IERG4150
Infro. to Cryptography

Sherman Chow
Chinese University of Hong Kong
Fall 2024
Lecture 1: One-time Pad and its Security Proof

IERG4150 Cryptography




Fundamentals of “Provable Security”

= Security: It is a nebulous concept, but not if you took this course

= Provable:
= We can formally define what it means to be secure
= and then mathematically prove claims about security
= e.g., logic of composing building blocks together in secure ways

= Fundamentals:
= solid theoretical foundation applicable to most real-world situations

= equipped to (self-)study more advanced topics in cryptography
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What (Modern) Cryptography is¢

= not a magic spell that solves all security problems

= providing solutions to cleanly defined problems
= often abstract away important but messy real-world concerns

= “Cryptographic guarantees”/"Provable security”:

= What happens (or what cannot happen) in the presence of
certain well-defined classes of attacks

= What if the model is too restrictive (in defining the attacks)e
= What if the “real-world” attackers don't follow the *“rules”?
= Disappointing/Underwhelming?




Defining Security

= Making the nebulous concept of “security” concrete
= Breaking the vicious circle of “cat-and-mouse” games

= We will fry to model the attacker as “powerful” as possible

= Always keep in mind: we define (i.e., limit) our problems

“To define is to limit.”
—Oscar Wilde
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“Private” (Confidential) Communication

= Plaintext: m
= Ciphertext: c
= Encryption turns m into ¢

— Enc

= Eavesdropper
can (passively
observe the




Secret, or secrecy of the algorithmse

= We want Bob to be able to decrypt ¢
= pbut Eve to not be able to decrypt ¢
= Suppose Eve has unbounded computational power

= [Exercise] Argue that both sender and receiver must share
a secret not known to the adversary

= Hide the details of the Enc() and Dec() algorithms secret?

= how crypto was done throughout most of the Iast 2000 years
= but it has major drawbacks!



“Ul faut qu'il Wexige pas le
secret, et qu'il puisse sans

Ke I'C kh O ffs ! P rl N C i p | e inconvénient tomber entre

les mains de lennemt.”’

= A system designer wants the system to be widely used.
= |t is hard to keep a secret (e.g., reverse engineering).
= If details of Enc() and Dec() are leaked, what can we do<¢
= [Invent a new encryption system!
= Inventing even a good one is already hard enough!

= [The method] must not be required to be secret, and it must be
able to fall info the enemy’s hands without causing inconvenience.

= Bottom line: Design your system to be secure even if the attacker
has complete knowledge of all its algorithms.

= Vs. security by obscurity



What constifutes an encryption schemese

= Key generation algorithm (KeyGen)
= Input: security parameter A (lambda)
= Qutput: a key k KeyGen
=Enc,(m) =2 ¢, Dec,(c) 2> m
= [.e., they are key-ed function
= All these algorithms are supposed to be public
= A crypto scheme/construction is a collection of algorithms

= Symmetric-key encryption = (KeyGen, Enc, Dec)

l !

m c
Enc » Dec —>
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Syntax forms the basis of Security

= We call the inputs/outputs (i.e., the “function signature”)
of the various algorithms the syntax of the scheme.

= KeyGen is a probabilistic/randomized algorithm

= Knowing the details (i.e., source code) of a randomized
algorithm does not mean you know the specific output
it gave when it was executed

= Encoding/decoding methods is not encryption [Why?]
= What is “b25seSBuZXJkcyB3aWxsIHIYWQgdGhpcw=="¢



What are outside our model’s protectione

= The fact that Alice is sending something to Bob
= We only want to hide the confents of that message
= Steganography hides the existence of a communication channel

= How c reliably gets from Alice to Bob

= We aren’t considering an attacker that tampers with ¢
(causing Bob to receive and decrypt a different value)

= We will consider such attacks later though
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What it takes in the “real world"¢

= How Alice and Bob actually obtain a common secret key
= How they can keep them secret while (keep) using it

= How to uniformly sample random (bit-)stringse
= No randomness, no cryptography

= Obtaining uniformly random bits from “Any one who considers
N : arithmetical methods of
deterministic computers is producing random digits is,
extremely non-trivial of course, in a state of sin.”

— John von Neumann
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Probabillistic Polynomial Time (PPT) Algo.

"y =A(X]
= Input x is of size/length n
= We write [x] =n
= A PPT algorithm has O(n¢) run-time, ¢ being a constant
= We say a PPT algorithm is an “efficient” algorithm
= Probabilistic: allows “flipping a coin” to make it randomized
"y € Alx)
=y denotes the random variable corresponds to A's output

= Ory =A(x;r), where r denotes A’s “coin tossing”
= r's length is also polynomial in n
= when we had the need 1o specify the randomness explicitly
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Negligible Function

= A function v(n) is called negligible, denoted negl(n), if:
= (vc >0) (3an’) (vn=n’) [[v(n)| £ 1/n°]
= Less than the inverse of any polynomial for large enough n

<1/nc¢ vc>0 (Vvh =n')

= Prob. of breaking a secure system should be negligible in n
= a practically zero value (for sufficiently large inputs)

= Let poly(n) denote some polynomial function in n
= We have poly(n) - negl(n) = negl(n) (abusing notations)



Explaining Negligible Function [*]

= (Vvc >0) (3n’) (vh =n’') [|v(n)| £ 1/n°]

= For all ¢ > 0:;

= “Pick any speed you want, and I'll prove to you that this function shrinks even
faster than that.”

= ¢ controls how fast we want the function to shrink.
= The bigger c is, the faster we're asking v(n) to shrink as n gets larger.

= There exists n', foralln =2n’

= “Before n’, we don't care much about the function's behavior. We're only
concerned with what happens when n’ becomes large.”

* n'isjust a starting point, after which v(n) behaves in a certain way.

« forallnz=n’, |v(n)| < 1/n¢c:

- No matter how small or fast you make this fraction by choosing a large ¢, v(n)
can't be bigger than that fraction once n is big enough.

« The larger c is, faster 1/n¢ becomes small, so v(n) must shrink even faster



Growth of Polynomial, Exponential, and Negligible Functions
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Security Parameter (& some notations)

= We want a “set” of cryptosystems parameterized by n
= Algo.’s run by all parties take commonly agreed input n
= They run in fime polynomial in their input length n
= Summary of Notations:
= poly(n): runtime of all parties are sufficiently fast, e.g., n3
= negl(n): e.g., 1/2"is in negl(n)
= {0, 1} : the set of n symbols, where each of the n symbolsis O or 1
= 1n (unlike 2" above) is a string with n “copies” of 1's,i.e., 1"isin {0, 1}"
= Security parameter of the system is 1" (with length n bits)
= If we put n as an input, the length of (input) nis log(n) bits




Tasks of Crypto. Study ([*] / [**])

ldentification of the problem / application scenario Notation in the Slides

- . T . [*]: slightly complicated,
Iden’nflcohor? of the primifive which may be useful slides did not give full detdis.
= Do noft re-invent the wheel

but it should make sense to you.
= Extending existing primitives [**]: advanced materials,

= Relation between primitives (one implies another?) not much details provided,
Definition of Functional Requirements “out-ofsyliabus™

= A suite of algorithms / protocols, their input & output behavior / interfaces

= System model: what entities are involved, which entity executes which algorithm/protocols
Definition of Security requirements

= Relation of security notions (one implies another?)
Construction of the schemes
Analysis of the proposed construction

= Security Proof: Provable Security!

= Efficiency (Order Analysis and/or Experiment on Prototype Implementation)
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Attackers’ Goal vs. Strength of Encryption

= Recover the plaintext m = “Deem’” only a break when...

= Recover a part of the
plaintext m

= (Weaker adversary)

= To protect against a weaker
adversary, a weaker

scheme may suffice = Some part of m is recovered

= The weaker scheme might = (Slightly st
be more efficient J (Slightly stronger)

= Recover the secret key
= (Stronger adversary)

= Whole m is recovered
= (Weakest security level)

= "1 bit information” of m is leaked
= (Strongest)

= May not be the actual bit of m
= Consider m is known to be “yes” or “no”



One-Time Pad (OTP) based on XOR

= eXclusive OR (XOR): For b, @ b, (b; is a bit), output as the table

= alogical operator that returns 1 (true) if the number of 1 (true) inputs is odd
= XOR is also addition modulo 2 (1 + 1 =2, 2mod 2 =0)

= For bit-string operation §, @ S,, just @ in a bit-wise manner
= OTP = {KeyGen, Enc, Dec}
= KeyGen(1%):

D,
= uniformly sample a A-bit string k KeyGen: -- b,
0 0 1

= OUtput k

sEnclk, m) > c=m@®k; ke {o,1}" oo
= (m is A\-bit long) return k
“Declk,.c)o>m=c®dk Enc(k,m € {0,1}*): Dec(k,c € {0,1}"):
return k ® m return k & c
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Example

= OTP-encrypt the 20-bit plaintext m below under a key k:

11101111101111100011 (m)
® 00011001110000111101 (k)
11110110011111011110 (¢ = Enc(k, m))

= OTP-decrypt the 20-bit ciphertext ¢ below under a key k:

00001001011110010000 (c)
® 10010011101011100010 (k)
10011010110101110010 (m = Dec(k, c))

10th September 2024 IERG4150 Cryptography 20/38




STEP1 move N-1

Recusively

-
-
~
-

Detour: Algorithms

= | could dry-run an algorithm with -
concrete examples if | were STEP2 last disk
teaching an algorithm course

Source Auxiliary Destination

-~
~———

-

= Not exactly concrete details ->

= YAbstracted away” by the
recursive calls STEP3
= pbut | could flatten it out if | want to .

Source Auxiliary \ Destination

= How about crypto algorithms? move N1
Credit: Re?uswelv
https://medium.com/@jamalmarial 11/ STEPA S

tower-of-hanoi-js-algorithm-
3f667fa46f0f

Source Auxiliary Destination
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Crypto. Algorithms

= | have provided concrete examples (don't say | didn't :),
but, what did you learn by these examplese

11101111101111100011 (m)
® 00011001110000111101 (k)
11110110011111011110 (¢ = Enc(k, m))

= You saw how Enc() (or Dec()) works for a particular input
= You get a sense of correctness (m = Dec(k, Enc(k, m)))
= But how can you argue about its securitye
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Why Cryptography is difficulte

= Security is a global property about the behavior of a system
across all possible inputs.

= You can't demonstrate security by example,
= and there’s nothing to see in a particular execution of an algorithm.

= Security is about a higher level of abstraction.
= (and some students might not be comfortable with it)

= Most security definitfions in this course are essentially:
= Y“the thing is secure if its outputs look like random junk.”
= l.e., any example just look like meaningless garbage



Correctness of OTP

= For allk, m € {0, 1}, it is frue that Dec(k, Enc(k, m)) =

= More precisely: For all m in the message space M = 5(0 1}A cmd all k
in the key space K = {0, 1}, it is tfrue that Dec(k, Enc(

= Or simply, one can always recover m.

 Froot NN

= Declk, Enc(k, m)) 0 0 1
= =Dec(k, k @& m) ‘ ‘ 0
“=k® (kdm)

== (k@ k) ®m// ®isassociative: (@@ b)Bc=a® (b D c)
“=0"@ m=m.
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Cautions: OTP is unigue in its own ways

* (patented in 1919, but recently discovered in an 1882 text)

= The security crucially depends on sampling k uniformly at
random from the set of A-bit strings

= The security would not hold if it is under other distribution.
= (This step in) KeyGen() is the only source of randomness

= we'll see using randomness “more” (e.g., in more algorithms) later
= Enc() and Dec() are “essentially” the same algorithm

= but it is more of a coincidence than something truly fundamental

= Message space, key space, are just the ciphertext space
= again, just a special case here, nothing is said in general



Security Proof

= “Because of the specific way the ciphertext was generated, it
doesn’t reveal any information about the plaintext fo the
attacker, no maftter what the attacker does with the ciphertext.”

= We need to first specify how the ciphertext is generated.
= Didn’'t wez? It is the encryption algorithm
= (which relies on KeyGen(|))
= But it was from the point of view of *honest” users Alice and Bob

= How can | predict “what the attacker does with the ciphertext”?
= Yes, but at least we need to specify what ciphertext does if see.



Modelling what the adversary sees

= We always freat the attacker as some (unspecified) process
that receives output from an algorithm (eavesdrop here).

= not what the attacker does EAVESDROP(m € {0, 1}4):
= but rather the process k « {0, 1}

(carried out by honest users) ci=kem

that produces what the attacker sees return ¢

Honesf user manipulate then
P—.L eavesdrop

eavesdrop(m)

Encryp’r c
trgmg to ea esdrop ' S I
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Probabillistic Alg. & its Output Distribution

= Qur goal: “the oufput of eavesdrop doesn’t reveal the input m.”

X EAVESDROP(m € {0, 1}*):
= If you call eavesdrop several times, k — (0.1}
= even on the same input, c—k@m
= you are likely to get different outpufs. return c
o . . Attacker
= Instead of thinking of “eavesdrop(m)” as a single string, algorithm
= think of it as a probability distribution over strinas. m

EAVESDROP(m € {0, 1}7):

= Each time you call eavesdrop(m), b (o1

ci=k@&m

= you see a sample from the distribution.

Query m

Response

>

“Simulate
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(Toy) Example

=A =3 and consider eavesdrop(010) and eavesdrop(111).

EAVESDROP(010): EAVESDROP(111):
Pr k outputc=k®010 Pr  k outputc=k® 111
% 000 010 % 000 111 every string in the
% 00l 011 % 00l 110 ciphertext space
% 010 000 % 010 101 ({0, 1) appears
% 01l 001 % 011 100 exactly once, with
% 100 110 % 100 11 the same (1/8)
probability
% 101 111 % 101 010
% 110 100 % 110 001 Q~
% 111 101 /o 111 000 4. k. a. uniform
k is chosen uniformly at distribution over
‘ : random from {O, 1} {0, 13}
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Some conclusions

= Nothing special about 010 or 111 in the above examples.

= The distribution eavesdrop(m) is the uniform distribution
over the ciphertext space {0, 1}.

= Let’s formalize this argument (without tabulating 23 times).

= Let’s first formalize what we want to prove:

= “For every m € {0, 1}, the distribution eavesdrop(m) is the
uniform distribution on {0, 1}.”

= Corollary: For every m, m’ € {0, 1}, the distributions
eavesdrop(m) and eavesdrop(m’) are identical.



The Exact Proof from the Textbook

Proof  Arbitrarily fix m,c € {0,1}*. We will calculate the probability that EAVESDROP(m) pro-
duces output c. That event happens only when

c=keém < k=moec.
The equivalence follows from the properties of xor given in Section 0.3. That is,
Pr[EAVESDROP(m) = ¢] = Pr[k = m & ¢],

where the probability is over uniform choice of k « {0, 1}*.

We are considering a specific choice for m and c, so there is only one value of k that
makes k = m ® c true (causes m to encrypt to c), and that value is exactly m @ c. Since k is
chosen uniformly from {0, 1}*, the probability of choosing the particular value k = m & c
is 1/2%.

In summary, for every m and c, the probability that EAvEsDROP(m) outputs ¢ is ex-
actly 1/2*. This means that the output of EAVEsDROP(m), for any m, follows the uniform
distribution. m 31/38




What did we provee (Part )

= “For every m € {0, 1}, the distribution eavesdrop(m) is the
uniform distribution on {0, 1¥"; or (in “English”):
= “If an atftacker sees a single ciphertext,
= encrypted with one-time pad, where the key
= [s chosen uniformly and kept secret from the atfacker,
= then the ciphertext appears uniformly distributed.™

= Suppose someone chooses a plaintext m.

=You (the attacker) get to see the resulting ciphertext —

= a sample from the distribution you can sample by yourself
= even if you don’'t know m!



Security of OTP, and some discussions

= The “real” ciphertext doesn’t carry any information about m if it
Is possible to sample without even knowing m!

= Paradox 1: “One can always recover m [from c]” confradicts
with “c contains no information about m.”

= The correctness proof assumes one w/ the knowledge of k

= Paradox 2. “eavesdrop(m) does not depend on m” is blatantly
false simply because it takes m as an input!

= OQur example shows that, when m is different,
the tabulated outputs indeed are different (m's “effect”)
= The claim is about they are being the same distribution.




What did we provee (Part ll)

=Foreverym, m’ € {0, 1}, the distributions eavesdrop(m)
and eavesdrop(m’) are identical.

= “If an atftacker sees a single ciphertext,

= encrypted with one-time pad, where the key

= [s chosen uniformly and kept secret from the attacker,

= for every two possibilities of the plainfext,

= the resulfing ciphertext appears from the same distribution”
= The attacker’s “view" is the same no matter what m is

= and no matter what the plaintext distribution is!
= (cf., Caesar cipher...)




What did we provee (Part lll)

= “For every m € {0, 1}, the distribution eavesdrop(m) is the
uniform distribution on {0, 1}"

= Here, we consider some hypothetical “ideal” world:
= Any attacker sees only a source of uniform bits.
= There are no keys and no plaintexts to recover.
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What did we provee (fin.)

= "For every m € {0, 1}, the distribution eavesdrop(m) is the
uniform distribution on {0, 1}"

= Nothing was said about the aftacker’s goall
= e.g., recovering the plaintext or the key
= Looking ahead, we may do that in alternative definitions or cases
= pbut we still want to be general enough

= What we prove: Any attacker, who saw an OTP ciphertext in the
real world, has a point of view like in our hypothetical world!

= Or, itis a “modest” goal: detect that ciphertexts don’t follow a
uniform distribution (so harder goals are out of reach)



Limitations of One-Time Pad

1. It can only be used once (to encrypt a single plaintext).

= Note that the eavesdrop procedure provides no way for
a caller to guarantee that two calls will use the same key.

= S0, we did not prove anything about reusing the key.
2. The key is as long as the plaintext
= provably unavoidable (a.k.a. the key length is optimal) [*]

= Chicken-and-egg dilemma in practice:
= |f two users want to privately convey a A-bit message,
= they first need to privately agree on a A-bit string.



Then why teach OTP¢

= Pedagogical: It illustrates fundamental ideas that appear in most
forms of encryption in this course.

= (recall the “Cautions” slide though)
= In “real-world”: the only “perfectly secure” encryption scheme
= imagine if someone sells a “perfect” encryption scheme to you...
= We propose the first solution, it may not be “ideal” (e.qg., inefficient)

= then we try to “twist” it fo make it achieve some “better tfrade-offs”
= How “innovation” work sometimes

= What if the attacker has bounded computation power?

= What if we manage to have some “pseudorandom strings’e
= We'll study computationally-secure pseudo-random number generator
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