IERG4150 Intro. to Cryptography

Sherman Chow Chinese University of Hong Kong Fall 2024 Lecture 1: One-time Pad and its Security Proof

Fundamentals of "Provable Security"

Security: It is a nebulous concept, but not if you took this course

- Provable:
 - We can formally define what it means to be secure
 - and then mathematically prove claims about security
 - e.g., logic of composing building blocks together in secure ways
- Fundamentals:
 - solid theoretical foundation applicable to most real-world situations
 - equipped to (self-)study more advanced topics in cryptography

What (Modern) Cryptography is?

- not a magic spell that solves all security problems
- providing solutions to cleanly defined problems
 - often abstract away important but messy real-world concerns
- "Cryptographic guarantees"/"Provable security":
 - What happens (or what cannot happen) in the presence of certain well-defined classes of attacks
 - What if the model is too restrictive (in defining the attacks)?
 - What if the "real-world" attackers don't follow the "rules"?
 - Disappointing/Underwhelming?

Defining Security

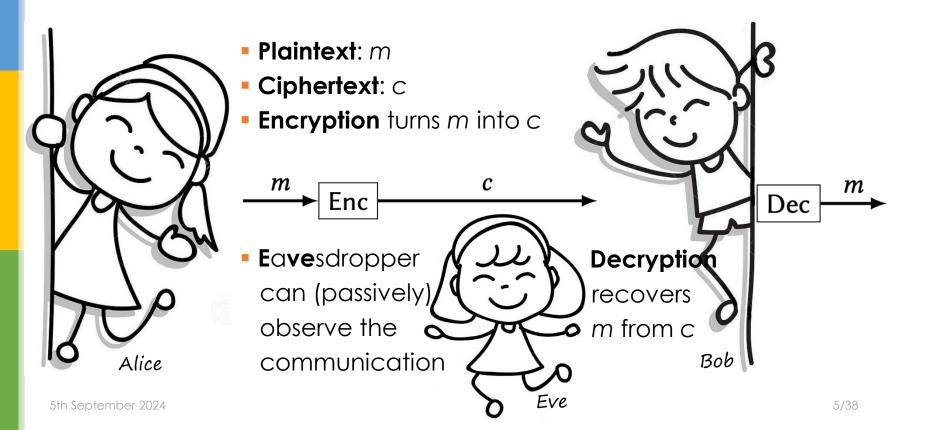
Making the nebulous concept of "security" concrete
Breaking the vicious circle of "cat-and-mouse" games

• We will try to model the attacker as "powerful" as possible

Always keep in mind: we define (i.e., limit) our problems

"To define is to limit." —Oscar Wilde

"Private" (Confidential) Communication



Secret, or secrecy of the algorithms?

- We want Bob to be able to decrypt c
- but Eve to not be able to decrypt c
- Suppose Eve has unbounded computational power
- [Exercise] Argue that both sender and receiver must share a secret not known to the adversary
- Hide the details of the Enc() and Dec() algorithms secret?
 - how crypto was done throughout most of the last 2000 years
 - but it has major drawbacks!

Kerckhoffs' Principle

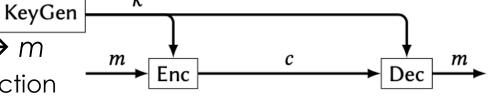
"Il faut qu'il n'exige pas le secret, et qu'il puisse sans inconvénient tomber entre les mains de l'ennemi."

- A system designer wants the system to be widely used.
- It is hard to keep a secret (e.g., reverse engineering).
- If details of Enc() and Dec() are leaked, what can we do?
- Invent a new encryption system!
 - Inventing even a good one is already hard enough!
- [The method] must not be required to be secret, and it must be able to fall into the enemy's hands without causing inconvenience.
- Bottom line: Design your system to be secure even if the attacker has complete knowledge of all its algorithms.
 - vs. security by obscurity

What constitutes an encryption scheme?

Key generation algorithm (KeyGen)

- Input: security parameter λ (lambda)
- Output: a key k
- $Enc_k(m) \rightarrow c$, $Dec_k(c) \rightarrow m$
 - i.e., they are key-ed function



- All these algorithms are supposed to be public
- A crypto scheme/construction is a collection of algorithms

ĸ

Symmetric-key encryption = (KeyGen, Enc, Dec)

Syntax forms the basis of Security

We call the inputs/outputs (i.e., the "function signature") of the various algorithms the syntax of the scheme.

KeyGen is a probabilistic/randomized algorithm

Knowing the details (i.e., source code) of a randomized algorithm does not mean you know the specific output it gave when it was executed

Encoding/decoding methods is not encryption [Why?]

What is "b25seSBuZXJkcyB3aWxsIHJIYWQgdGhpcw=="?

5th September 2024

IERG4150 Cryptography

What are outside our model's protection?

The fact that Alice is sending something to Bob

- We only want to hide the contents of that message
- Steganography hides the existence of a communication channel
- How c reliably gets from Alice to Bob
- We aren't considering an attacker that tampers with c (causing Bob to receive and decrypt a different value)
 - We will consider such attacks later though

What it takes in the "real world"?

How Alice and Bob actually obtain a common secret key

How they can keep them secret while (keep) using it

How to uniformly sample random (bit-)strings?

- No randomness, no cryptography
- Obtaining uniformly random bits from deterministic computers is extremely non-trivial

"Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin." — John von Neumann

Probabilistic Polynomial Time (PPT) Algo.

- y = A(x)
- Input x is of size/length n
 - We write |x| = n
- A PPT algorithm has O(n^c) run-time, c being a constant
 - We say a PPT algorithm is an "efficient" algorithm
- Probabilistic: allows "flipping a coin" to make it randomized
- $y \leftarrow A(x)$
- y denotes the random variable corresponds to A's output
- Or y = A(x; r), where r denotes A's "coin tossing"
 - *r*'s length is also polynomial in *n*
 - when we had the need to specify the randomness explicitly

Negligible Function

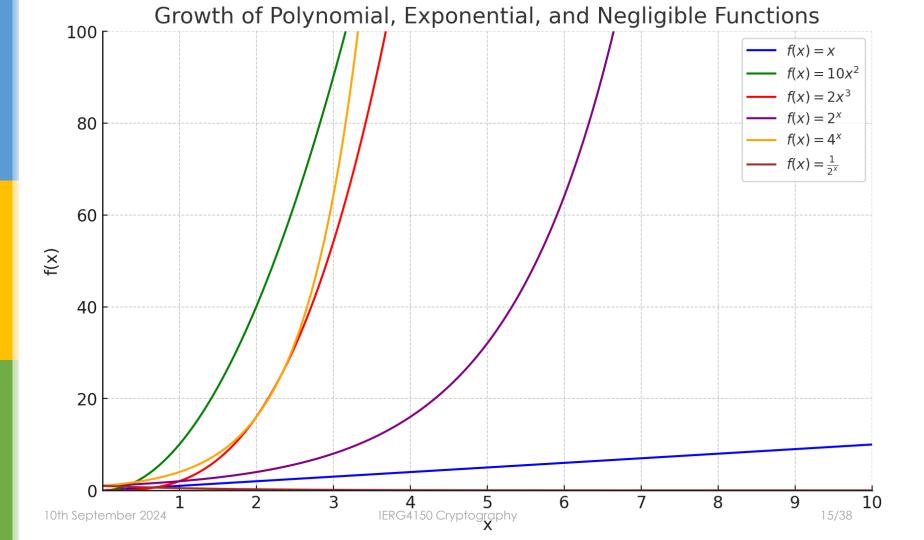
- A function v(n) is called negligible, denoted negl(n), if:
- $(\forall c > 0) (\exists n') (\forall n \ge n') [|v(n)| \le 1/n^c]$
- Less than the inverse of any polynomial for large enough *n*

≤ 1/n ^c	AC > 0	(∀n ≥ n')
--------------------	--------	-----------

- Prob. of breaking a secure system should be negligible in n
 a practically zero value (for sufficiently large inputs)
- Let **poly**(n) denote some polynomial function in n
 We have poly(n) · negl(n) = negl(n) (abusing notations)

Explaining Negligible Function [*]

- $(\forall c > 0) (\exists n') (\forall n \ge n') [|v(n)| \le 1/n^c]$
- For all c > 0:
 - "Pick any speed you want, and I'll prove to you that this function shrinks even faster than that."
 - c controls how fast we want the function to shrink.
 - The bigger c is, the faster we're asking v(n) to shrink as n gets larger.
- There exists n', for all $n \ge n'$
 - "Before n', we don't care much about the function's behavior. We're only concerned with what happens when n' becomes large."
 - n' is just a starting point, after which v(n) behaves in a certain way.
- for all $n \ge n'$, $|v(n)| \le 1/n^c$:
 - No matter how small or fast you make this fraction by choosing a large c, v(n) can't be bigger than that fraction once n is big enough.
 - The larger c is, faster $1/n^{c}$ becomes small, so v(n) must shrink even faster



Security Parameter (& some notations)

- We want a "set" of cryptosystems parameterized by *n*
- Algo.'s run by all parties take commonly agreed input n
- They run in time polynomial in their input length n
- Summary of Notations:
 - poly(n): runtime of all parties are sufficiently fast, e.g., n³
 - negl(n): e.g., $1/2^n$ is in negl(n)
 - $\{0, 1\}^n$: the set of *n* symbols, where each of the *n* symbols is 0 or 1
 - 1ⁿ (unlike 2^n above) is a string with n "copies" of 1's, i.e., 1^n is in $\{0, 1\}^n$
- Security parameter of the system is 1ⁿ (with length n bits)
 - If we put n as an input, the length of (input) n is log(n) bits

Tasks of Crypto. Study ([*] / [**])

- Identification of the problem / application scenario
- Identification of the primitive which may be useful
 - Do not re-invent the wheel
 - Extending existing primitives
 - Relation between primitives (one implies another?)
- Definition of Functional Requirements
 - A suite of algorithms / protocols, their input & output behavior / interfaces
 - System model: what entities are involved, which entity executes which algorithm/protocols
- Definition of Security requirements
 - Relation of security notions (one implies another?)
- Construction of the schemes
- Analysis of the proposed construction
 - Security Proof: Provable Security!
 - Efficiency (Order Analysis and/or Experiment on Prototype Implementation)

Notation in the Slides [*]: slightly complicated, slides did not give full details, but it should make sense to you. [**]: advanced materials, not much details provided,

"out-of-syllabus"

Attackers' Goal vs. Strength of Encryption

- Recover the plaintext m
- Recover a part of the plaintext m
 - (Weaker adversary)
 - To protect against a weaker adversary, a weaker scheme may suffice
 - The weaker scheme might be more efficient
- Recover the secret key
 - (Stronger adversary)

- "Deem" only a break when...
- Whole *m* is recovered
 - (Weakest security level)
- Some part of *m* is recovered
 - (Slightly stronger)
- "1 bit information" of *m* is leaked
 - (Strongest)
 - May not be the actual bit of m
 - Consider m is known to be "yes" or "no"

One-Time Pad (OTP) based on XOR

• eXclusive OR (XOR): For $b_1 \oplus b_2$ (b_i is a bit), output as the table • a logical operator that returns 1 (true) if the number of 1 (true) inputs is odd

- XOR is also addition modulo 2 $(1 + 1 = 2, 2 \mod 2 = 0)$
- For bit-string operation $S_1 \oplus S_2$, just \oplus in a bit-wise manner
- OTP = {KeyGen, Enc, Dec}
- KeyGen(1^λ):
 - *uniformly* sample a λ -bit string k
 - output k
- Enc(k, m) \rightarrow c = m \oplus k;
 - (*m* is λ -bit long)
- Dec(k, c) \rightarrow m = c \oplus k

KeyGen:
$$k \leftarrow \{0, 1\}^{\lambda}$$

return k $\begin{pmatrix} X \cap R \\ \oplus \end{pmatrix}$ 0 1 b_1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1

 b_2

Example

• OTP-encrypt the 20-bit plaintext *m* below under a key *k*:

11101111101111100011 (m)

 \oplus 00011001110000111101 (k)

11110110011111011110 (c = Enc(k, m))

• OTP-decrypt the 20-bit ciphertext c below under a key k:

00001001011110010000 (c)

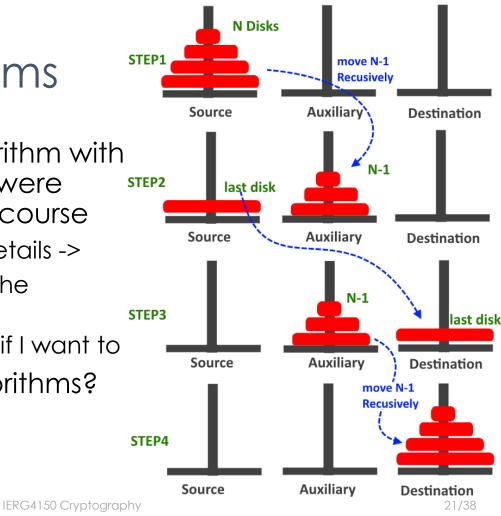
 \oplus 10010011101011100010 (k)

10011010110101110010 (m = Dec(k, c))

Detour: Algorithms

- I could dry-run an algorithm with concrete examples if I were teaching an algorithm course
 - Not exactly concrete details ->
 - "Abstracted away" by the recursive calls
 - but I could flatten it out if I want to
- How about crypto algorithms?

Credit: https://medium.com/@jamalmaria111/ tower-of-hanoi-js-algorithm-3f667fa46f0f



Crypto. Algorithms

I have provided concrete examples (don't say I didn't :), but, what did you learn by these examples?

11101111101111100011 (*m*)

 \oplus 00011001110000111101 (k)

11110110011111011110 (c = Enc(k, m))

- You saw how Enc() (or Dec()) works for a particular input
 You get a sense of correctness (m = Dec(k, Enc(k, m)))
- But how can you argue about its security?

Why Cryptography is difficult?

- Security is a global property about the behavior of a system across all possible inputs.
 - You can't demonstrate security by example,
 - and there's nothing to see in a particular execution of an algorithm.
- Security is about a higher level of abstraction.
 - (and some students might not be comfortable with it)
- Most security definitions in this course are essentially:
 - "the thing is secure if its outputs look like random junk."
 - *i.e.*, any example just look like meaningless garbage

Correctness of OTP

- For all $k, m \in \{0, 1\}^{\lambda}$, it is true that Dec(k, Enc(k, m)) = m.
- More precisely: For all *m* in the message space $\mathbf{M} = \{0, 1\}^{\lambda}$ and all *k* in the key space $\mathbf{K} = \{0, 1\}^{\lambda}$, it is true that Dec(k, Enc(k, m)) = m.
- Or simply, one can always recover m.
- Proof:
- Dec(k, Enc(k, m))
- = $Dec(k, k \oplus m)$
- $= k \oplus (k \oplus m)$
- = $(k \oplus k) \oplus m / / \oplus$ is associative: $(a \oplus b) \oplus c = a \oplus (b \oplus c)$ ■ = $0^{\lambda} \oplus m = m$.

XOR ⊕	0	1
0	0	1
1	1	0

Cautions: OTP is unique in its own ways

- (patented in 1919, but recently discovered in an 1882 text)
- The security crucially depends on sampling k **uniformly** at random from the set of λ -bit strings
 - The security would not hold if it is under other distribution.
- (This step in) KeyGen() is the only source of randomness
 - we'll see using randomness "more" (e.g., in more algorithms) later
- Enc() and Dec() are "essentially" the same algorithm
 - but it is more of a coincidence than something truly fundamental
- Message space, key space, are just the ciphertext space
 again, just a special case here, nothing is said in general

Security Proof

- Because of the <u>specific</u> way the ciphertext was generated, it doesn't reveal any information about the plaintext to the attacker, no matter what the attacker does with the ciphertext."
- We need to first specify how the ciphertext is generated.
- Didn't we? It is the encryption algorithm
 - (which relies on KeyGen())
- But it was from the point of view of "honest" users Alice and Bob
- How can I predict "what the attacker does with the ciphertext"?
 - Yes, but at least we need to specify what ciphertext does it see.

Modelling what the adversary sees

- We always treat the attacker as some (unspecified) process that receives output from an algorithm (eavesdrop here).
- not what the attacker does
- but rather the process (carried out by honest users) that produces what the attacker sees

 $\frac{\text{EAVESDROP}(m \in \{0, 1\}^{\lambda}):}{k \leftarrow \{0, 1\}^{\lambda}}$ $c := k \oplus m$ return c

Probabilistic Alg. & its Output Distribution

- Our goal: "the output of eavesdrop doesn't reveal the input m."
- If you call eavesdrop several times,
- even on the same input,
- you are likely to get different outputs.

 EAVESDROP $(m \in \{0, 1\}^{\lambda})$:

 $k \leftarrow \{0, 1\}^{\lambda}$
 $c \coloneqq k \oplus m$

 return c

Query m

Response

algorithm

- Instead of thinking of "eavesdrop(m)" as a single string,
- think of it as a probability distribution over strings.
- Each time you call eavesdrop(m),
- you see a sample from the distribution.

 $k \leftarrow \{\mathbf{0}, \mathbf{1}\}^{\lambda}$ $c := k \oplus m$

"Simulated"

honest user

return c

(Toy) Example

• $\lambda = 3$ and consider eavesdrop(010) and eavesdrop(111). EAVESDROP(010): EAVESDROP(111):

	$ut c = k \oplus i$	k o	Pr	<i>output</i> $c = k \oplus 010$	k	Pr
ry string in th	111 e	000	¥8	010	000	¥8
ertext space	110 <i>C</i>	001	1/8	011	001	$\frac{1}{8}$
1 ^{λ}) appears		010	$\frac{1}{8}$	000	010	¥8
tly once, with	100 <u>e</u>	011	$\frac{1}{8}$	001	011	¥8
same $(1/8)$		100	$\frac{1}{8}$	110	100	$\frac{1}{8}$
pability	<mark>010</mark>	101	$\frac{1}{8}$	111	101	$\frac{1}{8}$
	001	110	$\frac{1}{8}$	100	110	¥8
a. uniform	000 d	111	$\frac{1}{8}$	101	111	$\frac{1}{8}$
ribution over 1^{λ}	C	7		k is chosen unifor random from {0,	R	
29/38		y Y	Cryptograph	IERG4150 C		

10th September 2024

Some conclusions

Nothing special about 010 or 111 in the above examples.

- The distribution eavesdrop(m) is the uniform distribution over the ciphertext space $\{0, 1\}^{\lambda}$.
- Let's formalize this argument (without tabulating 2³ times).
- Let's first formalize what we want to prove:
- "For every $m \in \{0, 1\}^{\lambda}$, the distribution eavesdrop(m) is the uniform distribution on $\{0, 1\}^{\lambda}$."
- Corollary: For every $m, m' \in \{0, 1\}^{\lambda}$, the distributions eavesdrop(m) and eavesdrop(m') are identical.

The Exact Proof from the Textbook

Proof Arbitrarily fix $m, c \in \{0, 1\}^{\lambda}$. We will calculate the probability that EAVESDROP(m) produces output c. That event happens only when

 $c = k \oplus m \iff k = m \oplus c.$

The equivalence follows from the properties of XOR given in Section 0.3. That is,

 $\Pr[\text{EAVESDROP}(m) = c] = \Pr[k = m \oplus c],$

where the probability is over uniform choice of $k \leftarrow \{0, 1\}^{\lambda}$.

We are considering a specific choice for *m* and *c*, so there is *only one* value of *k* that makes $k = m \oplus c$ true (causes *m* to encrypt to *c*), and that value is exactly $m \oplus c$. Since *k* is chosen *uniformly* from $\{0, 1\}^{\lambda}$, the probability of choosing the particular value $k = m \oplus c$ is $1/2^{\lambda}$.

In summary, for every *m* and *c*, the probability that EAVESDROP(m) outputs *c* is exactly $1/2^{\lambda}$. This means that the output of EAVESDROP(m), for any *m*, follows the uniform distribution.

What did we prove? (Part I)

- "For every $m \in \{0, 1\}^{\lambda}$, the distribution eavesdrop(m) is the uniform distribution on $\{0, 1\}^{\lambda}$ "; or (in "English"):
 - "If an attacker sees a single ciphertext,
 - encrypted with one-time pad, where the key
 - is chosen uniformly and kept secret from the attacker,
 - then the ciphertext appears uniformly distributed."
- Suppose someone chooses a plaintext *m*.
- You (the attacker) get to see the resulting ciphertext —
- a sample from the distribution you can sample by yourself
 even if you don't know m!

Security of OTP, and some discussions

- The "real" ciphertext doesn't carry any information about m if it is possible to sample without even knowing m!
- Paradox 1: "One can always recover m [from c]" contradicts with "c contains no information about m."
- The correctness proof assumes one w/ the knowledge of k
- Paradox 2: "eavesdrop(m) does not depend on m" is blatantly false simply because it takes m as an input!
- Our example shows that, when m is different, the tabulated outputs indeed are different (m's "effect")
- The claim is about they are being the same <u>distribution</u>.

What did we prove? (Part II)

- For every $m, m' \in \{0, 1\}^{\lambda}$, the distributions eavesdrop(m) and eavesdrop(m') are identical.
 - "If an attacker sees a single ciphertext,
 - encrypted with one-time pad, where the key
 - is chosen uniformly and kept secret from the attacker,
 - for every two possibilities of the plaintext,
 - the resulting ciphertext appears from the same distribution"
- The attacker's "view" is the same no matter what *m* is
- and no matter what the plaintext distribution is!
 - (cf., Caesar cipher...)

What did we prove? (Part III)

- "For every $m \in \{0, 1\}^{\lambda}$, the distribution eavesdrop(m) is the uniform distribution on $\{0, 1\}^{\lambda}$ "
- Here, we consider some hypothetical "ideal" world:
 Any attacker sees only a source of uniform bits.
 There are no keys and no plaintexts to recover.

What did we prove? (fin.)

- "For every $m \in \{0, 1\}^{\lambda}$, the distribution eavesdrop(m) is the uniform distribution on $\{0, 1\}^{\lambda}$ "
- Nothing was said about the attacker's goal!
 - e.g., recovering the plaintext or the key
 - Looking ahead, we may do that in alternative definitions or cases
 - but we still want to be general enough
- What we prove: Any attacker, who saw an OTP ciphertext in the real world, has a point of view like in our hypothetical world!
- Or, it is a "modest" goal: detect that ciphertexts don't follow a uniform distribution (so harder goals are out of reach)

Limitations of One-Time Pad

1. It can only be used once (to encrypt a single plaintext).

- Note that the eavesdrop procedure provides no way for a caller to guarantee that two calls will use the same key.
- So, we did not prove anything about reusing the key.
- 2. The key is as long as the plaintext
 - provably unavoidable (a.k.a. the key length is optimal) [*]
- Chicken-and-egg dilemma in practice:
 - If two users want to privately convey a λ -bit message,
 - they first need to privately agree on a λ -bit string.

Then why teach OTP?

- Pedagogical: It illustrates fundamental ideas that appear in most forms of encryption in this course.
 - (recall the "Cautions" slide though)
- In "real-world": the only "perfectly secure" encryption scheme
 - imagine if someone sells a "perfect" encryption scheme to you...
- We propose the first solution, it may not be "ideal" (e.g., inefficient)
- then we try to "twist" it to make it achieve some "better trade-offs"
 - How "innovation" work sometimes
- What if the attacker has bounded computation power?
- What if we manage to have some "pseudorandom strings"?
 - We'll study computationally-secure pseudo-random number generator