
Sherman Chow

Chinese University of Hong Kong

Spring 2025

Lecture 2: Symmetric-Key Primitives Part (I)

17th January 2025 ENGG5383 Applied Cryptography 1

ENGG5383

Applied Cryptography



Chapters 0-1 of “The Joy of Cryptography”

Introduction & One-Time Pad
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▪We want a “set” of cryptosystems parameterized by λ

▪Algo.’s run by all honest parties take the commonly agreed λ

▪ They run in time polynomial in their input length λ, poly(λ):

▪ Sufficiently fast (e.g., time) complexity, say, for honest parties, e.g., λ3

▪ Closure property: poly(λ) ⋅ poly(λ) is still in poly(λ)

▪ Security parameter of the system is 1λ (with length λ bits)

▪ 1λ denotes λ copies of 1’s, |1λ| = λ, 1λ is in {0, 1}λ, a set of λ bits (0/1)

▪ If we put λ as an input, the length of (input) λ, |λ|, is log(λ) bits

▪ Brute-force attacks against the system should run in time 2λ

Security Parameter (& some notations)
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▪Deterministic algorithm: y = A(x)

▪ Probabilistic: “flipping a coin” internally to randomize A()

▪ y  A(x), y is the random variable corresponds to A’s output

▪Or y = A(x; r), where r denotes A’s “coin tossing”

▪ when we had the need to specify the randomness explicitly

▪All algorithms’ details are public (Kerckhoffs’ principle)

Probabilistic Polynomial Time (PPT) Algo.
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▪A function v(λ) is called negligible, denoted negl(λ), if:

▪ (∀c > 0) (∃λ’) (∀λ ≥ λ’) [v(λ) ≤ 1/λc]

▪ Less than the inverse of any polynomial for large enough λ

▪Alt. def.: v is negl(λ) if for every poly p: limλ→∞ p(λ)v(λ) = 0.

▪e.g., 2^{- λ/2} (= 1/2λ/2), 2{-√ λ}, 2^{-log2λ}, n^{-logλ}

▪ Prob. of breaking a secure system should be negligible in λ

▪We have poly(λ)  negl(λ) = negl(λ) (abusing notations)

▪Definition: f ≈ g if |f(λ) – g(λ)| is (≤) negl(λ) // f, g: N → R

Negligible Function
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The negligible, the noticeable 

and the overwhelming

(∀λ ≥ λ’) ≤ 1/λc ∀c > 0

https://mathwiki.cs.ut.ee/asymptotics/06_the_negligible_the_noticeable_and_the_overwhelming
https://mathwiki.cs.ut.ee/asymptotics/06_the_negligible_the_noticeable_and_the_overwhelming


▪ A crypto scheme/construction is a collection of algorithms

▪ Syntax: the inputs/outputs (the “function signature”) of all algorithms

▪ A symmetric-key encryption (SKE) scheme, Σ = (KeyGen, Enc, Dec):

▪ KeyGen(1λ): A randomized algorithm that outputs a key k ∈ K

▪ Enc(k, m): A (possibly randomized) algorithm that takes a key k ∈ K 
and plaintext m ∈ M as input, and outputs a ciphertext c ∈ C

▪ Dec(k, c): A deterministic algorithm that takes a key k ∈ K and 
ciphertext c ∈ C as input, and outputs a plaintext m ∈ M

▪ Σ.K, Σ.M, Σ.C denotes the key, message, ciphertext space, resp.

What constitutes an encryption scheme?
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▪ For all (∀) k ∈ Σ.K and all m ∈ Σ.M, 

  Pr[Σ.Dec(k, Σ.Enc(k, m)) = m] = 1

▪ The definition is written in terms of the probability since 
Enc() is allowed to be randomized.

▪Counterexample: Enc(k, m) = 0λ 

▪One might relax the perfect correctness requirement
▪ e.g., for efficiency

▪ or for properties we do not know how to achieve otherwise
▪ e.g., fully homomorphic encryption

(Perfect) Correctness
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▪ eXclusive OR (XOR): For b1 ⊕ b2 (bi is a bit), output as the table
▪ a logical operator that returns 1 (true) if the number of 1 (true) inputs is odd

▪ XOR is also addition modulo 2 (1 + 1 = 2, 2 mod 2 = 0)

▪ For bit-string operation S1 ⊕ S2, just ⊕ in a bit-wise manner

▪ OTP = {KeyGen, Enc, Dec}

▪ KeyGen(1λ):
▪ uniformly sample a λ-bit string k
▪ output k

▪ Enc(k, m) → c = m ⊕ k;
▪ (m is λ-bit long)

▪ Dec(k, c) → m = c ⊕ k

One-Time Pad (OTP) based on XOR

XOR 

⊕
0 1

0 0 1

1 1 0
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b1

b2



▪ Security is a nebulous concept, but not if you took this course

▪ Provable:

▪ We can formally define what it means to be secure

▪ and then mathematically prove claims about security

▪ e.g., logic of composing building blocks together in secure ways

▪ Security conference papers require “threat model.”

▪ Is the threat too easy to defend? Is it too narrow/restrict?

Fundamentals of “Provable Security”
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▪We always treat the attacker as some (unspecified) process 
that receives output from an algorithm (eavesdrop here).

▪ Attacker can make the honest users 

▪ run an algorithm with some input and 

▪ see the outcome (not internal variables)

▪ Each time you call eavesdrop(m),

▪ you see a sample from the probability distribution

Modelling what the adversary sees
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Encrypt
Honest user

m

eavesdrop(m)

m

trying to eavesdrop

manipulate then 
eavesdrop

“Simulated”
honest user



Attackers’ Goal vs. Strength of Encryption
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▪ “Deem” only a break when…

▪Whole m is recovered
▪ (Weakest security level)

▪ Some part of m is recovered
▪ (Slightly stronger)

▪ “1 bit information” of m is leaked
▪ (Strongest)
▪ May not be the actual bit of m

▪ Consider m is known to be “yes” or “no”

▪ Recover the plaintext m

▪ Recover a part of the 
plaintext m
▪ (Weaker adversary)

▪ To protect against a weaker 
adversary, a weaker 
scheme may suffice
▪ The weaker scheme might 

be more efficient

▪ Recover the secret key
▪ (Stronger adversary)
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Chapter 2 of “The Joy of Cryptography”

Basic of Provable Security

17th January 2025 ENGG5383 Applied Cryptography 12



▪ how to write a security definition

▪ how to understand & interpret security definitions

▪ how to prove security using the hybrid technique

▪ how to demonstrate insecurity using attacks

▪ w.r.t. the definition

▪ Let’s consider definitions for a more general encryption scheme.

▪ (the key is still used for encrypting once)

▪ (1 step at a time, we’ll study “regular”/“multi-use” encryption soon)

Security Definition
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“Human ingenuity cannot concoct a cipher 
which human ingenuity cannot resolve.”

— Edgar Allan Poe, 
“A Few Words on Secret Writing”, 1841



▪Defining an adversary via its goal and capabilities

▪A “blueprint” defining security according to the syntax

▪but not the internal details of the algorithms or the attacks

▪ Security always considers the attacker’s view of the system.

▪What is the “interface” that honest users expose to the 
attacker by their use of the cryptography?

▪And does that particular interface benefit the attacker?

Provable Security: to define
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▪ There are two inputs to Enc(): the key and the plaintext

▪ The key is our source of randomness and hence security

▪ The key, generated according to KeyGen(), is kept secret

▪ For now, we still assume each key is used to encrypt once

▪ The view we said for OTP:

A General Encryption Algorithm Model

▪A general interface:
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Abstract

Instantiatenitty 
gritty

syntax



Library/Oracle: Interface for Attacking (SKE)
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▪Adversaries can submit plaintexts via an “encryption oracle”

▪ receiving their corresponding ciphertexts.

▪An oracle is an abstract entity that responds to “queries”

▪ a controlled environment simulating access to a specific 
cryptographic operation (like encryption or decryption@§9)

▪ without revealing the full knowledge of the underlying secret

▪A “pessimistic” choice ⇒ Giving more power to attackers

▪ If an SKE scheme is secure against a “powerful” attacker

▪ then it’s also secure in “more realistic scenarios”

▪ where the attacker has some uncertainty about the plaintexts.



▪ Real-or-Random: make sure ciphertexts look “nonsense”

▪ Left-or-Right: break the “linkage” to the 2 known possibilities

▪ Both trying to achieve the “goal of secure encryption”

▪ (There might be diff. styles or diff. ways to formalize for each style.)

Two Styles of Security Definition
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▪ “An encryption scheme is a good one if its ciphertexts look like 
random junk to an attacker when …”

▪ “each key is secret and used to encrypt only one plaintext, even 
when the attacker chooses the plaintexts.”

▪ “Σ is secure if, when you plug its KeyGen and Enc algorithms into the 
template of the ctxt subroutine, the below two implementations of 
ctxt induce identical behavior in every calling program.”

Real vs. Random (more specific)
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vs.real random



A Simple Proof that OTP is RoR-secure
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vs.
real random

vs.

By the properties of XOR (⊕), 

if k is chosen uniformly at random, so does c, no matter what m is



“Σ is secure if, encryptions of mL look like encryptions of mR 

to an attacker, when each key is secret and used to 

encrypt only one plaintext, even when the attacker 
chooses mL and mR.”

Left vs. Right
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RoR: “an encryption scheme is a good one if its 

ciphertexts look like random junk to an attacker when 
each key is secret and used to encrypt only one plaintext, 

even when the attacker chooses the plaintexts.”

(See Exercise 2.15 for an alternative formalization)(Exercise: Prove OTP is LoR-secure)



▪proving security by demonstrating that a sequence of 
cryptographic systems are interchangeable with one another

▪breaks the comparison into smaller (manageable) steps
▪ instead of directly comparing two significantly different systems

▪We start with a system (library) and make a sequence of 
small modifications to arrive at the desired system.

▪ Each modification must be justified as having “no” effect on 
the attacker’s ability to distinguish between the systems.

▪Avoids tedious probability calculations by focusing on 
intermediate transitions between libraries.

Overview of Hybrid (Proving) Technique
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▪ The heart of the hybrid technique:

▪Designing a sequence of intermediate libraries, starting 
with the first target library and ending with the second.

▪ Each hybrid should introduce a small, manageable 
change compared to the previous one.

▪ Your “bridges” most likely come from one of two sources:

▪ (i) A common technique: interchangeable code (p.23)

▪ (ii) Security of the underlying building block, or proven fact

Construct a Sequence of Hybrids
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▪ The crucial part of the proof is to rigorously argue why each hybrid is 
interchangeable with the one before it.

▪ demonstrating that no attacker, represented by any calling program, can 
distinguish between the two libraries based on their outputs.

▪ Common Justifications (corresponding to (i) and (ii) in the last slide):

▪ (i) They are the same “program”/”library”

▪ (ii) Applying known security properties (two interchangeable libraries) 

▪ leverage proven security properties of underlying cryptographic primitives

▪ e.g., when you proving a bigger system using OTP, 

▪ you can justify the change from real OTP ciphertext to a random bitstring

Justify Each Transition
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▪A library L is a collection of subroutines & private/static var.

▪A library’s interface consists of the names, argument types, 
and output type of all its subroutines

▪A⋄L: a program A includes calls to subroutines in L (linking)

▪A⋄L ⇒ z: denote the event that A⋄L outputs the value z 

Programming-Like Terminologies
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An example of A :

choosing a random
m and hoping that
ctxt(m) is just m?



▪A “challenge”/“game” asking the adversary to guess 
every single bit of a string picked uniformly at random:

Another Example (as in the textbook)
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several 
sub-
routines 
co-exist

code outside of any 
subroutine is run once 
at initialization time

variables defined at 
initialization (e.g., s) 
are available in all 
subroutine scopes
(but still not to the 
calling program)



▪ Let L0 and L1 be two libraries that have the same interface.

▪ L0 and L1 are said to be interchangeable, denoted by L0 ≡ L1

▪ if for all programs A that output a boolean value (true/false)

▪ Pr[A ⋄ L0 ⇒ true] = Pr[A ⋄ L1 ⇒ true]

▪We can also call A as a distinguisher

▪ Lemmas about interchangeable “hybrid” libraries:

▪ 1. (A ⋄ L1)⋄ L2 ≡ A ⋄ (L1 ⋄ L2); i.e., “associativity” of ⋄

▪ 2. If Lleft ≡ Lright, for any library L*, we have L* ⋄ Lleft ≡ L* ⋄ Lright

Interchangeability as Formal Security
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RoR: (One-time) Uniform Ciphertexts

17th January 2025 ENGG5383 Applied Cryptography 27/56

the “$” symbol denotes

“random” as in coin tossing

(One-time RoR-)Security of OTP:

(uniform as a shorthand of

uniformly random)

the superscript Σ means the library is 

“parameterized” by scheme Σ



▪ Formally, an encryption scheme Σ has one-time secrecy if:

Left-or-Right Style One-time Security

17th January 2025 ENGG5383 Applied Cryptography 28/56

Uniform ciphertext ⇒ Left-or-right secrecy

the same argument in 2-otp-proof.pdf remains 

valid for any one-time RoR-secure encryption

Left-or-right secrecy ⇏ Uniform ciphertext

Make a “contrived” counterexample LoR-secure OTP’

OTP’ where OTP’.Enc() := OTP.Enc() || 01}λ

https://web.engr.oregonstate.edu/~rosulekm/crypto/otp-proof.pdf


▪ Left-hand side is algorithm A we 
designed for attack.

▪ Right-hand side inserts the insecure 
algorithm Σ into 2 libraries/templates.

▪ Pr[A ⋄ Lots$-real ⇒ true] = 1.

▪ Pr[A ⋄ Lots$-rand ⇒ true] = 2-λ.

▪ Pr[A ⋄ Lots$-L ⇒ true] = 1.

▪ Pr[A ⋄ Lots$-R ⇒ true] = 2-λ.

Demonstrating Insecurity with Attacks
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Chapter 4 of “The Joy of Cryptography”

Computational Security
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▪ Pr[E] ≈ p means |Pr[E] - p| is negl(λ)

▪ Pr[X] ≈ 0 (resp. 1) ⇔ event X almost never (resp. always) happens

▪ Pr[A] ≈ Pr[B]

▪ ✓ events A and B happen with essentially the same probability

▪ ✘ events A and B almost always happen together (cf. head/tail)

▪ ≈ is transitive: Pr[A] ≈ Pr[B] and Pr[B] ≈ Pr[C] ➔ Pr[A] ≈ Pr[C]

▪ perhaps Pr[A] - Pr[C] is slightly larger, but still negligible

▪ Pr[X0] ≈ Pr[X1], Pr[X1] ≈ Pr[X2], …, Pr[Xj-1] ≈ Pr[Xj] ➔ Pr[X0] ≈ Pr[Xj]?

▪ ✓ when j is polynomial (say, in λ, the parameter of interest)

▪ ✘ when j is exponential (say, in λ, e.g., 2^λ)

≈ (essentially the same / diff. negligibly)
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▪We switch to indistinguishability for computational security 
instead of interchangeability for perfect security from now on

▪ The attacker interacts with “something”

▪ behind a wall via a limited interface

▪ (Issuing query, getting response)

▪ In a real world: real crypto algorithm

▪ In an ideal world: “random” behavior,

▪ which is “perfectly secure”

▪ If no PPT algorithm can distinguish them

▪ then the real crypto algorithm is secure

Real vs. Random Indistinguishability
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▪ Let L0 and L1 be two libraries that have the same interface

▪We consider A ⋄ Lb ⇒ b’

▪ A is linked to (⋄) Lb for a unknown random bit b

▪ A outputs a bit b’ to declares its guess of b.

▪We say that L0 and L1 are indistinguishable, i.e., L0 ≋ L1

▪ if for all PPT programs A that output a boolean value

▪ Pr[A ⋄ L0 ⇒ 1] ≈ Pr[A ⋄ L1 ⇒ 1]

▪ i.e., no PPT algorithms can differentiate between L0 and L1

▪|Pr[A ⋄ L0 ⇒ 1] – Pr[A ⋄ L1 ⇒ 1]|is also called advantage of A

Indistinguishability (Computational Security)
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▪L0 and L1 are indistinguishable, i.e., L0 ≋ L1

▪ if for all PPT programs A that output a boolean value

▪ Pr[A ⋄ L0 ⇒ 1] ≈ Pr[A ⋄ L1 ⇒ 1]

▪≋ is transitive: we can do hybrid proofs

▪ If L0 ≡ L1 then L0 ≋ L1

▪ If L0 ≋ L1 then L* ⋄ L0 ≋ L* ⋄ L1 for any poly.-time library L*

Indistinguishability is Transitive
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▪ Pr[Aobvious ⋄ Lright ⇒ 1] = 0

▪ Pr[Aobvious ⋄ Lleft ⇒ 1]

= 1 – Pr[Aobvious ⋄ Lleft ⇒ 0]

= 1 – Pr[q independent Predict() calls ret. false]

(= 1 – (1 – 1 / 2λ)q (// too many terms to list))

≤ Pr[1st call ret. true]+ Pr[2nd call ret. true] + ··· 

≤ q / 2λ (// a “loose” bound but suffice for us)

Simple Specific Examples of A(); & Union Bound
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∞

Infinite power

ret. true if x = s



▪ Two libraries are expected to execute exactly the same 

▪ until some rare & exceptional (‘bad’) condition happens.

▪ Let L0 and L1 be libraries that each define a variable ‘bad’ 
that is initialized to 0.

▪ If L0 and L1 have identical code, except for code blocks 
reachable only when bad = 1

▪ (e.g., think of it as guarded by an “if (bad = 1)” statement)

▪ then |Pr[A⋄L0 ⇒ 1] – Pr[A⋄L1 ⇒ 1]| ≤ Pr[A⋄L0 sets bad = 1]

Difference (“Bad-Event”) Lemma
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▪Why such lemma? Because it is a common situation

▪ e.g., while using a crypto. primitive Σ for a certain bigger task

▪ you want to argue the “whole task” is secure if Σ remains secure

▪ Let Bi be the event that A ⋄ Li sets bad to 1 at some point.

▪ ¬Bi denotes the corresponding complement event.

▪ (The notation in the textbook is Bi)

▪ Pr[A⋄Li ⇒ 1] = Pr[A⋄Li ⇒ 1|Bi] Pr[Bi] + Pr[A⋄Li ⇒ 1|¬Bi] Pr[¬Bi]

▪ by definition (of conditional probability)

▪ useful in proving the lemma (omitted, see the textbook)

Motivation, Notations, Observation
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▪We just show the indistinguishability of 1 calling program

▪ Define 2 simple hybrids: Lhyb-L and Lhyb-R:

▪ The only diff. of Lhyb-L from Lleft is var. bad
▪ It never reads from this variable.
▪ This change has no effect.

▪ The only diff. of Lhyb-R from Lhyb-L is in yellow

▪ |Pr[A ⋄ Lhyb-L ⇒ 1] – Pr[A ⋄ Lhyb-R ⇒ 1]|

≤ Pr[A ⋄ Lhyb-L sets bad = 1] (let it be p*)

▪ 1 call to Predict(), p* = 1/2λ

▪ (poly) q calls to Predict() ➔ q/2λ is negl.

▪ Lhyb-R and Lright both always return false.

Using the Lemma: Lleft ≋ Lright (∀ PPT A)
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Chapter 5 of “The Joy of Cryptography”

Pseudorandom Generators
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▪ Syntax: a deterministic function G whose outputs are longer 
than its inputs, i.e., G: {0, 1}λ → {0, 1}λ + ℓ

▪ We call ℓ the stretch; ℓ = 0 (or even negative) is a trivial PRG

▪ Security requirement:

▪When the input “seed” to G is chosen uniformly at random,

  it induces a “certain” distribution over the possible output

▪More formally, the distribution should be pseudorandom

▪ i.e., it is indistinguishable from the uniform distribution

Pseudorandom generator (PRG)
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“a randomness multiplier”



https://dilbert.com/

strip/2001-10-25 

▪ Let G: {0, 1}λ → {0, 1}λ + ℓ be a deterministic function with ℓ > 0.

▪We say that G is a secure PRG if Lprg-real ≋ Lprg-rand:

▪ This definition is kind of a “master” definition that 
encompasses all practical (polynomial) statistical tests

Pseudorandomness, formally

GG

41/56

Real world uses 

a real PRG: 
picking a seed s, 

returns G(s)

Ideal world 

returns random: 
returning a 

random |G(s)|-
bit bitstring
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https://dilbert.com/strip/2001-10-25
https://dilbert.com/strip/2001-10-25


▪ Only 2λ possible outputs

  cannot cover the range {0, 1}2λ

▪ Outputs of G() can’t be perfectly random

▪ ∵ Unbounded (not PPT) adversaries 

   can try all possible inputs

▪ But outputs of G() can be indistinguishable from uniform.

▪ Attackers in practice are PPT (in λ)

   can only test a small fraction of the possible inputs/guesses.

▪ Lprg-real samples from distribution of red dots

▪ L prg-rand directly samples the uniform distribution on {0, 1}2λ

Interchangeability vs. Indistinguishability
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▪ If you can, you get a Ph.D. right away [**]

▪ If it were possible to prove that some function G is a secure PRG

▪ it’d resolve the famous P vs. NP (nondeterministic poly. time) problem

▪ The next best thing that cryptographic research can offer are 
candidate PRGs, which are conjectured to be secure

▪ In practice, those ones that have been subjected to significant 
public scrutiny and resisted all attempts at attacks so far

▪ The entire rest of this course (or the textbook) is based on 
cryptography that is only conjectured to be secure

▪ I thought this course is about the science of cryptography!?

▪ Provable security is rigorous but conditional on a few conjectures

Teach me how to construct a PRG!
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▪ G(s) := s || s (|| denotes string concatenation)

▪ Every string exhibits a “discernible pattern”

▪ its 1st half equal to its 2nd half

▪ not likely for a uniform distribution

▪ Pr[A ⋄ Lprg-real ⇒ 1] = 1

▪ Pr[A ⋄ Lprg-rand ⇒ 1] = 1/2λ

▪ Advantage of A
=|Pr[A ⋄ Lprg-real ⇒ 1] − Pr[A ⋄ Lprg-rand ⇒ 1]|

= 1 – 1/2λ

How NOT to build a PRG
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▪Given G: {0, 1}λ → {0, 1}2λ, build G’: {0, 1}λ → {0, 1}3λ as follows.

▪G’(x) := (x || G(x)) ⊕ (G(x) || x) // the output obscures the input?

▪A:

▪ y0 || y1 || y2 := Query() // y := G’(x)

▪ each yi has length λ

▪ return (y0 ⊕ y1 ⊕ y2) ?= 0λ

▪A(G’(s)) always returns true

▪ Pr[y0 ⊕ y1 ⊕ y2 = 0λ] for random y = y0 || y1 || y2 ∈ {0, 1}3λ is 1/2λ

▪ (By the way, G’’(x) := x || G(x) is also insecure)

How NOT to build a PRG, encore

x G1(x)

x

G2(x)

G1(x) G2(x)⊕

A B C

A B CB C A
⊕
= 0λ

Write G(x) as G1(x) || G2(x)

⊕ ⊕ ⊕
y0 y1 y2
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▪G: {0, 1}λ → {0, 1}λ + ℓ

▪ Stretch ℓ measures how much longer its output is than its input

▪ Can we build a PRG w/ larger stretch from one w/ smaller stretch?

▪ Suppose we have a length-doubling PRG G: {0, 1}λ → {0, 1}2λ

▪Can we make a length-tripling or quadrupling one?

▪Are H1/H2 secure?

▪ The longer

▪ the merrier?

▪ or the riskier?

Extending the Stretch of a PRG
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5-prg-feedback.pdf

https://web.engr.oregonstate.edu/~rosulekm/crypto/prg-feedback.pdf


▪ Let’s try to “blindly” reproduce the security proof for H1 with H2

▪We get stuck when we try to factor out the 2nd call to G via Lprg-real:

▪ s can only exist inside the private scope of the new library, 

▪ while there still exists a “dangling reference” y in the original library.

▪ This particular proof strategy fails does not imply H2() is insecure
▪ although it is indeed insecure in this case (Exercise: concrete attack)

Where the Proof Breaks Down for H2()
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▪ A PRG’s output is indistinguishable from random if

1. its seed is uniform, and

2. the seed is not used for anything else! (which breaks condition (1))

▪ This construction H2 violates condition (2)

▪ Its output contains the “seed” y, so the seed is no longer random

▪ In the proof, we can only express a call to G in terms of Lprg-real if 
the input to G is uniform and is used nowhere else (still uniform)

▪ Takeaway: These (subtle) issues are not limited to PRGs.

▪ Every hybrid security proof in this course includes steps where we 
factor out some statements in terms of some pre-existing library.

▪ Don’t take these steps for granted!

More Discussions on the Failure

17th January 2025 ENGG5383 Applied Cryptography 48/56



▪ “Insecurity”: secure building 
blocks don’t imply security 
for the whole thing.

▪ You should assume the 
building blocks are secure 
and attack the way that 
the building blocks are 
being used.

▪ “Security”: if the building 
blocks are secure then the 
construction is secure.

▪ To show insecurity, you 
shouldn’t directly attack 
the building blocks!

▪We’ll be studying “fancy” 
higher-level constructions 
from ”weaker” “primitives”

(In)Security or Common Task in Crypto.

17th January 2025 ENGG5383 Applied Cryptography

▪We try to build “better” PRG from simpler PRG.
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▪ KeyGen(1λ): output k sampled uniformly from K = {0, 1}λ

▪ Enc(k, m) → c = m ⊕ G(k) // M = {0, 1} λ + ℓ if G: K → {0, 1} λ + ℓ 

▪Dec(k, c) → m = c ⊕ G(k) // C = {0, 1} λ + ℓ

▪Computational one-time secrecy (of a general scheme Σ)

Application: One-Time-Secret Encryption
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≋

5-potp-proof.pdf

https://web.engr.oregonstate.edu/~rosulekm/crypto/potp-proof.pdf


▪ Indeed, even if the stretch is 1, we can further stretch it.

▪ The PRG-feedback construction can be generalized:

▪We continue to feed part of G’s output into G again.

▪ Exercise for you: The proof still works similarly

▪ the security of G is applied one at a time to each application of G

Let’s extend… indefinitely
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▪ A stream cipher G() takes a seed s and length ℓ as input

   and outputs a string.

▪ It should satisfy the following requirements:

1. G(s, ℓ) is a string of length ℓ (or multiple of ℓ for simplicity)
2. If i < j, then G(s, i) is a prefix of G(s, j)

▪ G(s, n) is an infinitely-long string when n goes to infinity

3. For each n, the function G(·, n) is a secure PRG
▪ n is hardwired to G and hence G(·, n) only takes 1 input instead of 2 inputs

▪ Simply use our construction Hn(s) with n as ℓ

▪ Keep outputting ti 
▪ not outputting sn to keep the prefix property

Stream Cipher
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▪ Suppose Alice & Bob share a symmetric key k and are 
using a secure messaging app to exchange messages 
over a long period of time, so they worry k will be leaked

▪ Suppose an attacker eventually learns k.

▪ Then the attacker can decrypt all past, present, and 
future ciphertexts that it saw! 

▪Can we do better?

(Compromising) Secure Messaging
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0   1    2    3   4    5    6   7    8    9   10  11  12   …

e.g., k is leaked some time after t = 6

Attacker can decrypt ctxt. created during t = 0 to t = 5 (& beyond)



▪ The attacker can, of course, decrypt all future ciphertexts
▪ Why? Because the attacker “becomes” Bob since then

▪ There’s hope that the past ciphertexts can’t be decrypted
▪ when the attacker gets the key in the present moment

▪ Forward secrecy: messages in the present are protected against 
a key-compromise that happens in the future

▪We knew how to do that! (by “evolving” the “key” from sn to sn+1)

▪ This is our stream cipher, also known as symmetric ratchet
▪ It is easy to advance the key sequence in the forward direction (from 

sn to sn+1) but hard to reverse it (from sn+1 to sn).

Forward-Secure Secure Messaging
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0   1    2    3   4    5    6   7    8    9   10  11  12   …

Ctxt. created during time periods 0 to 6 remain secure if only s6 is leaked



▪ If the symmetric ratchet is used with a secure PRG G and 
an encryption scheme Σ (Σ.K = {0, 1}λ) that has uniform 
ciphertexts, then the first n ciphertexts are pseudorandom, 
even to an eavesdropper who compromises the key sn.

Theorem for Security of Ratchet
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Proof
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▪ Boxed part is indistinguishable to a PRG Hn

▪ PRG Hn is indistinguishable to

   a truly random function

▪ skipped (factoring out Lprg-real

   and replacing it w/ Lprg-rand)

▪ Keys of Σ look truly random,

   used once, & nowhere else

▪ so, we factor them out and

▪ replace them w/ uniform ciphertexts
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