
Sherman Chow

Chinese University of Hong Kong

Spring 2025

Lecture 2: Symmetric-Key Primitives Part (I)

17th January 2025 ENGG5383 Applied Cryptography 1

ENGG5383

Applied Cryptography

Chapters 0-1 of “The Joy of Cryptography”

Introduction & One-Time Pad

17th January 2025 ENGG5383 Applied Cryptography 2

▪We want a “set” of cryptosystems parameterized by λ

▪Algo.’s run by all honest parties take the commonly agreed λ

▪ They run in time polynomial in their input length λ, poly(λ):

▪ Sufficiently fast (e.g., time) complexity, say, for honest parties, e.g., λ3

▪ Closure property: poly(λ) ⋅ poly(λ) is still in poly(λ)

▪ Security parameter of the system is 1λ (with length λ bits)

▪ 1λ denotes λ copies of 1’s, |1λ| = λ, 1λ is in {0, 1}λ, a set of λ bits (0/1)

▪ If we put λ as an input, the length of (input) λ, |λ|, is log(λ) bits

▪ Brute-force attacks against the system should run in time 2λ

Security Parameter (& some notations)

17th January 2025 ENGG5383 Applied Cryptography 3/56

▪Deterministic algorithm: y = A(x)

▪ Probabilistic: “flipping a coin” internally to randomize A()

▪ y  A(x), y is the random variable corresponds to A’s output

▪Or y = A(x; r), where r denotes A’s “coin tossing”

▪ when we had the need to specify the randomness explicitly

▪All algorithms’ details are public (Kerckhoffs’ principle)

Probabilistic Polynomial Time (PPT) Algo.

17th January 2025 ENGG5383 Applied Cryptography 4/56

▪A function v(λ) is called negligible, denoted negl(λ), if:

▪ (∀c > 0) (∃λ’) (∀λ ≥ λ’) [v(λ) ≤ 1/λc]

▪ Less than the inverse of any polynomial for large enough λ

▪Alt. def.: v is negl(λ) if for every poly p: limλ→∞ p(λ)v(λ) = 0.

▪e.g., 2^{- λ/2} (= 1/2λ/2), 2{-√ λ}, 2^{-log2λ}, n^{-logλ}

▪ Prob. of breaking a secure system should be negligible in λ

▪We have poly(λ)  negl(λ) = negl(λ) (abusing notations)

▪Definition: f ≈ g if |f(λ) – g(λ)| is (≤) negl(λ) // f, g: N → R

Negligible Function

17th January 2025 ENGG5383 Applied Cryptography 5/56

The negligible, the noticeable

and the overwhelming

(∀λ ≥ λ’) ≤ 1/λc ∀c > 0

https://mathwiki.cs.ut.ee/asymptotics/06_the_negligible_the_noticeable_and_the_overwhelming
https://mathwiki.cs.ut.ee/asymptotics/06_the_negligible_the_noticeable_and_the_overwhelming

▪ A crypto scheme/construction is a collection of algorithms

▪ Syntax: the inputs/outputs (the “function signature”) of all algorithms

▪ A symmetric-key encryption (SKE) scheme, Σ = (KeyGen, Enc, Dec):

▪ KeyGen(1λ): A randomized algorithm that outputs a key k ∈ K

▪ Enc(k, m): A (possibly randomized) algorithm that takes a key k ∈ K
and plaintext m ∈ M as input, and outputs a ciphertext c ∈ C

▪ Dec(k, c): A deterministic algorithm that takes a key k ∈ K and
ciphertext c ∈ C as input, and outputs a plaintext m ∈ M

▪ Σ.K, Σ.M, Σ.C denotes the key, message, ciphertext space, resp.

What constitutes an encryption scheme?

17th January 2025 ENGG5383 Applied Cryptography 6/56

▪ For all (∀) k ∈ Σ.K and all m ∈ Σ.M,

 Pr[Σ.Dec(k, Σ.Enc(k, m)) = m] = 1

▪ The definition is written in terms of the probability since
Enc() is allowed to be randomized.

▪Counterexample: Enc(k, m) = 0λ

▪One might relax the perfect correctness requirement
▪ e.g., for efficiency

▪ or for properties we do not know how to achieve otherwise
▪ e.g., fully homomorphic encryption

(Perfect) Correctness

17th January 2025 ENGG5383 Applied Cryptography 7/56

▪ eXclusive OR (XOR): For b1 ⊕ b2 (bi is a bit), output as the table
▪ a logical operator that returns 1 (true) if the number of 1 (true) inputs is odd

▪ XOR is also addition modulo 2 (1 + 1 = 2, 2 mod 2 = 0)

▪ For bit-string operation S1 ⊕ S2, just ⊕ in a bit-wise manner

▪ OTP = {KeyGen, Enc, Dec}

▪ KeyGen(1λ):
▪ uniformly sample a λ-bit string k
▪ output k

▪ Enc(k, m) → c = m ⊕ k;
▪ (m is λ-bit long)

▪ Dec(k, c) → m = c ⊕ k

One-Time Pad (OTP) based on XOR

XOR

⊕
0 1

0 0 1

1 1 0

17th January 2025 ENGG5383 Applied Cryptography 8/56

b1

b2

▪ Security is a nebulous concept, but not if you took this course

▪ Provable:

▪ We can formally define what it means to be secure

▪ and then mathematically prove claims about security

▪ e.g., logic of composing building blocks together in secure ways

▪ Security conference papers require “threat model.”

▪ Is the threat too easy to defend? Is it too narrow/restrict?

Fundamentals of “Provable Security”

17th January 2025 ENGG5383 Applied Cryptography 9/56

▪We always treat the attacker as some (unspecified) process
that receives output from an algorithm (eavesdrop here).

▪ Attacker can make the honest users

▪ run an algorithm with some input and

▪ see the outcome (not internal variables)

▪ Each time you call eavesdrop(m),

▪ you see a sample from the probability distribution

Modelling what the adversary sees

17th January 2025 ENGG5383 Applied Cryptography 10/56

Encrypt
Honest user

m

eavesdrop(m)

m

trying to eavesdrop

manipulate then
eavesdrop

“Simulated”
honest user

Attackers’ Goal vs. Strength of Encryption

17th January 2025 ENGG5383 Applied Cryptography

▪ “Deem” only a break when…

▪Whole m is recovered
▪ (Weakest security level)

▪ Some part of m is recovered
▪ (Slightly stronger)

▪ “1 bit information” of m is leaked
▪ (Strongest)
▪ May not be the actual bit of m

▪ Consider m is known to be “yes” or “no”

▪ Recover the plaintext m

▪ Recover a part of the
plaintext m
▪ (Weaker adversary)

▪ To protect against a weaker
adversary, a weaker
scheme may suffice
▪ The weaker scheme might

be more efficient

▪ Recover the secret key
▪ (Stronger adversary)

11/56

Chapter 2 of “The Joy of Cryptography”

Basic of Provable Security

17th January 2025 ENGG5383 Applied Cryptography 12

▪ how to write a security definition

▪ how to understand & interpret security definitions

▪ how to prove security using the hybrid technique

▪ how to demonstrate insecurity using attacks

▪ w.r.t. the definition

▪ Let’s consider definitions for a more general encryption scheme.

▪ (the key is still used for encrypting once)

▪ (1 step at a time, we’ll study “regular”/“multi-use” encryption soon)

Security Definition

17th January 2025 ENGG5383 Applied Cryptography 13/56

“Human ingenuity cannot concoct a cipher
which human ingenuity cannot resolve.”

— Edgar Allan Poe,
“A Few Words on Secret Writing”, 1841

▪Defining an adversary via its goal and capabilities

▪A “blueprint” defining security according to the syntax

▪but not the internal details of the algorithms or the attacks

▪ Security always considers the attacker’s view of the system.

▪What is the “interface” that honest users expose to the
attacker by their use of the cryptography?

▪And does that particular interface benefit the attacker?

Provable Security: to define

17th January 2025 ENGG5383 Applied Cryptography 14/56

▪ There are two inputs to Enc(): the key and the plaintext

▪ The key is our source of randomness and hence security

▪ The key, generated according to KeyGen(), is kept secret

▪ For now, we still assume each key is used to encrypt once

▪ The view we said for OTP:

A General Encryption Algorithm Model

▪A general interface:

17th January 2025 ENGG5383 Applied Cryptography 15/56

Abstract

Instantiatenitty
gritty

syntax

Library/Oracle: Interface for Attacking (SKE)

17th January 2025 ENGG5383 Applied Cryptography 16/56

▪Adversaries can submit plaintexts via an “encryption oracle”

▪ receiving their corresponding ciphertexts.

▪An oracle is an abstract entity that responds to “queries”

▪ a controlled environment simulating access to a specific
cryptographic operation (like encryption or decryption@§9)

▪ without revealing the full knowledge of the underlying secret

▪A “pessimistic” choice ⇒ Giving more power to attackers

▪ If an SKE scheme is secure against a “powerful” attacker

▪ then it’s also secure in “more realistic scenarios”

▪ where the attacker has some uncertainty about the plaintexts.

▪ Real-or-Random: make sure ciphertexts look “nonsense”

▪ Left-or-Right: break the “linkage” to the 2 known possibilities

▪ Both trying to achieve the “goal of secure encryption”

▪ (There might be diff. styles or diff. ways to formalize for each style.)

Two Styles of Security Definition

17th January 2025 ENGG5383 Applied Cryptography 17/56

▪ “An encryption scheme is a good one if its ciphertexts look like
random junk to an attacker when …”

▪ “each key is secret and used to encrypt only one plaintext, even
when the attacker chooses the plaintexts.”

▪ “Σ is secure if, when you plug its KeyGen and Enc algorithms into the
template of the ctxt subroutine, the below two implementations of
ctxt induce identical behavior in every calling program.”

Real vs. Random (more specific)

17th January 2025 ENGG5383 Applied Cryptography 18/56

vs.real random

A Simple Proof that OTP is RoR-secure

17th January 2025 ENGG5383 Applied Cryptography 19/56

vs.
real random

vs.

By the properties of XOR (⊕),

if k is chosen uniformly at random, so does c, no matter what m is

“Σ is secure if, encryptions of mL look like encryptions of mR

to an attacker, when each key is secret and used to

encrypt only one plaintext, even when the attacker
chooses mL and mR.”

Left vs. Right

17th January 2025 ENGG5383 Applied Cryptography 20/56

RoR: “an encryption scheme is a good one if its

ciphertexts look like random junk to an attacker when
each key is secret and used to encrypt only one plaintext,

even when the attacker chooses the plaintexts.”

(See Exercise 2.15 for an alternative formalization)(Exercise: Prove OTP is LoR-secure)

▪proving security by demonstrating that a sequence of
cryptographic systems are interchangeable with one another

▪breaks the comparison into smaller (manageable) steps
▪ instead of directly comparing two significantly different systems

▪We start with a system (library) and make a sequence of
small modifications to arrive at the desired system.

▪ Each modification must be justified as having “no” effect on
the attacker’s ability to distinguish between the systems.

▪Avoids tedious probability calculations by focusing on
intermediate transitions between libraries.

Overview of Hybrid (Proving) Technique

17th January 2025 ENGG5383 Applied Cryptography 21/56

▪ The heart of the hybrid technique:

▪Designing a sequence of intermediate libraries, starting
with the first target library and ending with the second.

▪ Each hybrid should introduce a small, manageable
change compared to the previous one.

▪ Your “bridges” most likely come from one of two sources:

▪ (i) A common technique: interchangeable code (p.23)

▪ (ii) Security of the underlying building block, or proven fact

Construct a Sequence of Hybrids

17th January 2025 ENGG5383 Applied Cryptography 22/56

▪ The crucial part of the proof is to rigorously argue why each hybrid is
interchangeable with the one before it.

▪ demonstrating that no attacker, represented by any calling program, can
distinguish between the two libraries based on their outputs.

▪ Common Justifications (corresponding to (i) and (ii) in the last slide):

▪ (i) They are the same “program”/”library”

▪ (ii) Applying known security properties (two interchangeable libraries)

▪ leverage proven security properties of underlying cryptographic primitives

▪ e.g., when you proving a bigger system using OTP,

▪ you can justify the change from real OTP ciphertext to a random bitstring

Justify Each Transition

17th January 2025 ENGG5383 Applied Cryptography 23/56

▪A library L is a collection of subroutines & private/static var.

▪A library’s interface consists of the names, argument types,
and output type of all its subroutines

▪A⋄L: a program A includes calls to subroutines in L (linking)

▪A⋄L ⇒ z: denote the event that A⋄L outputs the value z

Programming-Like Terminologies

17th January 2025 ENGG5383 Applied Cryptography 24/56

An example of A :

choosing a random
m and hoping that
ctxt(m) is just m?

▪A “challenge”/“game” asking the adversary to guess
every single bit of a string picked uniformly at random:

Another Example (as in the textbook)

17th January 2025 ENGG5383 Applied Cryptography 25/56

several
sub-
routines
co-exist

code outside of any
subroutine is run once
at initialization time

variables defined at
initialization (e.g., s)
are available in all
subroutine scopes
(but still not to the
calling program)

▪ Let L0 and L1 be two libraries that have the same interface.

▪ L0 and L1 are said to be interchangeable, denoted by L0 ≡ L1

▪ if for all programs A that output a boolean value (true/false)

▪ Pr[A ⋄ L0 ⇒ true] = Pr[A ⋄ L1 ⇒ true]

▪We can also call A as a distinguisher

▪ Lemmas about interchangeable “hybrid” libraries:

▪ 1. (A ⋄ L1)⋄ L2 ≡ A ⋄ (L1 ⋄ L2); i.e., “associativity” of ⋄

▪ 2. If Lleft ≡ Lright, for any library L*, we have L* ⋄ Lleft ≡ L* ⋄ Lright

Interchangeability as Formal Security

17th January 2025 ENGG5383 Applied Cryptography 26/56

RoR: (One-time) Uniform Ciphertexts

17th January 2025 ENGG5383 Applied Cryptography 27/56

the “$” symbol denotes

“random” as in coin tossing

(One-time RoR-)Security of OTP:

(uniform as a shorthand of

uniformly random)

the superscript Σ means the library is

“parameterized” by scheme Σ

▪ Formally, an encryption scheme Σ has one-time secrecy if:

Left-or-Right Style One-time Security

17th January 2025 ENGG5383 Applied Cryptography 28/56

Uniform ciphertext ⇒ Left-or-right secrecy

the same argument in 2-otp-proof.pdf remains

valid for any one-time RoR-secure encryption

Left-or-right secrecy ⇏ Uniform ciphertext

Make a “contrived” counterexample LoR-secure OTP’

OTP’ where OTP’.Enc() := OTP.Enc() || 01}λ

https://web.engr.oregonstate.edu/~rosulekm/crypto/otp-proof.pdf

▪ Left-hand side is algorithm A we
designed for attack.

▪ Right-hand side inserts the insecure
algorithm Σ into 2 libraries/templates.

▪ Pr[A ⋄ Lots$-real ⇒ true] = 1.

▪ Pr[A ⋄ Lots$-rand ⇒ true] = 2-λ.

▪ Pr[A ⋄ Lots$-L ⇒ true] = 1.

▪ Pr[A ⋄ Lots$-R ⇒ true] = 2-λ.

Demonstrating Insecurity with Attacks

17th January 2025 ENGG5383 Applied Cryptography 29/56(Lots$-L omitted)

Chapter 4 of “The Joy of Cryptography”

Computational Security

17th January 2025 ENGG5383 Applied Cryptography 30

▪ Pr[E] ≈ p means |Pr[E] - p| is negl(λ)

▪ Pr[X] ≈ 0 (resp. 1) ⇔ event X almost never (resp. always) happens

▪ Pr[A] ≈ Pr[B]

▪ ✓ events A and B happen with essentially the same probability

▪ ✘ events A and B almost always happen together (cf. head/tail)

▪ ≈ is transitive: Pr[A] ≈ Pr[B] and Pr[B] ≈ Pr[C] ➔ Pr[A] ≈ Pr[C]

▪ perhaps Pr[A] - Pr[C] is slightly larger, but still negligible

▪ Pr[X0] ≈ Pr[X1], Pr[X1] ≈ Pr[X2], …, Pr[Xj-1] ≈ Pr[Xj] ➔ Pr[X0] ≈ Pr[Xj]?

▪ ✓ when j is polynomial (say, in λ, the parameter of interest)

▪ ✘ when j is exponential (say, in λ, e.g., 2^λ)

≈ (essentially the same / diff. negligibly)

17th January 2025 ENGG5383 Applied Cryptography 31/56

▪We switch to indistinguishability for computational security
instead of interchangeability for perfect security from now on

▪ The attacker interacts with “something”

▪ behind a wall via a limited interface

▪ (Issuing query, getting response)

▪ In a real world: real crypto algorithm

▪ In an ideal world: “random” behavior,

▪ which is “perfectly secure”

▪ If no PPT algorithm can distinguish them

▪ then the real crypto algorithm is secure

Real vs. Random Indistinguishability

32/5617th January 2025 ENGG5383 Applied Cryptography

▪ Let L0 and L1 be two libraries that have the same interface

▪We consider A ⋄ Lb ⇒ b’

▪ A is linked to (⋄) Lb for a unknown random bit b

▪ A outputs a bit b’ to declares its guess of b.

▪We say that L0 and L1 are indistinguishable, i.e., L0 ≋ L1

▪ if for all PPT programs A that output a boolean value

▪ Pr[A ⋄ L0 ⇒ 1] ≈ Pr[A ⋄ L1 ⇒ 1]

▪ i.e., no PPT algorithms can differentiate between L0 and L1

▪|Pr[A ⋄ L0 ⇒ 1] – Pr[A ⋄ L1 ⇒ 1]|is also called advantage of A

Indistinguishability (Computational Security)

17th January 2025 ENGG5383 Applied Cryptography 33/56

▪L0 and L1 are indistinguishable, i.e., L0 ≋ L1

▪ if for all PPT programs A that output a boolean value

▪ Pr[A ⋄ L0 ⇒ 1] ≈ Pr[A ⋄ L1 ⇒ 1]

▪≋ is transitive: we can do hybrid proofs

▪ If L0 ≡ L1 then L0 ≋ L1

▪ If L0 ≋ L1 then L* ⋄ L0 ≋ L* ⋄ L1 for any poly.-time library L*

Indistinguishability is Transitive

17th January 2025 ENGG5383 Applied Cryptography 34/56

▪ Pr[Aobvious ⋄ Lright ⇒ 1] = 0

▪ Pr[Aobvious ⋄ Lleft ⇒ 1]

= 1 – Pr[Aobvious ⋄ Lleft ⇒ 0]

= 1 – Pr[q independent Predict() calls ret. false]

(= 1 – (1 – 1 / 2λ)q (// too many terms to list))

≤ Pr[1st call ret. true]+ Pr[2nd call ret. true] + ···

≤ q / 2λ (// a “loose” bound but suffice for us)

Simple Specific Examples of A(); & Union Bound

17th January 2025 ENGG5383 Applied Cryptography 35/56

∞

Infinite power

ret. true if x = s

▪ Two libraries are expected to execute exactly the same

▪ until some rare & exceptional (‘bad’) condition happens.

▪ Let L0 and L1 be libraries that each define a variable ‘bad’
that is initialized to 0.

▪ If L0 and L1 have identical code, except for code blocks
reachable only when bad = 1

▪ (e.g., think of it as guarded by an “if (bad = 1)” statement)

▪ then |Pr[A⋄L0 ⇒ 1] – Pr[A⋄L1 ⇒ 1]| ≤ Pr[A⋄L0 sets bad = 1]

Difference (“Bad-Event”) Lemma

17th January 2025 ENGG5383 Applied Cryptography 36/56

▪Why such lemma? Because it is a common situation

▪ e.g., while using a crypto. primitive Σ for a certain bigger task

▪ you want to argue the “whole task” is secure if Σ remains secure

▪ Let Bi be the event that A ⋄ Li sets bad to 1 at some point.

▪ ¬Bi denotes the corresponding complement event.

▪ (The notation in the textbook is Bi)

▪ Pr[A⋄Li ⇒ 1] = Pr[A⋄Li ⇒ 1|Bi] Pr[Bi] + Pr[A⋄Li ⇒ 1|¬Bi] Pr[¬Bi]

▪ by definition (of conditional probability)

▪ useful in proving the lemma (omitted, see the textbook)

Motivation, Notations, Observation

17th January 2025 ENGG5383 Applied Cryptography 37/56

▪We just show the indistinguishability of 1 calling program

▪ Define 2 simple hybrids: Lhyb-L and Lhyb-R:

▪ The only diff. of Lhyb-L from Lleft is var. bad
▪ It never reads from this variable.
▪ This change has no effect.

▪ The only diff. of Lhyb-R from Lhyb-L is in yellow

▪ |Pr[A ⋄ Lhyb-L ⇒ 1] – Pr[A ⋄ Lhyb-R ⇒ 1]|

≤ Pr[A ⋄ Lhyb-L sets bad = 1] (let it be p*)

▪ 1 call to Predict(), p* = 1/2λ

▪ (poly) q calls to Predict() ➔ q/2λ is negl.

▪ Lhyb-R and Lright both always return false.

Using the Lemma: Lleft ≋ Lright (∀ PPT A)

17th January 2025 ENGG5383 Applied Cryptography 38/56

Chapter 5 of “The Joy of Cryptography”

Pseudorandom Generators

17th January 2025 ENGG5383 Applied Cryptography 39

▪ Syntax: a deterministic function G whose outputs are longer
than its inputs, i.e., G: {0, 1}λ → {0, 1}λ + ℓ

▪ We call ℓ the stretch; ℓ = 0 (or even negative) is a trivial PRG

▪ Security requirement:

▪When the input “seed” to G is chosen uniformly at random,

 it induces a “certain” distribution over the possible output

▪More formally, the distribution should be pseudorandom

▪ i.e., it is indistinguishable from the uniform distribution

Pseudorandom generator (PRG)

17th January 2025 ENGG5383 Applied Cryptography 40/56

“a randomness multiplier”

https://dilbert.com/

strip/2001-10-25

▪ Let G: {0, 1}λ → {0, 1}λ + ℓ be a deterministic function with ℓ > 0.

▪We say that G is a secure PRG if Lprg-real ≋ Lprg-rand:

▪ This definition is kind of a “master” definition that
encompasses all practical (polynomial) statistical tests

Pseudorandomness, formally

GG

41/56

Real world uses

a real PRG:
picking a seed s,

returns G(s)

Ideal world

returns random:
returning a

random |G(s)|-
bit bitstring

17th January 2025 ENGG5383 Applied Cryptography

https://dilbert.com/strip/2001-10-25
https://dilbert.com/strip/2001-10-25

▪ Only 2λ possible outputs

 cannot cover the range {0, 1}2λ

▪ Outputs of G() can’t be perfectly random

▪ ∵ Unbounded (not PPT) adversaries

 can try all possible inputs

▪ But outputs of G() can be indistinguishable from uniform.

▪ Attackers in practice are PPT (in λ)

 can only test a small fraction of the possible inputs/guesses.

▪ Lprg-real samples from distribution of red dots

▪ L prg-rand directly samples the uniform distribution on {0, 1}2λ

Interchangeability vs. Indistinguishability

17th January 2025 ENGG5383 Applied Cryptography 42/56

▪ If you can, you get a Ph.D. right away [**]

▪ If it were possible to prove that some function G is a secure PRG

▪ it’d resolve the famous P vs. NP (nondeterministic poly. time) problem

▪ The next best thing that cryptographic research can offer are
candidate PRGs, which are conjectured to be secure

▪ In practice, those ones that have been subjected to significant
public scrutiny and resisted all attempts at attacks so far

▪ The entire rest of this course (or the textbook) is based on
cryptography that is only conjectured to be secure

▪ I thought this course is about the science of cryptography!?

▪ Provable security is rigorous but conditional on a few conjectures

Teach me how to construct a PRG!

17th January 2025 ENGG5383 Applied Cryptography 43/56

▪ G(s) := s || s (|| denotes string concatenation)

▪ Every string exhibits a “discernible pattern”

▪ its 1st half equal to its 2nd half

▪ not likely for a uniform distribution

▪ Pr[A ⋄ Lprg-real ⇒ 1] = 1

▪ Pr[A ⋄ Lprg-rand ⇒ 1] = 1/2λ

▪ Advantage of A
=|Pr[A ⋄ Lprg-real ⇒ 1] − Pr[A ⋄ Lprg-rand ⇒ 1]|

= 1 – 1/2λ

How NOT to build a PRG

17th January 2025 ENGG5383 Applied Cryptography 44/56

▪Given G: {0, 1}λ → {0, 1}2λ, build G’: {0, 1}λ → {0, 1}3λ as follows.

▪G’(x) := (x || G(x)) ⊕ (G(x) || x) // the output obscures the input?

▪A:

▪ y0 || y1 || y2 := Query() // y := G’(x)

▪ each yi has length λ

▪ return (y0 ⊕ y1 ⊕ y2) ?= 0λ

▪A(G’(s)) always returns true

▪ Pr[y0 ⊕ y1 ⊕ y2 = 0λ] for random y = y0 || y1 || y2 ∈ {0, 1}3λ is 1/2λ

▪ (By the way, G’’(x) := x || G(x) is also insecure)

How NOT to build a PRG, encore

x G1(x)

x

G2(x)

G1(x) G2(x)⊕

A B C

A B CB C A
⊕
= 0λ

Write G(x) as G1(x) || G2(x)

⊕ ⊕ ⊕
y0 y1 y2

17th January 2025 ENGG5383 Applied Cryptography 45/56

▪G: {0, 1}λ → {0, 1}λ + ℓ

▪ Stretch ℓ measures how much longer its output is than its input

▪ Can we build a PRG w/ larger stretch from one w/ smaller stretch?

▪ Suppose we have a length-doubling PRG G: {0, 1}λ → {0, 1}2λ

▪Can we make a length-tripling or quadrupling one?

▪Are H1/H2 secure?

▪ The longer

▪ the merrier?

▪ or the riskier?

Extending the Stretch of a PRG

17th January 2025 ENGG5383 Applied Cryptography 46/56

5-prg-feedback.pdf

https://web.engr.oregonstate.edu/~rosulekm/crypto/prg-feedback.pdf

▪ Let’s try to “blindly” reproduce the security proof for H1 with H2

▪We get stuck when we try to factor out the 2nd call to G via Lprg-real:

▪ s can only exist inside the private scope of the new library,

▪ while there still exists a “dangling reference” y in the original library.

▪ This particular proof strategy fails does not imply H2() is insecure
▪ although it is indeed insecure in this case (Exercise: concrete attack)

Where the Proof Breaks Down for H2()

17th January 2025 ENGG5383 Applied Cryptography 47/56

▪ A PRG’s output is indistinguishable from random if

1. its seed is uniform, and

2. the seed is not used for anything else! (which breaks condition (1))

▪ This construction H2 violates condition (2)

▪ Its output contains the “seed” y, so the seed is no longer random

▪ In the proof, we can only express a call to G in terms of Lprg-real if
the input to G is uniform and is used nowhere else (still uniform)

▪ Takeaway: These (subtle) issues are not limited to PRGs.

▪ Every hybrid security proof in this course includes steps where we
factor out some statements in terms of some pre-existing library.

▪ Don’t take these steps for granted!

More Discussions on the Failure

17th January 2025 ENGG5383 Applied Cryptography 48/56

▪ “Insecurity”: secure building
blocks don’t imply security
for the whole thing.

▪ You should assume the
building blocks are secure
and attack the way that
the building blocks are
being used.

▪ “Security”: if the building
blocks are secure then the
construction is secure.

▪ To show insecurity, you
shouldn’t directly attack
the building blocks!

▪We’ll be studying “fancy”
higher-level constructions
from ”weaker” “primitives”

(In)Security or Common Task in Crypto.

17th January 2025 ENGG5383 Applied Cryptography

▪We try to build “better” PRG from simpler PRG.

49/56

▪ KeyGen(1λ): output k sampled uniformly from K = {0, 1}λ

▪ Enc(k, m) → c = m ⊕ G(k) // M = {0, 1} λ + ℓ if G: K → {0, 1} λ + ℓ

▪Dec(k, c) → m = c ⊕ G(k) // C = {0, 1} λ + ℓ

▪Computational one-time secrecy (of a general scheme Σ)

Application: One-Time-Secret Encryption

17th January 2025 ENGG5383 Applied Cryptography 50/56

≋

5-potp-proof.pdf

https://web.engr.oregonstate.edu/~rosulekm/crypto/potp-proof.pdf

▪ Indeed, even if the stretch is 1, we can further stretch it.

▪ The PRG-feedback construction can be generalized:

▪We continue to feed part of G’s output into G again.

▪ Exercise for you: The proof still works similarly

▪ the security of G is applied one at a time to each application of G

Let’s extend… indefinitely

17th January 2025 ENGG5383 Applied Cryptography 51/56

s1

t1 sn

s2

t2

s

▪ A stream cipher G() takes a seed s and length ℓ as input

 and outputs a string.

▪ It should satisfy the following requirements:

1. G(s, ℓ) is a string of length ℓ (or multiple of ℓ for simplicity)
2. If i < j, then G(s, i) is a prefix of G(s, j)

▪ G(s, n) is an infinitely-long string when n goes to infinity

3. For each n, the function G(·, n) is a secure PRG
▪ n is hardwired to G and hence G(·, n) only takes 1 input instead of 2 inputs

▪ Simply use our construction Hn(s) with n as ℓ

▪ Keep outputting ti
▪ not outputting sn to keep the prefix property

Stream Cipher

17th January 2025 ENGG5383 Applied Cryptography 52/56

▪ Suppose Alice & Bob share a symmetric key k and are
using a secure messaging app to exchange messages
over a long period of time, so they worry k will be leaked

▪ Suppose an attacker eventually learns k.

▪ Then the attacker can decrypt all past, present, and
future ciphertexts that it saw!

▪Can we do better?

(Compromising) Secure Messaging

17th January 2025 ENGG5383 Applied Cryptography 53/56

0 1 2 3 4 5 6 7 8 9 10 11 12 …

e.g., k is leaked some time after t = 6

Attacker can decrypt ctxt. created during t = 0 to t = 5 (& beyond)

▪ The attacker can, of course, decrypt all future ciphertexts
▪ Why? Because the attacker “becomes” Bob since then

▪ There’s hope that the past ciphertexts can’t be decrypted
▪ when the attacker gets the key in the present moment

▪ Forward secrecy: messages in the present are protected against
a key-compromise that happens in the future

▪We knew how to do that! (by “evolving” the “key” from sn to sn+1)

▪ This is our stream cipher, also known as symmetric ratchet
▪ It is easy to advance the key sequence in the forward direction (from

sn to sn+1) but hard to reverse it (from sn+1 to sn).

Forward-Secure Secure Messaging

17th January 2025 ENGG5383 Applied Cryptography 54/56

0 1 2 3 4 5 6 7 8 9 10 11 12 …

Ctxt. created during time periods 0 to 6 remain secure if only s6 is leaked

▪ If the symmetric ratchet is used with a secure PRG G and
an encryption scheme Σ (Σ.K = {0, 1}λ) that has uniform
ciphertexts, then the first n ciphertexts are pseudorandom,
even to an eavesdropper who compromises the key sn.

Theorem for Security of Ratchet

17th January 2025 ENGG5383 Applied Cryptography 55/56

Proof

17th January 2025 ENGG5383 Applied Cryptography 56/56

▪ Boxed part is indistinguishable to a PRG Hn

▪ PRG Hn is indistinguishable to

 a truly random function

▪ skipped (factoring out Lprg-real

 and replacing it w/ Lprg-rand)

▪ Keys of Σ look truly random,

 used once, & nowhere else

▪ so, we factor them out and

▪ replace them w/ uniform ciphertexts

	Default Section
	Slide 1: ENGG5383 Applied Cryptography

	Introduction & OTP
	Slide 2: Introduction & One-Time Pad
	Slide 3: Security Parameter (& some notations)
	Slide 4: Probabilistic Polynomial Time (PPT) Algo.
	Slide 5: Negligible Function
	Slide 6: What constitutes an encryption scheme?
	Slide 7: (Perfect) Correctness
	Slide 8: One-Time Pad (OTP) based on XOR
	Slide 9: Fundamentals of “Provable Security”
	Slide 10: Modelling what the adversary sees
	Slide 11: Attackers’ Goal vs. Strength of Encryption

	Provable Security Basic
	Slide 12: Basic of Provable Security
	Slide 13: Security Definition
	Slide 14: Provable Security: to define
	Slide 15: A General Encryption Algorithm Model
	Slide 16: Library/Oracle: Interface for Attacking (SKE)
	Slide 17: Two Styles of Security Definition
	Slide 18: Real vs. Random (more specific)
	Slide 19: A Simple Proof that OTP is RoR-secure
	Slide 20: Left vs. Right
	Slide 21: Overview of Hybrid (Proving) Technique
	Slide 22: Construct a Sequence of Hybrids
	Slide 23: Justify Each Transition
	Slide 24: Programming-Like Terminologies
	Slide 25: Another Example (as in the textbook)
	Slide 26: Interchangeability as Formal Security
	Slide 27: RoR: (One-time) Uniform Ciphertexts
	Slide 28: Left-or-Right Style One-time Security
	Slide 29: Demonstrating Insecurity with Attacks

	Computational Security
	Slide 30: Computational Security
	Slide 31: ≈ (essentially the same / diff. negligibly)
	Slide 32: Real vs. Random Indistinguishability
	Slide 33: Indistinguishability (Computational Security)
	Slide 34: Indistinguishability is Transitive
	Slide 35: Simple Specific Examples of A(); & Union Bound
	Slide 36: Difference (“Bad-Event”) Lemma
	Slide 37: Motivation, Notations, Observation
	Slide 38: Using the Lemma: Lleft ≋ Lright (∀ PPT A)

	PRG
	Slide 39: Pseudorandom Generators
	Slide 40: Pseudorandom generator (PRG)
	Slide 41: Pseudorandomness, formally
	Slide 42: Interchangeability vs. Indistinguishability
	Slide 43: Teach me how to construct a PRG!
	Slide 44: How NOT to build a PRG
	Slide 45: How NOT to build a PRG, encore
	Slide 46: Extending the Stretch of a PRG
	Slide 47: Where the Proof Breaks Down for H2()
	Slide 48: More Discussions on the Failure
	Slide 49: (In)Security or Common Task in Crypto.
	Slide 50: Application: One-Time-Secret Encryption
	Slide 51: Let’s extend… indefinitely
	Slide 52: Stream Cipher
	Slide 53: (Compromising) Secure Messaging
	Slide 54: Forward-Secure Secure Messaging
	Slide 55: Theorem for Security of Ratchet
	Slide 56: Proof

