r_1 &= q_3 r_2 + r_3 & 0 < r_3 & \leq r_2 \\
 & \vdots \\
 r_{n-2} &= q_n r_{n-1} + r_n & 0 < r_n & < r_{n-1} \\
 r_{n-1} &= q_{n+1} r_n + 0
\end{align*}
\]

By Lemma 2.2, $\gcd(a, b) = \gcd(b, r_1) = \ldots = \gcd(r_{n-1}, r_n) = \gcd(r_n, 0) = r_n$.

Now, we work backward from the second last equation.

\[
\begin{align*}
 r_n &= r_{n-2} - q_n r_{n-1} \\
 &= (1 + q_n q_{n-1}) r_{n-2} + (-q_n) r_{n-3} \\
 &\ldots \\
 &= ax + by
\end{align*}
\]

Example 1.3 Compute $\gcd(360, 924)$.

\[
\begin{align*}
 924 &= 2 \times 360 + 204 & \gcd(360, 924) &= 12 = 156 - 3 \times 48 \\
 360 &= 1 \times 204 + 156 & \quad \quad \quad &= 156 - 3 \times (204 - 156) \\
 204 &= 1 \times 156 + 48 & \quad \quad &= 4 \times 156 - 3 \times 204 \\
 156 &= 3 \times 48 + 12 & \quad \quad &= 4 \times (360 - 1 \times 204) - 3 \times 204 \\
 48 &= 4 \times 12 + 0 & \quad \quad &= 4 \times 360 - 7 \times 204 \\
\end{align*}
\]

\[
\begin{align*}
 48 &= 4 \times 12 + 0 & \quad \quad &= 4 \times 360 - 7 \times (924 - 2 \times 360) \\
 204 &= 1 \times 156 + 48 & \quad \quad &= 18 \times 360 - 7 \times 924 \\
 360 &= 1 \times 204 + 156 & \quad \quad &= 156 - 3 \times (204 - 156) \\
 924 &= 2 \times 360 + 204 & \quad \quad &= 156 - 3 \times (204 - 156) \\
\end{align*}
\]

1.1.3 Euler’s Phi / Totient Function

Euler’s totient function: $\phi(n) = “\# \text{ of positive integers that are less than and coprime with } n”$.

Properties: Let p be prime. Let m, n be positive integers such that $\gcd(m, n) = 1$.

- $\phi(p) = p - 1$
- $\phi(p^k) = p^{k-1}(p - 1)$
- $\phi(mn) = \phi(m)\phi(n)$.

Proof: Consider the following array:

\[
\begin{array}{cccccccc}
 1 & 2 & \ldots & r & \ldots & m \\
 m + 1 & m + 2 & \ldots & m + r & \ldots & 2m \\
 2m + 1 & 2m + 2 & \ldots & 2m + r & \ldots & 3m \\
 \vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
 (n - 1)m + 1 & (n - 1)m + 2 & \ldots & (n - 1)m + r & \ldots & nm \\
\end{array}
\]
For each row, we know by Lemma ?? that gcd(km + r, m) = gcd(r, m). Therefore there are exactly \(\phi(m) \) columns in each row that are coprime with \(m \). Now consider the \(r \)-th column, none of them are congruent to each other modulo \(n \). Therefore they are congruent to \(0, 1, \ldots, n - 1 \) in some order, and exactly \(\phi(n) \) of them are coprime with \(n \).

1.1.4 Fermat’s Little Theorem and Euler’s Generalization

Theorem 1.4 (Fermat’s Little Theorem) Let \(p \) be a prime and \(p \nmid a \). Then \(a^{p-1} \equiv 1 \pmod{p} \).

Theorem 1.5 (Euler’s Generalization of Fermat’s Little Theorem)
If \(n \geq 1 \) and gcd\((a, n) = 1 \), then \(a^{\phi(n)} \equiv 1 \pmod{n} \).

Proof: Let \(a_1, a_2, \ldots, a_{\phi(n)} \) be positive integers that are less than and coprime with \(n \). Since gcd\((a_i, n) = 1 \), \(aa_1, aa_2, \ldots, aa_{\phi(n)} \) are congruent to \(a_1, a_2, \ldots, a_{\phi(n)} \) in some order. Let \(aa_i \equiv a'_i \pmod{n} \) for \(i = 1, 2, \ldots, \phi(n) \). Then

\[
(aa_1)(aa_2)\ldots(aa_{\phi(n)}) \equiv a'_1a'_2\ldots a'_{\phi(n)} \pmod{n}
\]

\[
\equiv a_1a_2\ldots a_{\phi(n)} \pmod{n}
\]

and so

\[
a^{\phi(n)}(a_1a_2\ldots a_{\phi(n)}) \equiv a_1a_2\ldots a_{\phi(n)} \pmod{n}
\]

Since gcd\((a_i, n) = 1 \) for all \(i \), we have gcd\((a_1a_2\ldots a_{\phi(n)}, n) = 1 \). Therefore \(a^{\phi(n)} \equiv 1 \pmod{n} \).

Definition 1.6 (Orders and Primitive Roots) Given \(a \in \mathbb{Z} \), let \(k \leq \phi(n) \) be the smallest positive integer such that \(a^k \equiv 1 \pmod{n} \). Then \(k \) is called the order of \(a \). If \(a \) has the highest order, namely \(\phi(n) \), then \(a \) is called a primitive root of \(n \). A primitive root \(a \) generates all the integers less than and coprime with \(n \) by self multiplication.

Example 1.7 \(3 \) is a primitive root of \(7 \).

<table>
<thead>
<tr>
<th>(x)</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(3^x \pmod{7})</td>
<td>3</td>
<td>2</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

1.1.5 Fast Exponentiation Algorithm

How to calculate \(a^x \pmod{n} \) for large \(x \), say \(5^{110} \pmod{131} \)?

1. Expand \(x \) in binary representation: \(110 = 64 + 32 + 8 + 4 + 2 \)

2. Complete the following table by repeated squaring:

\[
\begin{align*}
5^2 &\equiv 25 \pmod{131} & 5^4 &\equiv 25^2 \equiv 101 \pmod{131} \\
5^8 &\equiv 101^2 \equiv 114 \pmod{131} & 5^{16} &\equiv 114^2 \equiv 27 \pmod{131} \\
5^{32} &\equiv 27^2 \equiv 74 \pmod{131} & 5^{64} &\equiv 74^2 \equiv 105 \pmod{131} \\
5^{110} &\equiv 5^{64+32+8+4+2} = 5^{64} \cdot 5^{32} \cdot 5^{8} \cdot 5^{4} \cdot 5^{2} \equiv 105 \cdot 74 \cdot 114 \cdot 101 \cdot 25 \equiv 60 \pmod{131}.
\end{align*}
\]
1.2 Basic Abstract Algebra

Definition 1.8 (Groups) Let \mathbb{G} be a set and “.” be an operation defined over \mathbb{G}. (\mathbb{G}, \cdot) or simply \mathbb{G} is called a group if the following holds.

1. Closed: If $a, b \in \mathbb{G}$, then $a \cdot b \in \mathbb{G}$
2. Associative: If $a, b, c \in \mathbb{G}$, then $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
3. Existence of Identity: $\exists e \in \mathbb{G}$ such that $a \cdot e = e \cdot a = a \forall a \in \mathbb{G}$
4. Existence of Inverses: If $a \in \mathbb{G}$, then $\exists a^{-1} \in \mathbb{G}$ such that $a \cdot a^{-1} = a^{-1} \cdot a = e$

Furthermore, if \mathbb{G} is commutative, i.e. “if $a, b \in \mathbb{G}$, then $a \cdot b = b \cdot a$”, then \mathbb{G} is said to be an Abelian group.

If the number of elements in \mathbb{G} is finite, \mathbb{G} is said to be a finite group. In this case, the number of elements $|\mathbb{G}|$ is called the order of the group \mathbb{G}. Otherwise, \mathbb{G} is said to be an infinite group.

Definition 1.9 (Cyclic Groups and Generators) Let \mathbb{G} be a finite group with order n and identity element $1_\mathbb{G}$. If there exists an element $g \in \mathbb{G}$ such that \mathbb{G} can be written as $\{g, g^2, g^3, \ldots, g^n = 1_\mathbb{G}\}$, then \mathbb{G} is said to be a cyclic group, and g is said to be a generator of \mathbb{G}.

Example 1.10 Let $n \in \mathbb{Z}$, $(\mathbb{Z}_n, +)$ is a cyclic group of order n, and any $g \in \mathbb{Z}_n^*$ is a generator of \mathbb{Z}_n. Furthermore, if $n = 2, 4, p^k$ or $2p^k$ for some odd prime p and positive integer k, then (\mathbb{Z}_n^*, \times) is a cyclic group of order $\phi(n)$, and any primitive root of n is also a generator of \mathbb{Z}_n^*.

Definition 1.11 (Rings) Let $(R, +)$ be an Abelian group and “.” be an additional operation defined over R. $(R, +, \cdot)$ or simply R is called a ring if the following holds.

1. Associative w.r.t. \cdot: If $a, b, c \in R$ then $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
2. Existence of Identity w.r.t. \cdot: $\exists e \in R$ such that $a \cdot e = e \cdot a = a \forall a \in R$
3. Distributive w.r.t. \cdot: If $a, b, c \in R$ then $(a + b) \cdot c = (a \cdot c) + (b \cdot c)$ and $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$

Furthermore, if R is commutative w.r.t. \cdot, i.e. “if $a, b \in R$, then $a \cdot b = b \cdot a$”, then R is said to be a commutative ring.

Definition 1.12 (Fields) A commutative ring $(\mathbb{F}, +, \cdot)$ is called a field if multiplicative inverses exist except for the additive identity.

1.3 Computationally Hard Problems

Definition 1.13 (Discrete Logarithm Problem (DLP)) Let \mathbb{G} be a cyclic group of λ-bit long prime order p. Given $(g, y = g^x, p)$ where $g \in \mathbb{G}$ is a generator, and $1 \leq x \leq p$ is randomly chosen, find x.

Definition 1.14 (RSA Problem) Given a tuple (N, e, c), where $N = pq$ for some randomly chosen λ-bit long primes p and q, $e \leftarrow \mathbb{Z}_n^\ast \phi(n)$, and $c = m^e \pmod{n}$ for some $m \leftarrow \mathbb{Z}_n^\ast$, find m.