ENGG 5383 Applied Cryptography

Sherman Chow Chinese University of Hong Kong Spring 2023 Lecture 1: Introduction

Confidentiality

- Prevent the disclosure of info. to unauthorized party
- Encryption: use a "key" to turn a plaintext into a ciphertext
- Without the "secret key", the ciphertext is not "useful"
- What constitutes an encryption?
 - Framework / A suite of algorithms

What constitutes an encryption scheme?

- Encryption: E (m) \rightarrow c
- Decryption: D (c) $\rightarrow m$
- Need to generate a key k
- Key generation algorithm
 - Input: security parameter
 - Output: a key k
- $\bullet \mathsf{E}_k(m) \rightarrow \mathsf{c}, \mathsf{D}_k(\mathsf{c}) \rightarrow m$
 - i.e., they are key-ed function
 - All these algorithms are supposed to be public (more on this later)
- Symmetric-key encryption

Caesar Cipher

- Consider the 26 alphabets of English
- Encoded them as a number in [0, 25]
- $\bullet E_k(m) \rightarrow m + k \mod 26$
- D_k (c) \rightarrow c k mod 26 ■ salad -> wepeh (k = 4)

Frequency analysis

Vigenère Cipher

- Variants of Caeser Cipher
- Idea: not always map a plaintext to the same ciphertext
- Plaintext: AttackAtDawn (case insensitive)
- Key: Lemon
- Key "Sequence": LEMONLEMONLE
- Ciphertext: LXFOPVEFRNHR

How to attack?

Enigma

- Caeser and Vigenère Ciphers are both polyalphabetic
- Based on Substitution
- So does Enigma

Basic Settings of Cloud Storage

Client stores (large) files with the server

- Online backup, Software as a Service (SaaS), etc.
- Long-term reliable storage is expensive

Is "full" confidentiality always desirable?

- Consider you want to upload your files to the cloud.
- What do you want your cloud service providers do?
- They cannot do much more than storage.
- How about encrypted e-mail?
- You may want your mobile devices only download emails marked w/ the keyword "urgent" from the server.
- You don't want the server to know what are the keywords associated with each email.

Retrieval of Encrypted Data

Download all data, then decrypt

- O(N) communication
- N: number of documents
- Build a local index, then download
 - O(N) local storage
- Ideally, O(n) complexity (at least at client)
 - n: number of matching documents (n << N)

Searchable (Symm.) Encryption

What we talked about so far...

- Primitive / Building block: Encryption
- Some constructions of encryption / encryption schemes
- Some attacks
- We identified some higher application of encryption
- Some "attacks"/"weakness" can be a useful feature
- Some discussion of desired performance parameters
- Three initial tasks of "crypto study":
 - Identification of the problem / application scenario
 - Identification of the primitive which may be useful
 - Definition of Functional Requirements and Security requirements

Integrity

- Prevent undetectable modification of data
- Non-repudiation: cannot deny having sent a message
- Message Authentication / Digital Signature
- Is non-repudiation / public-verifiability always desirable?

Motivating Scenario

- Alice is making an offer to Bob
- Bob acquires a signed offer from Alice
- But Alice doesn't want Bob to show it to anybody else
- Bob can not use Alice's offer as leverage to negotiate better terms with, say, Carol

ENGG5383 Applied Cryptography

Applications

- Love letters
- Job offers
- Contracts
- Receipt-free elections
- Selling of verified (e.g., malware-free) software

Vehicle Safety Communications

Safer and more efficient driving

- electronic brake light
- road condition warning
- curve speed assistance
- collision warning
- emergency vehicle signal preemption
- •••
- Cannot be misused to create accidents
- But we want to avoid invading privacy of the drivers

Possible Solutions

Requires the driver to sign on every messages

This compromises (location) privacy.

Signatures are "anonymous" in normal circumstances
 What does that mean?

- A "trusted" party can "open" a signature if necessary.
 - Opening a signature means revealing its true signer.
- Good enough? Too powerful?
- Any alternative formulation?

Availability

- A system must be serving the info when it is needed.How can cryptography help to ensure availability?
- Consider cloud storage again, how can I ensure that the cloud service provider is really storing my file?
- If the cloud deleted your file, not much you can do.
- At least, I can provide (cryptographic) evidence when it fails to do so.

Challenge + Message Digest

Message Authentication Code (MAC)

Can we do more "outsourcing"?

- The storage is outsourced to the cloud.
- Why not outsource the auditing to third-party auditor?
- Wait, will this auditor need to know the plaintext data?
 Using "proof-of-retrievability" (PoR) protocol, it doesn't.
- "It doesn't need" does not imply "It cannot learn"
 "Zero-knowledge" PoR

Where is Waldo/Wally?

Applied "Kid" Cryptography

Yao's Millionaires' Problem

I have \$x

I have \$y

Secure comparison can be applied to, among many,

- Training over encrypted data (e.g., ReLU)
- Location-based services (e.g., who are near enough?)

l'm richer!

|s x > y ?

Private Set Intersection (PSI)

PSI can be applied to, among many,

- Privacy-preserving contact tracing
- CSAM detection (Apple PSI system)

- Advertisement efficacy (Google PSI sum)

Query Privacy in ML Inference

Queries in machine-learning (ML) inference can be sensitive

- Social applications, Medical image analysis, Computer vision, ...
- The "natural" way will leak them to the server

Summary of Tools/Primitives Covered

- Searchable Encryption
- "Non-transferable" Signature
 - Undeniable signatures, Confirmer signatures
- Signature with "Fair-Privacy"
 - Group signature, Traceable signature
- Proof of Retrievability
- Zero-Knowledge Proof
- Secure Multiparty (Two-party) Computation
 - Secure Comparison, Private Set Intersection

Possible Topics for Project

- Access Control Encryption
- Outsourcing (Verifiable) Computation
- "Secure" Data Analytics / Machine Learning
- Password Hardening
- Blacklistable Anonymous Credentials
- Cryptocurrency and its "Privacy-Preserving" version
- Specific Zero-Knowledge Proof
- Auto Synthesis/Analysis of Cryptographic Schemes
- Lattice-Based Cryptography

Back to (Basic) Encryption

- $G(1^{\lambda}) \rightarrow k, E_k(m) \rightarrow c, D_k(c) \rightarrow m$
- Have we specified the algorithms clear enough?
- D() must always be correct
 - How to relax this requirement? Why do we want to relax it?
- Have we specified the security requirement?
- Have we specified the adversary's power/knowledge?
- G(), E(), D() are all public info. known by the adversary
 Kerckhoffs' principle (cf. security by obscurity)

How to define security?

- Let the adversary have unbounded computational power
- Exercise: argue that both sender and receiver must share a secret not known to the adversary
- Without the "secret key", the ciphertext is not "useful".
 - The ciphertext leaks no information about the plaintext.
- How to define information? (Or rather the lack of it?)
- We use entropy to quantify information
 - How probable is it?
 - e.g., a fair coin toss vs. a dice with all faces being identical
 - Exercise: construct its definition (or check "Information Theory")

Shannon's Information-Theoretic Security

- We want to say "a priori probability of a plaintext message m is the same as the a posteriori probability of m given the corresponding ciphertext c."
- -H(m) = H(m | c)
 - R.H.S.: conditional entropy of the plaintext given the ciphertext
- This is a definition of confidentiality

(The Almighty) One-Time Pad

Now I suggest to use the following encryption scheme:

- pick a random key as long as the plaintext
- to encrypt: XOR the key with the plaintext bitwise
 - Or bitwise modulo addition (mod 2)
- Exercise 1: prove it is IT-secure
- Exercise 2: prove it is secure for any message distribution
- Exercise 3: prove it is optimal (i.e., minimum key-length)
- Problems?

Tasks of Crypto. Study

- Identification of the problem / application scenario
- Identification of the primitive which may be useful
 - Do not re-invent the wheel
 - Extending existing primitives
 - Relation between primitives (one implies another?)
- Definition of Functional Requirements
 - A suite of algorithms / protocols
 - Input & Output behavior / interfaces
 - Entities involved
 - System model: which entity executes which algorithm/protocols?
- Definition of Security requirements
 - Relation of security notions (one implies another?)
- Construction of the schemes
- Analysis of the proposed construction
 - Security Proof: Provable Security!
 - Efficiency (Order Analysis and/or Experiment on Prototype Implementation)

"Compressed" Secret-Keys

Pseudo-random number generator (PRNG)

- outputs a long string of "random-looking" bits
- from a short random seed
- a.k.a. stream cipher
- Computationally secure against Next-bit test
 - given the first k bits of a random sequence
 - no polynomial-time algorithm can predict the $(k+1)^{\text{th}}$ bit
 - with probability of success better than 50%
 - a generator passing the next-bit test will pass all other polynomial-time statistical tests for randomness [Yao82]

Next Lecture

- Security against computationally-bounded adversary?
- Public-key encryption
- One-way function (OWF)
- One-way permutation (OWP)
- Trapdoor permutation (TDP)
- Crash course on number-theory
- Number-theoretic candidates of OWF, OWP, TDP
- Modeling security of public-key encryption