Goals: CIA Triad

What is the ground-truth?
Data-source authenticity?

Confidentiality

Info. Security

Integrity

Availability

What does it really mean?
not really protected by cryptography
Consider the 26 alphabets of English
Encoded them as a number in $[0, 25]$
$E(m) \rightarrow m + k \mod 26$
$D(c) \rightarrow c - k \mod 26$

salad -> wepeh ($k = 4$)

Review concepts:
- Encoding (is not encryption)
- Modular arithmetic

Vulnerable to Frequency Analysis
- w/ knowledge of plaintext distribution
Vigenère Cipher

- Variants of Caeser Cipher
- Idea: not always map a plaintext to the same ciphertext
- Plaintext: AttackAtDawn (case insensitive)
- Key: Lemon
- Key “Sequence”: LEMONLEMONLE
- Ciphertext: LXFOPVEFRNHR

- How to attack?
Caesar and Vigenère Ciphers are both polyalphabetic
Based on Substitution
So does Enigma
“Rail-Fence” Cipher via Transposition

DISGRUNTLED EMPLOYEE

DRLEO

IGUTE MLYE

SNDPE

DRLEOIGUTE MLYESNDPE
What (Modern) Cryptography is?

- not a magic spell that solves all security problems
- providing solutions to cleanly defined problems
 - often abstract away important but messy real-world concerns
- “Cryptographic guarantees”/“Provable security”:
 - What happens (or what cannot happen) in the presence of certain well-defined classes of attacks
 - What if the model is too restrictive (in defining the attacks)?
 - What if the “real-world” attackers don’t follow the “rules”?
 - Disappointing/Underwhelming?
Defining Security

- Making the nebulous concept of “security” concrete
- Breaking the vicious circle of “cat-and-mouse” games
- We will try to model the attacker as “powerful” as possible
- Always keep in mind: we define (i.e., limit) our problems

“To define is to limit.”
—Oscar Wilde
“Private” (Confidential) Communication

- **Plaintext**: m
- **Ciphertext**: c
- **Encryption** turns m into c

- Eavesdropper can (passively) observe the communication

\[m \xrightarrow{\text{Enc}} c \xrightarrow{\text{Dec}} m \]

8th September 2021
Secret, or secrecy of the algorithms?

- We want Bob to be able to decrypt c
- but Eve to not be able to decrypt c
- Suppose Eve has unbounded computational power
- Argue that both sender and receiver must share a secret not known to the adversary [Exercise]
- Hide the details of the Enc() and Dec() algorithms secret?
 - how crypto was done throughout most of the last 2000 years
 - but it has major drawbacks!
A system designer wants the system to be widely used.
It is hard to keep a secret (e.g., reverse engineering).
If details of Enc() and Dec() are leaked, what can we do?
Invent a new encryption system!
 ▪ Inventing even a good one is already hard enough!
[The method] must not be required to be secret, and it must be able to fall into the enemy’s hands without causing inconvenience.
Bottom line: Design your system to be secure even if the attacker has complete knowledge of all its algorithms.
 ▪ vs. security by obscurity
Confidentiality

- Prevent the disclosure of info. to unauthorized party
- Encryption: use a “key” to turn a plaintext into a ciphertext
- Without the “secret key”, the ciphertext is not “useful”
- What constitutes an encryption?
 - Framework / A suite of algorithms
What constitutes an encryption scheme?

- Key generation algorithm (KeyGen)
 - Input: security parameter λ (lambda)
 - Output: a key k
 - $\text{Enc}_k(m) \rightarrow c$, $\text{Dec}_k(c) \rightarrow m$
 - i.e., they are key-ed function
 - All these algorithms are supposed to be public
- A crypto scheme/construction is a collection of algorithms
- Symmetric-key encryption = (KeyGen, Enc, Dec)
Syntax forms the basis of Security

- We call the inputs/outputs (i.e., the “function signature”) of the various algorithms the syntax of the scheme.

- KeyGen is a probabilistic/randomized algorithm.

- Knowing the details (i.e., source code) of a randomized algorithm does not mean you know the specific output it gave when it was executed.

- Encoding/decoding methods is not encryption [Why?]
 - What is “b25seSBuZXJkcyB3aWxsIHBsYXQgZGVmYXVsdCg==”?
What are outside our model’s protection?

- The fact that Alice is sending something to Bob
 - We only want to hide the contents of that message
 - Steganography hides the existence of a communication channel
- How c reliably gets from Alice to Bob
- We aren’t considering an attacker that tampers with c (causing Bob to receive and decrypt a different value)
 - We will consider such attacks later though
What it takes in the “real world”?

- How Alice and Bob actually obtain a common secret key
- How they can keep them secret while (keep) using it
- How to uniformly sample random (bit-)strings?
 - No randomness, no cryptography
 - Obtaining uniformly random bits from deterministic computers is extremely non-trivial

“Any one who considers arithmetical methods of producing random digits is, of course, in a state of sin.” — John von Neumann
Probabilistic Polynomial Time (PPT) Algo.

- $y = A(x)$
- Input x is of size/length n
 - We write $|x| = n$
- A PPT algorithm has $O(n^c)$ run-time, c being a constant
 - We say a PPT algorithm is an “efficient” algorithm
- Probabilistic: allows “flipping a coin” to make it randomized
- $y \leftarrow A(x)$
- y denotes the random variable corresponds to A’s output
- Or $y = A(x; r)$, where r denotes A’s “coin tossing”
 - r’s length is also polynomial in n
 - when we had the need to specify the randomness explicitly
Negligible Function

- A function $v(n)$ is called negligible, denoted $\text{negl}(n)$, if:
 - $(\forall c > 0) \ (\exists n') \ (\forall n \geq n') \ [v(n) \leq 1/n^c]$
 - Less than the inverse of any polynomial for large enough n

- Prob. of breaking a secure system should be negligible in n

- Let $\text{poly}(n)$ denote some polynomial function in n
- We have $\text{poly}(n) \cdot \text{negl}(n) = \text{negl}(n)$ (abusing notations)
Security Parameter (& some notations)

- We want a “set” of cryptosystems parameterized by n
- Algo.’s run by all parties take commonly agreed input n
- They run in time polynomial in their input length n
- Notations:
 - $\text{poly}(n)$: runtime of all parties are sufficiently fast, e.g., n^3
 - $\text{negl}(n)$: e.g., $1/2^n$ is in $\text{negl}(n)$
 - 1^n denotes n “copies” of 1’s, i.e., 1^n is in $\{0, 1\}^n$
- Security parameter of the system is 1^n (with length n bits)
 - but not n (length of n is $\log(n)$ bits)
Tasks of Crypto. Study [*]

- Identification of the problem / application scenario
- Identification of the primitive which may be useful
 - Do not re-invent the wheel
 - Extending existing primitives
 - Relation between primitives (one implies another?)
- Definition of Functional Requirements
 - A suite of algorithms / protocols, their input & output behavior / interfaces
 - System model: what entities are involved, which entity executes which algorithm/protocols
- Definition of Security requirements
 - Relation of security notions (one implies another?)
- Construction of the schemes
- Analysis of the proposed construction
 - Security Proof: Provable Security!
 - Efficiency (Order Analysis and/or Experiment on Prototype Implementation)