On AVCs with Quadratic Constraints

Farzin Haddadpour*, Mahdi Jafari Siavoshani†, Mayank Bakshi‡, Sidharth Jaggi†

*School of Electrical Engineering
Sharif University of Technology, Tehran, Iran
Email: farzinhaddadpour@gmail.com
†Institute of Network Coding
Chinese University of Hong Kong, Hong Kong
Email: {mahdi,mayank}@inc.cuhk.edu.hk
‡School of Electrical Engineering
Chinese University of Hong Kong, Hong Kong
Email: jaggi@ie.cuhk.edu.hk

Abstract—In this work we study an Arbitrarily Varying Channel (AVC) with quadratic power constraints on the transmitter and a so-called “oblivious” jammer (along with additional AWGN) under a maximum probability of error criterion, and no private randomness between the transmitter and the receiver. This is in contrast to similar AVC models under the average probability of error criterion considered in [1], and models wherein common randomness is allowed [2]—these distinctions are important in some communication scenarios outlined below.

We consider the regime where the jammer’s power constraint is smaller than the transmitter’s power constraint (in the other regime it is known no positive rate is possible). For this regime we show the existence of stochastic codes (with no common randomness between the transmitter and receiver) that enables reliable communication at the same rate as when the jammer is replaced with AWGN with the same power constraint. This matches known information-theoretic outer bounds. In addition to being a stronger result than that in [1] (enabling recovery of the results therein), our proof techniques are also somewhat more direct, and hence may be of independent interest.

I. INTRODUCTION

Aerial Alice is flying in a surveillance plane high over Hostile Harry’s territory. She wishes to relay her observations of Harry’s troop movements back to Base-station Bob over n channel uses of an AWGN channel with variance σ^2. Harry obviously wishes to jam Alice’s transmissions. However, both Alice’s transmission energy and Harry’s jamming energy are constrained—they have access to energy sources of nP and $n\Lambda$ Joules respectively. Harry already knows what message Alice wants to transmit (after all, he knows the movements of his own troops), and also roughly how she’ll transmit it (i.e., her communication protocol/code, having recently captured another surveillance drone) but he doesn’t know exactly how she’ll transmit it (i.e., her codeword— for instance, Alice could choose to focus her transmit power on some random subset of the n channel uses). Further, since Alice’s transmissions are very quick, Harry has no time to tune his jamming strategy to Alice’s actual codeword—he can only jam based on his prior knowledge of Alice’s code, and her message.

Even in such an adverse jamming setting we demonstrate that Alice can communicate with Bob at a rate equaling $\frac{1}{2} \log \left(1 + \frac{P}{\Lambda + \sigma^2}\right)$ as long as $P > \Lambda$. Note that this equals the capacity of an AWGN with noise parameter equal to $\Lambda + \sigma^2$—this means that no “smarter” jamming strategy exists for Harry than simply behaving like AWGN with variance Λ. If $P < \Lambda$ no positive rate is possible since Harry can “spoof” by transmitting a fake message using the same strategy as Alice—Bob is unable to distinguish between the real and fake transmission.

A. Relationship with prior work

The model considered in this work is essentially a special type of Arbitrarily Varying Channel (AVC) for which, to the best of our knowledge, the capacity has not been characterized before in the literature. The notion of AVCs was first introduced by Blackwell et al. [6, 7], to capture communication models wherein channel have unknown parameters that may vary arbitrarily during the transmission of a codeword. The case when both the transmitter and the jammer operate under constraints (analogous to the quadratic constraints in this work) has also been considered [3, 4]. For an extensive survey on AVCs the reader may refer to the excellent survey [5] and the references therein.

The class of AVCs over discrete alphabets has been studied in great detail in the literature [5]. However, less is known about AVCs with continuous alphabets. The bulk of the work on continuous alphabet AVCs (outlined below in this section) focuses on quadratically-constrained AVCs. This is also the focus of our work.

It is important to stress several features of the model considered in this work, and the differences with prior work:

- **Stochastic encoding:** To generate her codeword from her message, Alice is allowed to use private randomness (known only to her a priori, but not to Harry or Bob. This is in contrast to the deterministic encoding strategies

1These are so-called peak power constraints—they must hold for all codewords, rather than averaged over all codewords average power constraints. If the peak power constraints are relaxed to average power constraints, for either Alice’s transmissions, or Harry’s jamming (or both), it is known [4] that standard capacity results do not hold—only “Λ-capacities” exist.

2Alternatively, Alice could split her energy budget to concurrently transmit one symbol on n different frequencies—these together could comprise her codeword. Given such a strategy, since Harry doesn’t know Alice’s codeword, he is unable to make his jamming strategy depend explicitly on the codeword Alice actually transmits.

3Such a jamming strategy is equivalent to the more general symmetrizability condition in the AVC literature (see, for instance [3, 4, and 5]).
often considered in the information theory/coding theory literature, wherein the codeword is a deterministic function of the message.

- **Public code**: Everything Bob knows about Alice’s transmission a priori, Harry also knows. This is in contrast to the randomized encoding model also considered in the literature (see for instance [2], [9]), in which it is critical that Alice and Bob share common randomness that is unknown to Harry.

- **Message-aware jamming**: The jammer is already aware of Alice’s message. This is one important difference in our model, from the model in the work closest to ours, that of [1].

- **Oblivious adversary**: The jammer has no extra knowledge of the codeword being transmitted than what he has already gleaned from his knowledge of Alice’s code and her message. This is in contrast to the omniscient adversary often considered in the coding theory literature.

These model assumptions are equivalent to requiring public stochastic codes with small maximum error of probability against an oblivious adversary. Several papers also operate under some of these assumptions, but as far as we know, none examines the scenario where all these constraints are active.

The literature on sphere packing focuses on an AVC model wherein zero-error probability of decoding is required (or, equivalently, when the probability (over Alice’s codeword and Harry’s jamming actions) of Bob’s decoding error is required to equal zero). Inner and outer bounds were obtained by Blachman [10], [11]. Like several other zero-error communication problems (including Shannon’s classic work [12]) characterization of the optimal throughput possible is challenging, and in general still an open problem.\(^4\)

Other related models include:
- The vector Gaussian AVC [15]. As in the “usual” vector Gaussian channels, optimal code designs require “waterfilling”.
- The per-sequence/universal coding schemes in [17].
- The correlated/myopic jammers in [18], [19], wherein jammers obtain a noisy version of Alice’s transmission and base their jamming strategy on this.
- The joint source-channel coding, and coding with feedback models considered by Başar [20], [21].
- Several other AVC variants, including dirty paper coding, in [22].

We summarize some of the results mentioned above in Table II.

\(^4\)This requirement is an analogue for communication of Kerckhoffs’ Principle [8] in cryptography, which states that in a secure system, everything about the system is public knowledge, except possibly Alice’s private randomness.

\(^5\)The literature on Spherical Codes (see [13], [14], and [15] for some relatively recent work) looks at the related problem of packing unit hyperspheres on the surface of a hypersphere. This corresponds to designs of codes where each codeword meets the quadratic power constraint with equality, rather than allowing for an inequality.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Psi(i))</td>
<td>Stochastic encoder applied to the message (i)</td>
</tr>
<tr>
<td>(\phi(Y))</td>
<td>Deterministic decoder</td>
</tr>
<tr>
<td>(\epsilon(s, i))</td>
<td>Error probability (over the stochastic encoder and the channel noise) for a fixed message (i) and jamming vector (s)</td>
</tr>
<tr>
<td>(\epsilon_{\text{max}}(s))</td>
<td>Maximum (over messages) error probability for a fixed jamming vector (s)</td>
</tr>
<tr>
<td>(N(a, \sigma^2))</td>
<td>Gaussian random variable with mean (a) and variance (\sigma^2)</td>
</tr>
<tr>
<td>(B_n(c, r))</td>
<td>A ball of radius (r) in (\mathbb{R}^n) which centered at (c)</td>
</tr>
</tbody>
</table>

II. NOTATION AND PROBLEM STATEMENT

A. Notation

Throughout the paper, we use capital letters to denote random variables and random vectors, and corresponding lowercase letters to denote their realizations. Moreover, bold letters are reserved for vectors and calligraphic symbols denote sets. Random sets are represented by an extra star as superscripts. Some constants are also denoted by capital letters. Our convention is summarized in Table II.

We use \(N(a, \sigma^2)\) to denote for a Gaussian random variable with mean \(a\) and variance \(\sigma^2\). To denote a ball in an \(n\)-dimensional real space of radius \(r\) which centered at the point \(c\) \(\in\mathbb{R}^n\), we write \(B_n(c, r)\). In Table III we summarize the notation used in this paper.

B. Problem Statement

In this paper we study the capacity of a quadratic constrained AVC with stochastic encoder under the attack of a malicious adversary who knows the transmitted message but is oblivious to the actual transmitted codewords.

Let the input and output of the channel are denoted by the random variables \(X\) and \(Y\) where \(X, Y \in \mathbb{R}\). Then, formally, the channel is defined as follows

\[
Y = X + S + V, \quad (1)
\]

where \(S \in \mathbb{R}\) is the channel state chosen by a malicious adversary and \(V \sim N(0, \sigma^2)\) is Gaussian random variable. Here we assume that the noise \(V\) is independent over different uses of channel (1). The channel input is subjected to a peak power constraint as follows

\[
\|x\|^2 = \sum_{i=1}^{n} x_i^2 \leq nP, \quad (2)
\]

and the permissible state sequences are those satisfying

\[
\|s\|^2 = \sum_{i=1}^{n} s_i^2 \leq n\Lambda. \quad (3)
\]
The capacity C of an AVC with stochastic encoder under the quadratic transmit constraint P and jamming constraint Λ is the supremum over the set of real numbers such that for every $\delta > 0$ and sufficiently large n there exist codes with stochastic encoder (Ψ, ϕ) that satisfy the following conditions. First, the number of messages M encoded by the code we have $M > \exp(n(C - \delta))$. Moreover, each codeword satisfies the quadratic constraint I and finally for the code we have

$$\lim_{n \to \infty} \sup_{s: \|s\|^2 \leq n\Lambda} e_{\text{max}}(s) = 0.$$

For notational convenience we assume that $e_{\text{max}}(s)$ is an integer.

Table 1

<table>
<thead>
<tr>
<th>Error Criterion</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blachman $[10]$</td>
<td>$\sup_n \sup_{s: |s|^2 \leq n\Lambda} [\phi(\Psi(i) + s) + V] \neq i \leq \epsilon$ upper and lower bounds for the capacity $C = \frac{1}{2} \log(1 + \frac{P}{\Lambda + \sigma^2})$</td>
</tr>
<tr>
<td>Hughes & Narayan $[2]$</td>
<td>$\sup \max_i {P(\phi, \psi, V)</td>
</tr>
<tr>
<td>Csiszar & Narayan $[1]$</td>
<td>$\sup \frac{1}{M} \sum_{i=1}^{M} P^V [\phi(\psi(i) + s + V) \neq i] \leq \epsilon$</td>
</tr>
<tr>
<td>Our Setup</td>
<td>$\sup \max_i {P(\phi, V)</td>
</tr>
</tbody>
</table>

Comparison of existing results on quadratic-constrained AVCs with AWGN.

Figure 1

A power constraint AVC with stochastic encoder. Here we assume that the adversary has access to the transmitted message i but not to the transmitted codeword $x^n(i, t)$.

The main results of the paper, stated in Theorem $[1]$ and its corollary.

Theorem 1. The capacity of a quadratic-constrained AVC channel under the maximum probability of error criterion with transmit constraint P and jamming constraint Λ and additive Gaussian noise of power σ^2 is given by

$$C = \begin{cases} \frac{1}{2} \log(1 + \frac{P}{\Lambda + \sigma^2}) & \text{if } P > \Lambda, \\ 0 & \text{Otherwise}. \end{cases}$$

Remark 1. The result of Theorem $[1]$ matches the result of stochastic encoder over discrete alphabets $[23]$, $[5]$ Theorem 7), in which it is shown that for the average probability of error criterion, using a stochastic encoder doesn’t increase the capacity. Because the number of possible adversarial actions here is uncountably large, the technique of $[23]$, which relies on taking a union bound over at most exponential-sized set of possible adversarial actions, does not work.

Corollary 1. The capacity of a quadratic-constrained AVC under the maximum probability of error criterion with transmit constraint P and jamming constraint Λ is given by

$$C = \begin{cases} \frac{1}{2} \log(1 + \frac{P}{\Lambda}) & \text{if } P > \Lambda, \\ 0 & \text{Otherwise}. \end{cases}$$

IV. PROOF OF MAIN RESULTS

In this section, we present the proof of Theorem $[1]$ and its corollary. The proof of the converse parts of Theorem $[1]$ is stated in Section $[IV-B]$.

For the achievability part of Theorem $[1]$, we claim that the same minimum distance decoder proposed in $[11]$ to achieve the capacity for the average probability of error criterion, which is given by

$$\phi(y) = \begin{cases} i & \text{if } \|y - x_i\|^2 < \|y - x_j\|^2, \text{ for } j \neq i, \\ 0 & \text{if no such } i : 1 \leq i \leq M \text{ exists}, \end{cases}$$

also achieves the capacity for the maximum probability of error criterion.

Note that in order to show the suprimum over s subject to $[3]$ of $e_{\text{max}}(s)$ goes to zero it is sufficient to show that for every message i the suprimum over s subject to $[3]$ of $e(s, i)$ goes to zero.

To communicate, Alice (the transmitter) randomly picks a codebook C and fixes it. The codebook C comprises $e^{n(k_0 + R)}$ codewords $x(i, t)$, $1 \leq i \leq e^{nR}$ and $1 \leq t \leq e^{n\delta_0}$, each chosen uniformly at random and independently from a sphere.
of radius \sqrt{nP} as it is shown in Figure 2 (caption (a)). Then, the ith row of the codebook, i.e., \{x(i, 1), \ldots, x(i, e^{nR})\}, is assigned to the ith message. In order to transmit the message i, the encoder randomly picks a codeword from the ith row of the codebook and sends it over the channel.

Now, given that the message i has been transmitted, the error probability $e(s, i)$ of a stochastic code used over a quadratic-constrained AVC under the use of the minimum distance decoder (defined by (6)) equals

$$
e(s, i) = \mathbb{P}_{s, \mathcal{V}}[\phi(\Psi(i) + s + \mathcal{V}) \neq i]$$

$$= \mathbb{P}_{s, \mathcal{V}}[\|x(i, T) + s + \mathcal{V} - x(i, t')\|^2]$$

$$\leq \|s + \mathcal{V}\|^2 \text{ for some } i \neq j \text{ and } t']$$

$$= \mathbb{P}_{s, \mathcal{V}}[(x(j, t'), x(i, T) + s + \mathcal{V}) \geq nP]$$

$$+ \langle x(i, T), s + \mathcal{V} \rangle \text{ for some } j \neq i \text{ and } t'].$$ (7)

where T is a uniformly distributed random variable defined over the set $\{1, \ldots, e^{nR}\}$. Figure 2 (caption (b)) pictorially demonstrates the decoding errors at the decoder.

A. Achievability proof of Theorem \[1\]

The main step in proving the achievability part of Theorem \[1\] consists in asserting the doubly exponential probability bounds which is stated in Lemma \[1\].

Lemma 1. Let $\mathcal{C}_* = \{X(i, t)\}$ in which $1 \leq i \leq \exp(nR)$ and $1 \leq t \leq \exp(n\delta_0)$ be a random codebook comprises of independent random vectors $X(i, t)$ each uniformly distributed on the n-dimensional sphere of radius \sqrt{nP}. First, fix a vector $s \in \mathcal{B}_n(0, \sqrt{n\Lambda})$. Then for every $\delta_0 > \delta_1 > 0$ and for sufficiently large n if $R < \frac{1}{2} \log \left(1 + \frac{P}{\sigma^2 - \Lambda}\right)$ we have

$$\mathbb{P}_C^* \left[\mathbb{P}_T \mathbb{P}_V \left[\langle X(j, s), X(i, T) + s + \mathcal{V} \rangle \geq nP \right.\right.$$}

$$+ \langle X(i, T), s + \mathcal{V} \rangle \text{ for some } j \neq i \text{ and } t'] \geq Ke^{-n\delta_1}$$

$$\leq \exp \left(- (K \log 2 - 10) \exp((\delta_0 - \delta_1)n)\right).$$

Proof: For the proof refer to the appendix.

Lemma 2 (Quantizing Adversarial Vector). For a fixed jamming vector s, for sufficiently small $\varepsilon > 0$, and for every $\delta_0 > \delta_1 > 0$, there exists a codebook $\mathcal{C} = \{x(i, t)\}$ of rate $R \leq \frac{1}{2} \log(1 + \frac{P}{\sigma^2 - \Lambda})$ comprises of vectors $x(i, t) \in \mathbb{R}^n$ of size \sqrt{nP} with $1 \leq i \leq e^{nR} \text{ and } 1 \leq t \leq e^{n\delta_0}$ which performs well over the AVC defined in Section \[1\] for all $s' \in \mathcal{B}_n(s, \varepsilon)$, i.e., it satisfies

$$e(s, i) = \mathbb{P}_{s', \mathcal{V}}[\phi(\Psi(i) + s + \mathcal{V}) \neq i]$$

$$\geq nP + \langle x(i, T), s + \mathcal{V} \rangle \text{ for some } j \neq i \text{ and } t']$$

$$< K \exp(-n\delta_1).$$ (8)

For all $s' \in \mathcal{B}_n(s, \varepsilon)$.

Proof: For a particular s, instead of (8), let us assume that the code \mathcal{C} satisfies a stronger condition

$$\mathbb{P}_{s', \mathcal{V}}[\langle x(j, s), x(i, T) + s + \mathcal{V} \rangle \geq nP]$$

$$- 2\varepsilon\sqrt{nP} + \langle x(i, T), s + \mathcal{V} \rangle \text{ for some } j \neq i \text{ and } t']$$

$$< K \exp(-n\delta_1).$$ (9)

Then it can be verified that for all $s' \in \mathcal{B}_n(s, \varepsilon)$ the code \mathcal{C} satisfies (8) where s is replaced by s'. To show this let $s' = s + \rho u$ where u is an arbitrary unit vector and $\rho \in [-\varepsilon, \varepsilon]$. Hence for all $s' \in \mathcal{B}_n(s, \varepsilon)$ we can write

$$e(s', i) = \mathbb{P}_{s', \mathcal{V}}[\langle x(j, s'), x(i, T) + s' + \mathcal{V} \rangle$$

$$\geq nP + \langle x(i, T), s' + \mathcal{V} \rangle \text{ for some } j \neq i \text{ and } t']$$

$$= \mathbb{P}_{s', \mathcal{V}}[\langle x(j, s'), x(i, T) + s + \mathcal{V} \rangle + \rho\langle x(j, s'), u \rangle$$

$$\geq nP + \langle x(i, T), s + \mathcal{V} \rangle$$

$$+ \rho\langle x(i, T), u \rangle \text{ for some } j \neq i \text{ and } t']$$

$$\leq \mathbb{P}_{s', \mathcal{V}}[(x(j, s'), x(i, T) + s + \mathcal{V}) + \varepsilon\sqrt{nP}$$

$$\geq nP + \langle x(i, T), s + \mathcal{V} \rangle$$

$$- \varepsilon\sqrt{nP} \text{ for some } j \neq i \text{ and } t']$$

$$\leq K \exp(-n\delta_1),$$ (a)

where (a) follows from (9).

Now, in Lemma \[1\] we can use the stronger error requirement (9) to show that there exists a code which satisfies (9). This stronger requirement results in a rate loss, but as ε goes to zero the rate loss due to that vanishes. By the above argument, we
know that this code satisfies \(s' \in B_n(s, \varepsilon) \) and we are done.

Finally, Lemma \(\textbf{3} \) shows the existence of a good codebook for the quadratic constrained AVC problem with stochastic encoder which have been introduced in Section \(\textbf{12.3} \) and hence completes the proof of Theorem \(\textbf{1} \).

\textbf{Lemma 3 (Codebook Existence).} For every \(\delta_0 > \delta_1 > 0 \) and \(n \geq n_0(\delta_0, \delta_1) \) there exist a codebook \(C = \{x(i, t)\} \) of rate \(R \leq \frac{1}{n} \log(1 + \frac{P}{\sigma^2 + \Lambda}) \) comprises of vectors \(x(i, t) \in \mathbb{R}^n \) of size \(\sqrt{n}P \) with \(1 \leq i \leq e^{nR} \) and \(1 \leq t \leq e^{nR} \) such that for every vector \(s \) and every transmitted message \(i \) we have

\[
e(s, i) = P_T \mathbb{P}V \left((x(j, t'), x(i, T) + s + V) \right. \]

\[
\geq nP + \langle x(i, T), s + V \rangle \text{ for some } j \neq i \text{ and } t' \bigg] \quad < K \exp(-n\delta_1).
\]

\[
(10)
\]

\textbf{Proof:} For any fixed codebook \(C = \{x(i, t)\} \), let us explicitly mention to the dependency of the error probability on \(C \) by defining \(e_C(s, i) \equiv e(s, i) \). Then in order to prove the assertion of lemma we can equivalently show that

\[
\lim_{n \to \infty} \mathbb{P}_{C^*} \left[\forall s \in \chi_n, \forall i \ e_C(s, i) < Ke^{-n\delta_1} \right] > 0.
\]

However, by using Lemma \(\textbf{2} \) it is not necessary to check for all \(s \) but only for those belonging to an \(\varepsilon \)-net \(\chi_n \) that covers \(B_n(0, \sqrt{\Lambda}) \).

Hence, we can write

\[
\mathbb{P}_{C^*} \left[\forall s \in \chi_n, \forall i \ e_C(s, i) < Ke^{-n\delta_1} \right] = 1 - \mathbb{P}_{C^*} \left[\exists s \in \chi_n, \exists i \ e_C(s, i) \geq Ke^{-n\delta_1} \right] \\
\geq 1 - \mathbb{P}_{C^*} \left[\sum_{s \in \chi_n} \sum_{i=1}^{e^{nR}} e_C(s, i) \geq Ke^{-n\delta_1} \right],
\]

where (a) follows from the union bound.

Now, note that to bound \(|\chi_n| \) one might cover \(B_n(0, \sqrt{\Lambda}) \) by a hypercube of edge size \(2\sqrt{\Lambda} \) as seen in Figure \(\textbf{3} \). So we can write \(|\chi_n| \leq \left(\frac{2\sqrt{\Lambda}}{\varepsilon} \right)^n \). Then by using Lemma \(\textbf{1} \) we have

\[
\mathbb{P}_{C^*} \left[\forall s \in \chi_n, \forall i \ e_C(s, i) < Ke^{-n\delta_1} \right] \\
\geq 1 - \left(\frac{2\sqrt{\Lambda}}{\varepsilon} \right)^n \times e^{nR} \times \exp \left(-K' e^{n(\delta_0 - \delta_1)} \right),
\]

where, assuming \(\delta_0 > \delta_1 \), the right hand side goes to \(1 \) as \(n \) goes to infinity and this completes the proof of lemma.

\(\blacksquare \)

\textbf{B. Converse proof of Theorem \(\textbf{7} \)}

The converse of Theorem \(\textbf{1} \) follows by combining two different upper bounds on the capacity. The first bound follows by observing that if the randomness of the stochastic encoder is also shared with the decoder we can achieve higher rates.

So by using result of \(\textbf{2} \) for randomized code\(\textbf{4} \) we have the following upper bound on the capacity of an AVC with stochastic encoder

\[
C \leq \frac{1}{2} \log \left(1 + \frac{P}{\Lambda + \sigma^2} \right).
\]

Now, it only remains to show that \(C = 0 \) for \(P \leq \Lambda \) where we use a similar argument to \(\textbf{7} \) (also see \(\textbf{11} \)). To this end, we show that the adversary can fool the decoder and make it confused. Because \(P \leq \Lambda \), the adversary can use a stochastic encoder \(\Psi' \) with the same probabilistic characteristic of \(\Psi \) where we assume that \(\Psi \) and \(\Psi' \) are independent\(\textbf{9} \).

Then for any decoder \(\phi \) and for any \(i \neq j \) we can write

\[
\mathbb{P}[\phi(\Psi(i) + \Psi'(j) + V) \neq i] = \mathbb{P}[\phi(\Psi(j) + \Psi'(i) + V) \neq i] \\
\geq 1 - \mathbb{P}[\phi(\Psi(j) + \Psi'(i) + V) = i].
\]

Hence we have

\[
\mathbb{E}[e_{\max}(\Psi'(j))] \geq \frac{1}{M} \sum_{j=1}^{M} e_{\max}(\Psi'(j), i) \\
= \frac{1}{M^2} \sum_{i,j=1}^{M} \mathbb{P}[\phi(\Psi(i) + \Psi'(j) + V) \neq i] \\
\geq \frac{1}{M^2} \sum_{i,j=1}^{M} \mathbb{P}[\phi(\Psi(i) + \Psi'(j) + V) \neq i] \\
+ \mathbb{P}[\phi(\Psi(j) + \Psi'(i) + V) \neq j] \\
\geq \frac{1}{M^2} \frac{M(M-1)}{2} \\
\geq \frac{1}{4},
\]

where \(M = e^{nR} \). This shows that

\[
\frac{1}{M} \sum_{j=1}^{M} \mathbb{E}[e_{\max}(\Psi'(j))] \geq \frac{1}{4},
\]

\(\text{9} \) Such a jamming strategy is equivalent to the notion of symmetrizability condition in the AVC literature (see, for instance \(\textbf{3} \), \(\textbf{4} \), and \(\textbf{5} \)).
which means there exists at least a k such that
$\mathbb{E}[\epsilon_{\max}(\Psi'(k))] \geq \frac{1}{4}$ and this completes the proof.

APPENDIX

Fact 1. For two events A and B we can write
$\mathbb{P}[A] = \mathbb{P}[A \cap (B \cup B')] \leq \mathbb{P}[B] + \mathbb{P}[A \cap B'].$

Our proof requires the following "martingale concentration lemma" proven in [1] Lemma A1.

Lemma 4 ([1] Lemma A1). Let X_1, \ldots, X_L be arbitrary r.v.'s and $f_i(X_1, \ldots, X_L)$ be arbitrary function with $0 \leq f_i \leq 1$, $i = 1, \ldots, L$. Then the condition
$\mathbb{E}[f_i(X_1, \ldots, X_L)|X_1, \ldots, X_{i-1}] \leq a$ a.s., $i = 1, \ldots, L$,
implies that
$\mathbb{P}\left[\frac{1}{L} \sum_{i=1}^{L} f_i(X_1, \ldots, X_i) > \tau\right] \leq \exp\left(-L(\tau \log 2 - a)\right)$.

Lemma 5 ([1] Lemma 2). Let the random vector U be uniformly distributed on the n-dimensional unit sphere. Then for every vector u on this sphere and any $\frac{1}{\sqrt{2n}} < \alpha < 1$, we have
$\mathbb{P}\left[\|U, u\| \geq \alpha\right] \leq 2(1 - \alpha^2)^{(n-1)/2}$.

Proof of Lemma 7. For notational convenience let us normalize all vectors s, \mathbf{v}, and $X(i, t)$ by $1/\sqrt{n}$ in this proof.

To derive the doubly exponential bound stated in the lemma, we use Lemma 4. To this end let us define the functions f_t for $1 \leq t \leq e^{n\delta_0}$, as follows
$f_t(X(i, 1), \ldots, X(i, t)) \triangleq \mathbb{P}_V(\langle X(j, t'), X(i, t) + s + \mathbf{v}\rangle
\geq P + \langle X(i, t), s + \mathbf{v}\rangle \text{ for some } j \neq i \text{ and } t').$

Now, by using the functions f_t, the probability expression in the statement of lemma can be written as follows

$\mathbb{P}_C \left[\mathbb{P}_T \mathbb{P}_V(\langle X(j, t'), X(i, t) + s + \mathbf{v}\rangle \geq P
\right.
\left.\quad + \langle X(i, t), s + \mathbf{v}\rangle \text{ for some } j \neq i \text{ and } t' \right] \geq K e^{-\delta_1}]

= \mathbb{P}_C \left[\frac{1}{e^{n\delta_0}} \sum_{t=1}^{e^{n\delta_0}} \mathbb{P}_V(\langle X(j, t'), X(i, t) + s + \mathbf{v}\rangle \geq P
\right.
\left.\quad + \langle X(i, t), s + \mathbf{v}\rangle \text{ for some } j \neq i \text{ and } t' \right] \geq K e^{-\delta_1}]

= \mathbb{P}_C \left[\frac{1}{e^{n\delta_0}} \sum_{t=1}^{e^{n\delta_0}} f_t(X(i, 1), \ldots, X(i, t)) \geq K e^{-\delta_1}].

(11)

In order to bound (11) we use Lemma 4. To this end, we have to bound the expected values of the functions f_t. So we proceed as follows

$\mathbb{E}_C \left[f_t(X(i, 1), \ldots, X(i, t))|X(i, 1), \ldots, X(i, t-1)\right]
= \mathbb{E}_C \left[\mathbb{P}_V(\langle X(j, t'), X(i, t) + s + \mathbf{v}\rangle
\geq P + \langle X(i, t), s + \mathbf{v}\rangle \text{ for some } j \neq i \text{ and } t'\right] X(i, 1), \ldots, X(i, t-1)]
\geq P + \langle X(i, t), s + \mathbf{v}\rangle \text{ for some } j \neq i \text{ and } t'
\geq P + \langle X(i, t), s + \mathbf{v}\rangle \text{ for some } j \neq i \text{ and } t'
\geq \mathbb{P}_V(\cup_{(j, t'): j \neq i} \langle X(j, t'), X(i, t) + s + \mathbf{v}\rangle
\geq P + \langle X(i, t), s + \mathbf{v}\rangle \cup \langle X(i, t), s + \mathbf{v}\rangle > -\delta_2]$,

(12)

where (a) follows because $X(i, t)$ are independent random variables so the conditioning can be removed and also using the fact that for an event A we have $\mathbb{E}_C \mathbb{P}_V[A] = \mathbb{P}_C \mathbb{P}_V[A]$ and (b) follows from Fact 1.

Now, for $\delta_2 > 0$, by using Fact 1 we can bound the first term of (12) as follows

$\mathbb{P}_V \mathbb{P}_C \left[\langle X(i, t), s + \mathbf{v}\rangle \leq -\delta_2\right]
\leq \mathbb{P}_V \left[\|s + \mathbf{v}\|^2 \geq \|s\|^2 + \sigma^2 + \delta_2\right]
+ \mathbb{P}_V \mathbb{P}_C \left[\langle X(i, t), s + \mathbf{v}\rangle \leq -\delta_2, \|s + \mathbf{v}\|^2 < \|s\|^2 + \sigma^2 + \delta_2\right]
\leq \mathbb{P}_V \left[\|s + \mathbf{v}\|^2 \geq \|s\|^2 + \sigma^2 + \delta_2\right]
+ \mathbb{P}_V \mathbb{P}_C \left[\|s + \mathbf{v}\|^2 < \|s\|^2 + \sigma^2 + \delta_2\right]
\geq \mathbb{P}_V \mathbb{P}_C \left[\|s + \mathbf{v}\|^2 < \|s\|^2 + \sigma^2 + \delta_2\right]$.

(13)

First note that $\|s + \mathbf{v}\|^2 = \|s\|^2 + \|\mathbf{v}\|^2 + 2(s \cdot \mathbf{v})$. Then, since $\mathbf{v} = (\mathbf{v}_1, \ldots, \mathbf{v}_n)$ is a sequence of i.i.d. Gaussian random variables $N(0, \sigma^2 / m)$, the first term of (13) can be bounded as follows

$\mathbb{P}_V \mathbb{P}_C \left[\|s + \mathbf{v}\|^2 < \|s\|^2 + \sigma^2 + \delta_2\right]
\geq \mathbb{P}[[\|\mathbf{v}\|^2 + 2(s \cdot \mathbf{v}) > \sigma^2 + \delta_2]
\leq \mathbb{P}(\|\mathbf{v}\|^2 + 2(s \cdot \mathbf{v}) > \sigma^2 + \delta_2)
\leq \mathbb{P}[\|\mathbf{u}\| \geq \frac{\eta}{\|s\|}] + \mathbb{P}[\|\mathbf{v}\|^2 > \sigma^2 + \delta_2 - 2\eta],

(14)

where (a) follows from Fact 1 for $\eta > 0$ and in (b) we define $\mathbf{u} = s/\|s\|$. Because \mathbf{u} is a unitary vector it is straightforward to show that $\langle \mathbf{u}, \mathbf{v}\rangle \sim N(0, \sigma^2 / m)$. Hence the first term in (14) can be bounded as follows

$\mathbb{P}_V \left[\|s\| \geq \eta\right] \leq Q\left(\sqrt{\eta} / \sigma / \|s\|\right) \leq \frac{1}{2} \exp\left(-\frac{\eta^2 n}{2\sigma^2 X}\right)$,

(15)
where in the above equation we have used the approximation $Q(\frac{u}{\sigma}) \leq \frac{1}{2} e^{-\frac{u^2}{2\sigma^2}}$. In order to bound the second term in the $\parallel \cdot \parallel$ of freedom. Then by using Lemma 1 we can bound the second term in the $\parallel \cdot \parallel$ as follows

\[
P \parallel V \parallel^2 > \left(1 + \frac{\delta_2 - 2\eta}{\sigma^2} \right) n \]

\[
\leq \exp \left(-\frac{1}{2} \left[1 + \frac{\delta_2 - 2\eta}{\sigma^2} - \sqrt{1 + 2\frac{\delta_2 - 2\eta}{\sigma^2}} \right] n \right) = \exp(-\xi n), \quad (16)
\]

where $\xi = \frac{1}{2} \left[1 + \frac{\delta_2 - 2\eta}{\sigma^2} - \sqrt{1 + 2\frac{\delta_2 - 2\eta}{\sigma^2}} \right]$ is a positive quantity if $\delta_2 > 2\eta$.

Remark 2. Note that because $\sqrt{1 + 2x} \leq 1 + \frac{x^2}{3}$ for all $x \in [0, 1]$ then by choosing $x = \frac{\delta_2 - 2\eta}{\sigma^2}$ we have $\xi \geq \frac{1}{16} \left(\frac{\delta_2 - 2\eta}{\sigma^2} \right)^2$ and $\exp(-n\xi) \leq \exp(-\frac{1}{16} \left(\frac{\delta_2 - 2\eta}{\sigma^2} \right)^2)$.

Now it remains to bound the second term of the $\parallel \cdot \parallel$. To this end let us write

\[
P \parallel V \parallel^2 \parallel [X(i,t), s + V] \parallel \geq \delta_2, \parallel s + V \parallel^2 < \parallel s \parallel^2 + \sigma^2 + \delta_2 \]

\[
= \int_0^{\parallel s \parallel^2 + \sigma^2 + \delta_2} \exp \left[-\delta_2 \frac{\parallel V \parallel^2}{\parallel s \parallel^2 + \delta_2} \right] dF(r)
\]

where $F(r) = \int \parallel s \parallel^2 \leq r$. Then we can write

\[
P \parallel V \parallel^2 \parallel [X(i,t), s + V] \parallel \geq \delta_2, \parallel s + V \parallel^2 < \parallel s \parallel^2 + \sigma^2 + \delta_2 \]

\[
= \int_0^{\parallel s \parallel^2 + \sigma^2 + \delta_2} \exp \left[-\frac{\parallel V \parallel^2}{\parallel s \parallel^2 + \delta_2} \right] \left[\parallel s + V \parallel^2 = r \right] dF(r)
\]

\[
(\parallel X(i,t), U \parallel > \frac{\delta_2 \sqrt{P}}{\parallel s \parallel^2 + \sigma^2 + \delta_2}) \]

where $U = \frac{s + V}{\parallel s \parallel + \parallel V \parallel}$, $X(i,t)$, and U is true because evaluating the term inside the integration for the point $r = \parallel s \parallel^2 + \sigma^2 + \delta_2$ can only increase the probability term. Next, it follows that

\[
P \parallel V \parallel^2 \parallel [X(i,t), s + V] \parallel \geq \delta_2, \parallel s + V \parallel^2 < \parallel s \parallel^2 + \sigma^2 + \delta_2 \]

\[
= \int_0^{\parallel s \parallel^2 + \sigma^2 + \delta_2} \exp \left[-\frac{\parallel V \parallel^2}{\parallel s \parallel^2 + \sigma^2 + \delta_2} \right] \left[\parallel s + V \parallel^2 = r \right] dF(r)
\]

\[
(a) \leq \exp(-\xi n), \quad (17)
\]

where (a) follows from Lemma 5 and (b) follows from the inequality $1 - x \leq e^{-x}$ for $0 < x < 1$. Finally, by combining Lemma 5, (13), (14), (15), (16), and (17) we can bound the first term in (12) as follows

\[
P \parallel \parallel V \parallel^2 \parallel (X(i,t), s + V) \parallel \leq -\delta_2 \leq 2 \exp \left(-\frac{n-1}{2} \frac{\delta_2}{\parallel s \parallel^2 + \sigma^2 + \delta_2} \right) + e^{-n\xi} + \frac{1}{2} e^{-\frac{\delta_2}{\sigma^2}}. \quad (18)
\]

Now we bound the second term in (12) as follows. Suppose A denotes the event $\{ \parallel X(i,t), s + V \parallel > -\delta_2 \}$ and let $\phi = \{ x(i,t) \parallel s + V \parallel \}$. Then for the second term of (12), we note that

\[
P \parallel V \parallel^2 \parallel \parallel [X(i,t'), X(i,t), s + V] \parallel \geq P + \phi, A, B \]

\[
(\parallel X(i,t'), X(i,t), s + V \parallel \geq P + \phi, A, B)
\]

where (a) follows from Fact 1 and we use B to denote the event $\{ \parallel s + V \parallel^2 < \parallel s \parallel^2 + \sigma^2 + \delta_2 \}$. The first two terms in (b) follow from (14), (15), and (16) while the third term is a result of the union bound. Let us define the unit vectors $X(i,t') = \frac{X(i,t)}{\parallel X(i,t) \parallel}$ and $U = \frac{s}{\parallel s \parallel + \parallel V \parallel}$. Then we note that

\[
P \parallel V \parallel^2 \parallel \parallel [X(i,t'), X(i,t), s + V] \parallel \geq P + \phi, A, B \]

\[
(\parallel X(i,t'), X(i,t), s + V \parallel \geq P + \phi, A, B)
\]

\[
(\parallel X(i,t'), X(i,t), s + V \parallel \geq P + \phi, A, B)
\]

where in (a) we use the fact that $P \parallel E, A, B \parallel \leq P \parallel E, A, B \parallel$ and (b) follows because by substituting $\parallel s + V \parallel^2 = \Lambda + \sigma^2 + \delta_2$ and $\phi = -\delta_2$ the probability term in front of the summation in (a) can only increase; this implies that we can remove the conditioning with respect to events A and B. Now, by applying Lemma 5, we can further bound the second term of (12) as
By making some more assumptions on δ_0, we can simplify the upper bounds on the expected values of functions f_t as follows

$$
E_{\mathcal{C}^*} \left[f_t(\mathbf{X}(i,1), \ldots, \mathbf{X}(i,t)) | \mathbf{X}(i,1), \ldots, \mathbf{X}(i,t-1) \right]
\leq 2 \exp \left(-\frac{n-1}{2} \frac{\delta_0^2/P}{\|s\|^2 + \sigma^2 + \delta_0^2} \right) + 2e^{-n\xi} + e^{-\frac{n^2\eta^2}{2\sigma^2}} + 2e^{n(R+\delta_0)} \frac{n-1}{2} \log \left(1 - \frac{P}{P - \delta_0^2} \right),
$$

(19)

where $\delta_0^2 = 2\sqrt{P}\delta_2 - \delta_2^2$.

Finally, by combining (18) and (19) we can write the following bound for the expectation of functions f_t

$$
E_{\mathcal{C}^*} \left[f_t(\mathbf{X}(i,1), \ldots, \mathbf{X}(i,t)) | \mathbf{X}(i,1), \ldots, \mathbf{X}(i,t-1) \right]
\leq 2 \exp \left(-\frac{n-1}{2} \frac{\delta_0^2/P}{\|s\|^2 + \sigma^2 + \delta_0^2} \right) + 2e^{-n\xi} + e^{-\frac{n^2\eta^2}{2\sigma^2}} + 2e^{n(R+\delta_0)} \frac{n-1}{2} \log \left(1 - \frac{P}{P - \delta_0^2} \right)
$$

where (a) follows by Remark 2 assuming $\delta_2 \leq \|s\|^2 + \sigma^2$, and choosing

$$
R < \frac{1 - 1/n}{2} \log \left(1 + \frac{P - \delta_0^2}{\|s\|^2 + \sigma^2 + \delta_0^2} \right) - \delta_0 - \delta_1,
$$

(b) follows by assuming the conditions $\delta_2 > 2\eta + 4\sigma^2\sqrt{\delta_1}$.

By applying Lemma 4 and choosing $a = 10e^{-n\delta_1}$ and $\tau = Ke^{-n\delta_1}$, we have

$$
P_{\mathcal{C}^*} \left[\frac{1}{e^{n\delta_0}} \sum_{t=1}^{e^n\delta_0} \mathbb{P}_V \left[\langle \mathbf{X}(j,t'), \mathbf{X}(i,t) + s + V \rangle \geq P \right. \right.
+ \langle \mathbf{X}(i,t), s + V \rangle \text{ for some } j \neq i \text{ and } t' \left. \right] \geq K e^{-n\delta_1}
\leq \exp \left(-\exp(n\delta_0) \left(K \log 2 \exp(-n\delta_1) - 10 \exp(-n\delta_1) \right) \right)
= \exp \left(-(K \log 2 - 10) \exp(n(\delta_0 - \delta_1)) \right).$$

By assuming $\delta_0 > \delta_1 > 0$ we obtain the desired doubly exponential bound, hence we are done.