
Sherman Chow

Chinese University of Hong Kong

Fall 2024

Lecture 1: One-time Pad and its Security Proof

IERG4150

Intro. to Cryptography

IERG4150 Cryptography 1

▪ Security: It is a nebulous concept, but not if you took this course

▪ Provable:

▪ We can formally define what it means to be secure

▪ and then mathematically prove claims about security

▪ e.g., logic of composing building blocks together in secure ways

▪ Fundamentals:

▪ solid theoretical foundation applicable to most real-world situations

▪ equipped to (self-)study more advanced topics in cryptography

Fundamentals of “Provable Security”

5th September 2024 IERG4150 Cryptography 2/38

▪ not a magic spell that solves all security problems

▪providing solutions to cleanly defined problems

▪ often abstract away important but messy real-world concerns

▪ “Cryptographic guarantees”/“Provable security”:

▪ What happens (or what cannot happen) in the presence of
certain well-defined classes of attacks

▪ What if the model is too restrictive (in defining the attacks)?

▪ What if the “real-world” attackers don’t follow the “rules”?

▪ Disappointing/Underwhelming?

What (Modern) Cryptography is?

5th September 2024 IERG4150 Cryptography 3/38

▪Making the nebulous concept of “security” concrete

▪ Breaking the vicious circle of “cat-and-mouse” games

▪We will try to model the attacker as “powerful” as possible

▪Always keep in mind: we define (i.e., limit) our problems

Defining Security

5th September 2024 IERG4150 Cryptography 4/38

“To define is to limit.”
—Oscar Wilde

“Private” (Confidential) Communication

5/385th September 2024

▪ Decryption

 recovers

 m from c

BobAlice

EveEve

▪ Plaintext: m

▪ Ciphertext: c

▪ Encryption turns m into c

▪ Eavesdropper

 can (passively)

 observe the

 communication

▪We want Bob to be able to decrypt c

▪but Eve to not be able to decrypt c

▪ Suppose Eve has unbounded computational power

▪ [Exercise] Argue that both sender and receiver must share
a secret not known to the adversary

▪Hide the details of the Enc() and Dec() algorithms secret?

▪ how crypto was done throughout most of the last 2000 years

▪ but it has major drawbacks!

Secret, or secrecy of the algorithms?

5th September 2024 IERG4150 Cryptography 6/38

▪ A system designer wants the system to be widely used.

▪ It is hard to keep a secret (e.g., reverse engineering).

▪ If details of Enc() and Dec() are leaked, what can we do?

▪ Invent a new encryption system!

▪ Inventing even a good one is already hard enough!

▪ [The method] must not be required to be secret, and it must be
able to fall into the enemy’s hands without causing inconvenience.

▪ Bottom line: Design your system to be secure even if the attacker
has complete knowledge of all its algorithms.

▪ vs. security by obscurity

Kerckhoffs’ Principle

5th September 2024 IERG4150 Cryptography 7/38

“Il faut qu’il n’exige pas le
secret, et qu’il puisse sans

inconvénient tomber entre
les mains de l’ennemi.”

▪ Key generation algorithm (KeyGen)

▪ Input: security parameter λ (lambda)

▪ Output: a key k

▪ Enck(m) → c, Deck(c) → m

▪ i.e., they are key-ed function

▪ All these algorithms are supposed to be public

▪A crypto scheme/construction is a collection of algorithms

▪ Symmetric-key encryption = (KeyGen, Enc, Dec)

What constitutes an encryption scheme?

5th September 2024 IERG4150 Cryptography 8/38

▪We call the inputs/outputs (i.e., the “function signature”)
of the various algorithms the syntax of the scheme.

▪ KeyGen is a probabilistic/randomized algorithm

▪ Knowing the details (i.e., source code) of a randomized
algorithm does not mean you know the specific output
it gave when it was executed

▪ Encoding/decoding methods is not encryption [Why?]

▪ What is “b25seSBuZXJkcyB3aWxsIHJlYWQgdGhpcw==”?

Syntax forms the basis of Security

5th September 2024 IERG4150 Cryptography 9/38

▪ The fact that Alice is sending something to Bob

▪ We only want to hide the contents of that message

▪ Steganography hides the existence of a communication channel

▪How c reliably gets from Alice to Bob

▪We aren’t considering an attacker that tampers with c
(causing Bob to receive and decrypt a different value)

▪ We will consider such attacks later though

What are outside our model’s protection?

5th September 2024 IERG4150 Cryptography 10/38

▪How Alice and Bob actually obtain a common secret key

▪How they can keep them secret while (keep) using it

▪How to uniformly sample random (bit-)strings?

▪ No randomness, no cryptography

▪ Obtaining uniformly random bits from

 deterministic computers is

 extremely non-trivial

What it takes in the “real world”?

5th September 2024 IERG4150 Cryptography 11/38

“Any one who considers
arithmetical methods of

producing random digits is,
of course, in a state of sin.”

— John von Neumann

▪ y = A(x)

▪ Input x is of size/length n
▪ We write |x| = n

▪ A PPT algorithm has O(nc) run-time, c being a constant
▪ We say a PPT algorithm is an “efficient” algorithm

▪ Probabilistic: allows “flipping a coin” to make it randomized

▪ y  A(x)

▪ y denotes the random variable corresponds to A’s output

▪ Or y = A(x; r), where r denotes A’s “coin tossing”
▪ r’s length is also polynomial in n
▪ when we had the need to specify the randomness explicitly

Probabilistic Polynomial Time (PPT) Algo.

10th September 2024 IERG4150 Cryptography 12/38

▪A function v(n) is called negligible, denoted negl(n), if:

▪ (∀c > 0) (∃n’) (∀n ≥ n’) [|v(n)| ≤ 1/nc]

▪ Less than the inverse of any polynomial for large enough n

▪ Prob. of breaking a secure system should be negligible in n
▪ a practically zero value (for sufficiently large inputs)

▪ Let poly(n) denote some polynomial function in n

▪We have poly(n)  negl(n) = negl(n) (abusing notations)

Negligible Function

10th September 2024 IERG4150 Cryptography 13/38

(∀n ≥ n’) ≤ 1/nc ∀c > 0

▪ (∀c > 0) (∃n’) (∀n ≥ n’) [|v(n)| ≤ 1/nc]

▪ For all c > 0:
▪ “Pick any speed you want, and I’ll prove to you that this function shrinks even

faster than that.”

▪ c controls how fast we want the function to shrink.

▪ The bigger c is, the faster we’re asking v(n) to shrink as n gets larger.

▪ There exists n’, for all n ≥ n’
▪ “Before n’, we don’t care much about the function's behavior. We're only

concerned with what happens when n’ becomes large.”

• n’ is just a starting point, after which v(n) behaves in a certain way.

• for all n ≥ n’, |v(n)| ≤ 1/nc:
• No matter how small or fast you make this fraction by choosing a large c, v(n)

can’t be bigger than that fraction once n is big enough.

• The larger c is, faster 1/nc becomes small, so v(n) must shrink even faster

Explaining Negligible Function [*]

10th September 2024 IERG4150 Cryptography 14/38

10th September 2024 IERG4150 Cryptography 15/38

▪ We want a “set” of cryptosystems parameterized by n

▪ Algo.’s run by all parties take commonly agreed input n

▪ They run in time polynomial in their input length n

▪ Summary of Notations:

▪ poly(n): runtime of all parties are sufficiently fast, e.g., n3

▪ negl(n): e.g., 1/2n is in negl(n)

▪ {0, 1}n : the set of n symbols, where each of the n symbols is 0 or 1

▪ 1n (unlike 2n above) is a string with n “copies” of 1’s, i.e., 1n is in {0, 1}n

▪ Security parameter of the system is 1n (with length n bits)

▪ If we put n as an input, the length of (input) n is log(n) bits

Security Parameter (& some notations)

10th September 2024 IERG4150 Cryptography 16/38

▪ Identification of the problem / application scenario

▪ Identification of the primitive which may be useful

▪ Do not re-invent the wheel

▪ Extending existing primitives

▪ Relation between primitives (one implies another?)

▪ Definition of Functional Requirements

▪ A suite of algorithms / protocols, their input & output behavior / interfaces

▪ System model: what entities are involved, which entity executes which algorithm/protocols

▪ Definition of Security requirements

▪ Relation of security notions (one implies another?)

▪ Construction of the schemes

▪ Analysis of the proposed construction

▪ Security Proof: Provable Security!

▪ Efficiency (Order Analysis and/or Experiment on Prototype Implementation)

Tasks of Crypto. Study ([*] / [**])

10th September 2024 IERG4150 Cryptography 17/38

Notation in the Slides

[*]: slightly complicated,

slides did not give full details,

but it should make sense to you.

[**]: advanced materials,

not much details provided,

“out-of-syllabus”

Attackers’ Goal vs. Strength of Encryption

10th September 2024 IERG4150 Cryptography 18

▪ “Deem” only a break when…

▪ Whole m is recovered
▪ (Weakest security level)

▪ Some part of m is recovered
▪ (Slightly stronger)

▪ “1 bit information” of m is leaked
▪ (Strongest)
▪ May not be the actual bit of m

▪ Consider m is known to be “yes” or “no”

▪ Recover the plaintext m

▪ Recover a part of the
plaintext m
▪ (Weaker adversary)
▪ To protect against a weaker

adversary, a weaker
scheme may suffice

▪ The weaker scheme might
be more efficient

▪ Recover the secret key
▪ (Stronger adversary)

▪ eXclusive OR (XOR): For b1 ⊕ b2 (bi is a bit), output as the table
▪ a logical operator that returns 1 (true) if the number of 1 (true) inputs is odd

▪ XOR is also addition modulo 2 (1 + 1 = 2, 2 mod 2 = 0)

▪ For bit-string operation S1 ⊕ S2, just ⊕ in a bit-wise manner

▪ OTP = {KeyGen, Enc, Dec}

▪ KeyGen(1λ):
▪ uniformly sample a λ-bit string k
▪ output k

▪ Enc(k, m) → c = m ⊕ k;
▪ (m is λ-bit long)

▪ Dec(k, c) → m = c ⊕ k

One-Time Pad (OTP) based on XOR

XOR
⊕

0 1

0 0 1

1 1 0

10th September 2024 IERG4150 Cryptography 19/38

b1

b2

▪OTP-encrypt the 20-bit plaintext m below under a key k:

▪OTP-decrypt the 20-bit ciphertext c below under a key k:

Example

10th September 2024 IERG4150 Cryptography 20/38

▪ I could dry-run an algorithm with
concrete examples if I were
teaching an algorithm course

▪ Not exactly concrete details ->

▪ “Abstracted away” by the
recursive calls

▪ but I could flatten it out if I want to

▪How about crypto algorithms?

Detour: Algorithms

10th September 2024 IERG4150 Cryptography 21/38

Credit:

https://medium.com/@jamalmaria111/

tower-of-hanoi-js-algorithm-

3f667fa46f0f

▪ I have provided concrete examples (don’t say I didn’t :),
but, what did you learn by these examples?

▪ You saw how Enc() (or Dec()) works for a particular input

▪ You get a sense of correctness (m = Dec(k, Enc(k, m)))

▪ But how can you argue about its security?

Crypto. Algorithms

10th September 2024 IERG4150 Cryptography 22/38

▪ Security is a global property about the behavior of a system
across all possible inputs.

▪ You can’t demonstrate security by example,

▪ and there’s nothing to see in a particular execution of an algorithm.

▪ Security is about a higher level of abstraction.

▪ (and some students might not be comfortable with it)

▪ Most security definitions in this course are essentially:

▪ “the thing is secure if its outputs look like random junk.”

▪ i.e., any example just look like meaningless garbage

Why Cryptography is difficult?

10th September 2024 IERG4150 Cryptography 23/38

▪ For all k, m ∈ {0, 1}λ, it is true that Dec(k, Enc(k, m)) = m.

▪ More precisely: For all m in the message space M = {0, 1}λ and all k
in the key space K = {0, 1}λ, it is true that Dec(k, Enc(k, m)) = m.

▪ Or simply, one can always recover m.

▪ Proof:

▪ Dec(k, Enc(k, m))

▪ = Dec(k, k ⊕ m)

▪ = k ⊕ (k ⊕ m)

▪ = (k ⊕ k) ⊕ m // ⊕ is associative: (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)

▪ = 0 λ ⊕ m = m.

Correctness of OTP

10th September 2024 IERG4150 Cryptography 24/38

XOR
⊕

0 1

0 0 1

1 1 0

▪ (patented in 1919, but recently discovered in an 1882 text)

▪ The security crucially depends on sampling k uniformly at
random from the set of λ-bit strings
▪ The security would not hold if it is under other distribution.

▪ (This step in) KeyGen() is the only source of randomness
▪ we’ll see using randomness “more” (e.g., in more algorithms) later

▪ Enc() and Dec() are “essentially” the same algorithm
▪ but it is more of a coincidence than something truly fundamental

▪Message space, key space, are just the ciphertext space
▪ again, just a special case here, nothing is said in general

Cautions: OTP is unique in its own ways

10th September 2024 IERG4150 Cryptography 25/38

▪ “Because of the specific way the ciphertext was generated, it
doesn’t reveal any information about the plaintext to the
attacker, no matter what the attacker does with the ciphertext.”

▪ We need to first specify how the ciphertext is generated.

▪ Didn’t we? It is the encryption algorithm

▪ (which relies on KeyGen())

▪ But it was from the point of view of “honest” users Alice and Bob

▪ How can I predict “what the attacker does with the ciphertext”?

▪ Yes, but at least we need to specify what ciphertext does it see.

Security Proof

10th September 2024 IERG4150 Cryptography 26/38

▪ We always treat the attacker as some (unspecified) process
that receives output from an algorithm (eavesdrop here).

▪ not what the attacker does

▪ but rather the process

 (carried out by honest users)

 that produces what the attacker sees

Modelling what the adversary sees

10th September 2024 IERG4150 Cryptography 27/38

Encrypt
Honest user

m

eavesdrop(m)

m

trying to eavesdrop

manipulate then
eavesdrop

▪ Our goal: “the output of eavesdrop doesn’t reveal the input m.”

▪ If you call eavesdrop several times,

▪ even on the same input,

▪ you are likely to get different outputs.

▪ Instead of thinking of “eavesdrop(m)” as a single string,

▪ think of it as a probability distribution over strings.

▪ Each time you call eavesdrop(m),

▪ you see a sample from the distribution.

Probabilistic Alg. & its Output Distribution

10th September 2024 IERG4150 Cryptography 28/38

Query m

Response

m

Attacker
algorithm

“Simulated”
honest user

▪ λ = 3 and consider eavesdrop(010) and eavesdrop(111).

(Toy) Example

10th September 2024 IERG4150 Cryptography 29/38

k is chosen uniformly at
random from {0, 1}λ

every string in the
ciphertext space
({0, 1}λ) appears
exactly once, with
the same (1/8)
probability

a. k. a. uniform
distribution over
{0, 1}λ

▪Nothing special about 010 or 111 in the above examples.

▪ The distribution eavesdrop(m) is the uniform distribution
over the ciphertext space {0, 1}λ.

▪ Let’s formalize this argument (without tabulating 23 times).

▪ Let’s first formalize what we want to prove:

▪ “For every m ∈ {0, 1}λ, the distribution eavesdrop(m) is the
uniform distribution on {0, 1}λ.”

▪Corollary: For every m, m’ ∈ {0, 1}λ, the distributions
eavesdrop(m) and eavesdrop(m’) are identical.

Some conclusions

10th September 2024 IERG4150 Cryptography 30/38

The Exact Proof from the Textbook

IERG4150 Cryptography 31/38

▪ “For every m ∈ {0, 1}λ, the distribution eavesdrop(m) is the
uniform distribution on {0, 1}λ”; or (in “English”):
▪ “If an attacker sees a single ciphertext,

▪ encrypted with one-time pad, where the key

▪ is chosen uniformly and kept secret from the attacker,

▪ then the ciphertext appears uniformly distributed.”

▪ Suppose someone chooses a plaintext m.

▪ You (the attacker) get to see the resulting ciphertext —

▪a sample from the distribution you can sample by yourself

▪even if you don’t know m!

What did we prove? (Part I)

10th September 2024 IERG4150 Cryptography 32/38

▪ The “real” ciphertext doesn’t carry any information about m if it
is possible to sample without even knowing m!

▪ Paradox 1: “One can always recover m [from c]” contradicts
with “c contains no information about m.”

▪ The correctness proof assumes one w/ the knowledge of k

▪ Paradox 2: “eavesdrop(m) does not depend on m” is blatantly
false simply because it takes m as an input!

▪ Our example shows that, when m is different,

 the tabulated outputs indeed are different (m’s “effect”)

▪ The claim is about they are being the same distribution.

Security of OTP, and some discussions

10th September 2024 IERG4150 Cryptography 33/38

▪ For every m, m’ ∈ {0, 1}λ, the distributions eavesdrop(m)
and eavesdrop(m’) are identical.
▪ “If an attacker sees a single ciphertext,

▪ encrypted with one-time pad, where the key

▪ is chosen uniformly and kept secret from the attacker,

▪ for every two possibilities of the plaintext,

▪ the resulting ciphertext appears from the same distribution”

▪ The attacker’s “view” is the same no matter what m is

▪and no matter what the plaintext distribution is!
▪ (cf., Caesar cipher…)

What did we prove? (Part II)

10th September 2024 IERG4150 Cryptography 34/38

▪ “For every m ∈ {0, 1}λ, the distribution eavesdrop(m) is the
uniform distribution on {0, 1}λ”

▪Here, we consider some hypothetical “ideal” world:

▪Any attacker sees only a source of uniform bits.

▪ There are no keys and no plaintexts to recover.

What did we prove? (Part III)

10th September 2024 IERG4150 Cryptography 35/38

▪ “For every m ∈ {0, 1}λ, the distribution eavesdrop(m) is the
uniform distribution on {0, 1}λ”

▪ Nothing was said about the attacker’s goal!

▪ e.g., recovering the plaintext or the key

▪ Looking ahead, we may do that in alternative definitions or cases

▪ but we still want to be general enough

▪ What we prove: Any attacker, who saw an OTP ciphertext in the
real world, has a point of view like in our hypothetical world!

▪ Or, it is a “modest” goal: detect that ciphertexts don’t follow a
uniform distribution (so harder goals are out of reach)

What did we prove? (fin.)

10th September 2024 IERG4150 Cryptography 36/38

1. It can only be used once (to encrypt a single plaintext).

▪Note that the eavesdrop procedure provides no way for
a caller to guarantee that two calls will use the same key.

▪ So, we did not prove anything about reusing the key.

2. The key is as long as the plaintext

▪ provably unavoidable (a.k.a. the key length is optimal) [*]

▪Chicken-and-egg dilemma in practice:

▪ If two users want to privately convey a λ-bit message,

▪ they first need to privately agree on a λ-bit string.

Limitations of One-Time Pad

10th September 2024 IERG4150 Cryptography 37/38

▪ Pedagogical: It illustrates fundamental ideas that appear in most
forms of encryption in this course.
▪ (recall the “Cautions” slide though)

▪ In “real-world”: the only “perfectly secure” encryption scheme
▪ imagine if someone sells a “perfect” encryption scheme to you…

▪ We propose the first solution, it may not be “ideal” (e.g., inefficient)

▪ then we try to “twist” it to make it achieve some “better trade-offs”
▪ How “innovation” work sometimes

▪ What if the attacker has bounded computation power?

▪ What if we manage to have some “pseudorandom strings”?
▪ We’ll study computationally-secure pseudo-random number generator

Then why teach OTP?

10th September 2024 IERG4150 Cryptography 38/38

	Slide 1: IERG4150 Intro. to Cryptography
	Slide 2: Fundamentals of “Provable Security”
	Slide 3: What (Modern) Cryptography is?
	Slide 4: Defining Security
	Slide 5: “Private” (Confidential) Communication
	Slide 6: Secret, or secrecy of the algorithms?
	Slide 7: Kerckhoffs’ Principle
	Slide 8: What constitutes an encryption scheme?
	Slide 9: Syntax forms the basis of Security
	Slide 10: What are outside our model’s protection?
	Slide 11: What it takes in the “real world”?
	Slide 12: Probabilistic Polynomial Time (PPT) Algo.
	Slide 13: Negligible Function
	Slide 14: Explaining Negligible Function [*]
	Slide 15
	Slide 16: Security Parameter (& some notations)
	Slide 17: Tasks of Crypto. Study ([*] / [**])
	Slide 18: Attackers’ Goal vs. Strength of Encryption
	Slide 19: One-Time Pad (OTP) based on XOR
	Slide 20: Example
	Slide 21: Detour: Algorithms
	Slide 22: Crypto. Algorithms
	Slide 23: Why Cryptography is difficult?
	Slide 24: Correctness of OTP
	Slide 25: Cautions: OTP is unique in its own ways
	Slide 26: Security Proof
	Slide 27: Modelling what the adversary sees
	Slide 28: Probabilistic Alg. & its Output Distribution
	Slide 29: (Toy) Example
	Slide 30: Some conclusions
	Slide 31: The Exact Proof from the Textbook
	Slide 32: What did we prove? (Part I)
	Slide 33: Security of OTP, and some discussions
	Slide 34: What did we prove? (Part II)
	Slide 35: What did we prove? (Part III)
	Slide 36: What did we prove? (fin.)
	Slide 37: Limitations of One-Time Pad
	Slide 38: Then why teach OTP?

