A CMOS Low-Dropout Regulator With Dominant-Pole Substitution

Marco Ho, Member, IEEE, Jianping Guo, Member, IEEE, Kai Ho Mak, Student Member, IEEE, Wang Ling Goh, Senior Member, IEEE, Shi Bu, Student Member, IEEE, Yanqi Zheng, Xian Tang, Member, IEEE, and Ka Nang Leung, Senior Member, IEEE

Abstract—A dominant-pole substitution (DPS) technique for low-dropout regulator (LDO) is proposed in this paper. The DPS technique involves signal-current feedforward and amplification such that an ultralow-frequency zero is generated to cancel the dominant pole of LDO, while a higher frequency pole substitutes in and becomes the new dominant pole. With DPS, the loop bandwidth of the proposed LDO can be significantly extended, while a standard value and large output capacitor for transient purpose can still be used. The resultant LDO benefits from both the fast response time due to the wide loop bandwidth and the large charge reservoir from the output capacitor to achieve the significant enhancement in the dynamic performances. Implemented with a commercial 0.18-μm CMOS technology, the proposed LDO with DPS is validated to be capable of delivering 100 mA at 1.0-V output from a 1.2-V supply, with current efficiency of 99.86%. Experimental results also show that the error voltage at the output undergoing 100 mA of load transient in 10-ns edge time is about 25 mV. Line transient responses reveal that no more than 20-mV instantaneous changes at the output when the supply voltage swings between 1.2 and 1.8 V in 100 ns. The power-supply rejection ratio at 3 MHz is −47 dB.

Index Terms—Dominant pole, low-dropout regulator (LDO), zero generation.

I. INTRODUCTION

LOW-DROPOUT regulator (LDO) typically employs a large output capacitor \(C_O\) with a small equivalent series resistance (ESR) to achieve closed-loop stability and small transient errors [1]–[10]. The strategy to achieve stability assurance is the dominant-pole frequency compensation (DPFC), which is most suited for LDOs since a LDO should have null signal at its output. This calls for the \(C_O\) to be as large as possible. But the values of off-chip components on PCB should not be overdesigned for the ultrathin modern portable electronic devices. Also, an insufficiently large \(C_O\) is not reliable enough to maintain the capacitor voltage, i.e., the output voltage of LDO. The DPFC scheme, therefore, serves to increase the LDO response time to degrade the transient responses of the LDO.

To extend the LDO loop bandwidth, researchers proposed to cancel the dominant pole by creating an ultralow-frequency left-half-plane (LHP) zero [11]. A large capacitor and resistor are generally needed to create this zero, and more importantly, another low-frequency pole is naturally generated due to the additional resistance that increases the impedance of the circuit nodes [11]. In order to create a zero without generating a pole, a current-mode approach was proposed [12]. Though the method is effective in creating a stand-alone zero, it is very difficult to locate the zero at ultralow frequency since a high gain, i.e., ratio of output and input currents, is mandatory and, hence, additional current consumption.

In this paper, a dominant-pole substitution (DPS) technique for LDO is proposed. The proposed method enables that the feedback signal has an additional path to skip the error amplifier (EA) in LDO to control the power transistor directly to achieve faster response. The proposed DPS technique and the related circuit implementation are covered in Section II. In Section III, the experimental results of the proposed LDO design is reported. Last, the conclusion of this paper is provided in Section IV.

II. PROPOSED LDO WITH DPS

The concept of the proposed LDO can be explained using Fig. 1. The input voltage, reference voltage, output voltage, and output current are denoted by \(V_{IN}\), \(V_{REF}\), \(V_O\), and \(I_O\), respectively. The output capacitor \(C_O\) has an ESR of \(R_E\). A current source is connected at \(V_O\) to model the load. \(R_{F1}\) and \(R_{F2}\) are feedback resistors to define the feedback factor \(\beta = R_{F2}/(R_{F1} + R_{F2})\). \(M_P\) is the power PMOS transistor, and its gate capacitance is explicitly indicated in Fig. 1 and denoted as \(C_{gs}\). \(R_{oa}\) is the output resistance of the EA. The response time of an LDO is limited by the EA. In this paper, a new LDO structure with \(V_O\) feedforward is proposed. With this feedforward circuit, the change of \(V_O\) will be propagated directly to the gate of \(M_P\) for fast and direct regulation. In order to realize this concept, the transconductance cell of the EA was modified to incorporate a \(V_{IN}\)-feedforward feature, which yields a triple-input EA. The...
proposed transconductance cell and triple-input EA will first be described in this section. Thereafter, the proposed LDO using the two circuit techniques to achieve DPS will be presented.

A. Proposed Transconductance Cell

Fig. 2(a) shows the proposed transconductance cell. The supply voltage is V_{IN}, which is also the input voltage of the proposed LDO. I_B is the bias current. M_{B1} forms current mirrors with M_{B2}, M_{B3}, and M_{B4}, with current ratios of 1:1, 1 : (1 + k_1), 1 : (1 + k_2), and 1 : (1 + k_3), respectively, as defined by the aspect size ratios of the PMOS transistors above the supply line in Fig. 2(a). Note that k_1, k_2, and k_3 are all larger than 1 in this design. The lower part of the circuit is formed by M_{N1}, M_{N2}, M_{N3}, M_{N4}, M_{N5}, and M_{N6}, with size ratios of 1 : k_1 : 1 : k_2 : 1 : k_3. The bias currents from M_{B2}, M_{B3}, M_{B4}, and M_{B5} are distributed to the NMOS transistors according to their size ratios. An on-chip capacitor C_X is connected to the diode-connected point of M_{N1} [16], such that the source of the test voltage signal v_{test} sees an input impedance of $1/sC_X + 1/g_{mn}$. As a result, the input current of this circuit i_x is given by

$$i_x = \frac{v_{test}}{1/sC_X + 1/g_{mn}} = \left(\frac{sC_X}{1 + sC_X/g_{mn}} \right) v_{test}. \quad (1)$$

i_x is injected into the diode-connected point of M_{N1} where it becomes k_1i_x at M_{N2}, $k_1k_2i_x$ at M_{N4}, and finally, $k_1k_2k_3i_x$ at M_{N6}. It is noted that the signal currents are not affected by M_{B2}, M_{B3}, M_{B4}, and M_{B5} as the PMOS transistors only provide fixed bias currents. The current gain of the proposed circuit is $k_1k_2k_3$, which is a product of three factors. The total supply current is simply the sum of the three factors ($k_1 + k_2 + k_3 + 5)I_B$. Moreover, the impedances of the nodes seen by the signal are low due to the diode-connected structures. Thus, the output current i_{ox} is simply equal to

$$i_{ox} = k_1k_2k_3i_x = s \left(\frac{k_1k_2k_3C_X}{1 + sC_X/g_{mn}} \right) v_{test}. \quad (2)$$

From (2), it is evident that i_{ox} leads v_{test} by at most 90° within the bandwidth of g_{mn}/C_X. Moreover, the transconductance of the proposed circuit is large owing to the factor of $k_1k_2k_3$.

B. Proposed Triple-Input EA

Fig. 1(b) shows the proposed triple-input EA, which is used in the proposed LDO with DPS. The three inputs are as follows:

1) at the gate of M_1, with input βv_{test}, where $\beta = R_{F2}/(R_{F1} + R_{F2})$, and R_{F1} and R_{F2} are the feedback resistors of the proposed LDO shown in Fig. 3;

2) at the gate of M_2, with reference voltage, V_{REF}, supplied by a reference circuit. It is noted that V_{REF} is a dc voltage and is also the ac ground;

3) at the input of the proposed transconductance cell in Fig. 2(a), with an input signal of v_{test}.

The input differential pair M_1 and M_2 generates a small-signal current $i_a = 0.5 g_{m1}\beta v_{test}$ where g_{m1} is the transconductance of M_1, as indicated in Fig. 2(b). Similar to the proposed transconductance cell in Fig. 2(a), this current is increased by a factor of k_5 at M_4 (and also M_5), and further amplified to $k_4k_5i_a$ at M_{10} and M_{12}. The small-signal output current due to M_1 and M_2 becomes $2k_4k_5i_a$, which is equal to $k_4k_5g_{m1}\beta v_{test}$.

Moreover, the proposed transconductance cell shown in Fig. 2(a) is connected to the diode-connected point of M_{11} in Fig. 2(b). The current mirror formed by M_{11} and M_{12} further increases the output signal current from the transconductance cell by k_4 times. As a result, the total small-signal output current i_{oa} of this triple-input EA is

$$i_{oa} = k_4k_5g_{m1}\beta v_{test} + k_4k_2k_3k_4i_a = k_4k_5g_{m1}\beta v_{test} + s \left(\frac{k_1k_2k_3k_4C_X}{1 + sC_X/g_{mn}} \right) v_{test} = G_{ma}\beta v_{test} + \gamma v_{test} \quad (3)$$

where $G_{ma} = k_4k_5g_{m1}$ and $\gamma = k_1k_2k_3k_4C_X/(1 + sC_X/g_{mn})$, respectively. With a boosted effective transconductance of G_{ma}, R_{oa} is no longer required to be very large and yet to obtain a reasonable voltage gain of the EA to assure good line and load regulations in the proposed LDO. When R_{oa} is mediocre, the related pole will not be at a very low frequency. When an ESR zero is used to cancel this pole, the high-frequency power-supply rejection ratio (PSRR) can be improved [14] due to a small ESR.

C. Proposed LDO With DPS

The proposed LDO with DPS structure is shown in Fig. 3. The major difference of the proposed LDO structure from the conventional counterparts is the EA design. In this LDO, the proposed triple-input EA is employed. The inverting input is connected to a reference circuit. One of the two noninverting inputs is connected to the feedback resistors, and the other noninverting input is connected directly to V_O. In order to analyze the loop-gain response, the connection between the feedback resistors and V_O is conceptually disconnected. Since the output node is connected with a large C_O, the disconnection for loop-gain analysis has less influence since there is only a slight change of nodal capacitance from the feedback resistors and the inputs of the EA. A test signal v_{test} is injected at R_{F1} and the feedback signal v_{fb} is directly obtained from V_O. The ratio of v_{fb} and v_{test} (i.e., v_{fb}/v_{test}) is the transfer
Based on Fig. 3 and (3), the preliminary transfer function can be found and is illustrated graphically in Fig. 4(a). The test signal is fed into the triple-input EA to generate the small-signal output current given by (3). Since R_{oa} and C_{gp} are located at the output of the EA, an LHP pole given by $1/(C_{gp}R_{oa})$ is associated to the EA. Thereafter, the transfer function of the power stage formed by M_P, C_O, and R_E is considered. In this part, r_{op} represents the drain resistance of M_P, and it is dominant since R_{F1} and R_{F2} are generally much larger than r_{op} [1], [2]. Both C_O and R_{F1} and R_{F2} create an LHP pole (known as ESR pole) given by $1/(C_O R_{F1})$ [1]–[14]. Typically, the output pole cannot be rightly cancelled by the ESR zero since r_{op} and R_E are in vastly different orders of magnitude. The only possibility is when R_E is much larger than r_{op}, where both output pole and ESR zero are in the same frequency location [15]. However, a large R_E causes inferior transient response in terms of large output spike, which is generally not preferred [1], [6], [8].

Fig. 4(b) shows that the identical transfer function with γ explicitly expressed. The final form of the transfer function is shown in Fig. 4(c). The proposed DPS has been clearly stated in Fig. 4(c), which consists of dominant-pole cancellation, non-dominant pole cancellation, and newly created dominant pole.
Given below is a summary of the proposed compensation approach.

1) Dominant-pole cancellation—The original dominant pole is the LDO output pole, i.e., $1/(C_O R_{op})$. The proposed transconductance cell creates a signal-current feedforward path to skip the EA core, thereby creating an ultralow-frequency zero z_{ulf} given by

$$z_{ulf} = -\frac{\beta k_3 g_{m1}}{k_1 k_2 k_3 C_X}.$$ (4)

This zero is used to cancel the dominant pole. Due to the product of k_1, k_2, and k_3, the zero can be easily located to a very low frequency without the need for large resistance. C_X can also be viewed as a multiplied capacitance, but the effect is to create a zero and not a pole, which is the main difference as compared to existing capacitance multiplier technique reported in [16]. Finally, it is noted that the factor k_4 does not exist in the relationship of z_{ulf}.

2) Nondominant pole cancellation—The nondominant pole is the pole at the EA’s output, i.e., $1/(C_{gp} R_{oa})$. This pole can be cancelled by the ESR zero $1/(C_O R_E)$. In the design of the triple-input EA, the effective transconductance of the part by $M_{1} - M_{12} G_{ma}$ is a boosted version of g_{m1} with a factor of $k_1 k_3$. The boosted G_{ma} enables the possibility of using a small R_{oa} to achieve a reasonably high voltage gain of the EA. Thus, the size of M_{10} and M_{12} is selected to be k_3 times larger in order to reduce R_{oa} and to increase the drain currents to improve the slewing speed at the gate of M_P. The smaller R_{oa} causes the EA output pole to be shifted to a higher frequency so that a smaller R_E can be used to achieve pole-zero cancellation. Furthermore, the small R_E can reduce the amplitudes of overshoots and undershoots in the transient responses [1], [3], [8], as well as improve the PSRR at the high-frequency region [14].

3) Newly created dominant pole—The new dominant pole is given by g_{mn}/C_X, where g_{mn} and C_X are both designable. Theoretically, the rough estimation of the new unity-gain frequency (UGF) of the proposed LDO can be easily determined using the gain-bandwidth product relationship, assuming the effects due to the two pole-zero cancellations are negligible. It is given by

$$\text{UGF} = \left(\frac{\beta g_{ma} R_{oa} g_{mp} r_{op}}{1 + s C_X / g_{mn}}\right) \left(\frac{g_{mn}}{C_X}\right).$$ (5)

From (5), it can be noted that when the dominant pole is cancelled by the zero generated by the proposed circuits, the new UGF is a function of g_{mn}/C_X, which is the new dominant pole located at a higher frequency. Therefore, the loop bandwidth of the LDO with DPS is wider, so that faster transient responses can be achieved. The only limitation of the new UGF of the loop-gain response is the parasitic poles and zeros generated in the triple-input EA.

D. Simulated Results of the Proposed LDO With DPS

In order to evaluate the performance of the proposed LDO structure with DPS, the LDO in Fig. 3 with the auxiliary circuits...
in Figs. 1 and 2 is designed using the standard NMOS and PMOS transistor models provided by UMC 0.18-\textmu m CMOS technology. The range of V_{IN} is between 1.2 and 1.8 V, and the preset V_{O} is of 1 V. The maximum I_{O} is 100 mA. An output capacitor of 1 \textmu F with ESR of 0.35 \textOmega is used in this design. The unit sizes of the NMOS and PMOS transistors are selected to be 3 \mu m/0.5 \mu m and 6 \mu m/0.5 \mu m, respectively. The aspect ratio of M_{P} is 8000 \mu m/0.18 \mu m. The selected values of k_1, k_2, k_3, and k_5 are 4, 4, 12, 10, and 10, respectively. The value of C_X is 5 pF.

The proposed LDO is optimized at $I_{\text{O}} = 50$ mA. In this case, as shown in Fig. 5, the generated zero cancels the dominate pole at 9.44 kHz, and the new dominant pole is at 16.8 kHz. The UGF is, therefore, extended by about two times as compared to LDO without the proposed pole-zero cancellation feature. It is noted that the proposed pole-substitution method is effective when the output current is not very low. In fact, when the output current is very small or zero, the dominant pole is located at ultralow frequency. Original DPFC is dominated, and the created new dominant pole is cancelled by the generated zero. This reveals a fact that the proposed idea is very effective in the moderate-to high-load condition, which is the situation that improvement of load transient response is required.

The simulated loop-gain response of the proposed LDO at $I_{\text{O}} = 0$ A (the minimum), 50 mA, and 100 mA (the maximum) is shown in Fig. 6(a). The achievable UGF at $I_{\text{O}} = 50$ and 100 mA is about 12.5 MHz. The low-frequency loop gain at $I_{\text{O}} = 0$ A is lower than that at $I_{\text{O}} = 100$ mA. This phenomenon is not normal in LDO designs [1], [11]. In order to investigate the reason behind, the operation points of all transistors are carefully investigated. Moreover, a simulation of low-frequency loop gain versus I_{O} is plotted and shown in Fig. 6(b). It is discovered that the loop gain is reduced when I_{O} is very low or very high. The reason is that when I_{O} is very low, the gate voltage of M_{P} is close to V_{IN} such that V_{SD10} in Fig. 2 is small, and hence, the drain resistance of M_{10} is reduced, causing a drop in the gain of EA. From the simulation data, when $I_{\text{O}} = 0$ A/100 mA, $R_{\text{dm}} = 647 \Omega/9631 \Omega$. When I_{O} is high, the high drain current of M_{P} reduces the gain of the power stage. In both cases, the reduction in the gain of EA or M_{P} decreases the loop gain.

To investigate the stability of the proposed LDO as the location of z_{ulf} varies, the values of k_1, k_2, k_3, and k_5 are altered (refer to (4)) along with a variation of -20% in the C_{O} value to shift the dominant pole to a higher frequency so that the UGF is much closer to the parasitic poles. In addition, the ESR is increased by 20% to reduce the ESR zero frequency for more inaccurate pole-zero cancellation. Two extreme cases are considered: 1) 90\% of k_1, k_2, and k_3, and 110\% of k_5 to shift z_{ulf} to a lower frequency, and 2) 110\% of k_1, k_2, and k_3, and
TABLE I
SIMULATED UGF AND PM OF THE PROPOSED LDO WITH \(C_O = 1 \mu F \) AT DIFFERENT ESRs

<table>
<thead>
<tr>
<th>ESR ((\Omega))</th>
<th>UGF (MHz)</th>
<th>PM ((^\circ))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>2.46</td>
<td>28.1</td>
</tr>
<tr>
<td>0.05</td>
<td>2.86</td>
<td>27.1</td>
</tr>
<tr>
<td>0.15</td>
<td>5.95</td>
<td>76.5</td>
</tr>
<tr>
<td>0.25</td>
<td>9.40</td>
<td>70.3</td>
</tr>
<tr>
<td>0.35</td>
<td>12.5</td>
<td>63.1</td>
</tr>
<tr>
<td>0.7</td>
<td>20.6</td>
<td>44.3</td>
</tr>
<tr>
<td>1</td>
<td>25.4</td>
<td>34.1</td>
</tr>
</tbody>
</table>

Fig. 7. Simulated loop-gain responses of conventional and proposed LDOs.

90\% of \(k_5 \) to shift \(z_{\text{ulf}} \) to a higher frequency. It should be noted that the \(\pm 10\% \) variations are generally overestimated since vigilant layout design and commercial capacitor with reasonable quality have been ensured. Fig. 6(c) shows the loop-gain simulation curves at \(I_O = 50 \) mA, both with and without variations on \(k_1, k_2, k_3, k_5, C_O \), and ESR, and no significant difference in circuit stability is denoted from the two curves. Also, the phase margins (PMs) of the loop-gains in all cases evaluated are more than 60\(^\circ \). This proves that the pole-zero cancellation is effective within a decade of frequency.

The selection of the value of ESR has also been investigated and is summarized in Table I. For \(C_O = 1 \mu F \), different ESR values are used to simulate the UGF and PM of the loop-gain response. From the result, the case of ESR of 0.35 \(\Omega \) realizes the best compromise between UGF and PM. Thus, \(C_O = 1 \mu F \) with \(R_E = 0.35 \Omega \) are used in this design.

To demonstrate the improvements achieved by the proposed DPS technique, a conventional LDO (the same circuit structure as in Fig. 3 without the proposed transconductance cell) working in the same supply voltage and output current, as well as connected with the same value of \(C_O \) and ESR is designed and simulated. The simulated results of this conventional LDO and the proposed LDO with DPS are consolidated in Figs. 7 (for frequency responses) and 8 (for load transient responses) for comparison. From Fig. 7, the conventional LDO has loop bandwidth of about 1 MHz and similar PM as the proposed LDO which has loop bandwidth of 12.5 MHz. The selection of \(C_X \) of 5 pF to define the position of the new dominant pole is due to the limitation of the parasitic poles. Load transient responses of both LDO are simulated with \(I_O \) changing from 0 A and 100 mA. Due to the wider loop bandwidth of the proposed LDO, i.e., 12.5 MHz, the response times for rapid increase and decrease of \(I_O \) of the proposed LDO shown in Fig. 8 are about 10 ns, while those of the conventional LDO are 24.2 and 54.87 ns, respectively.

III. EXPERIMENTAL RESULTS

The proposed LDO is implemented in UMC 0.18-\(\mu m \) CMOS technology. Fig. 9 shows the micrograph of the design. The active chip area is 224.9 \(\mu m \times 108.8 \mu m \). The range of \(V_{IN} \), preset value of \(V_O \), maximum \(I_O, C_O \), and its ESR value are exactly the same as the values used in the simulations reported in Section II-D. The measured quiescent current is 135.1 \(\mu A \) when \(V_{IN} = 1.2 \) V. For the performances in the steady state, the measured line regulation is 22.7 mV/V at \(I_O = 100 \) mA, and the measured load regulation is \(-75 \mu V/mA \) at \(V_{IN} = 1.2 \) V. Table II summaries the measured data.
TABLE II
SUMMARY OF PERFORMANCE OF THE PROPOSED LDO

<table>
<thead>
<tr>
<th>Technology</th>
<th>UMC 0.18-μm 1P6M CMOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Voltage (V_{IN})</td>
<td>1.2–1.8 V</td>
</tr>
<tr>
<td>Preset Output Voltage (V_O)</td>
<td>1.0 V</td>
</tr>
<tr>
<td>Output Current (I_O)</td>
<td>0–100 mA</td>
</tr>
<tr>
<td>Quiescent Current (I_Q)</td>
<td>135.1 μA</td>
</tr>
<tr>
<td>Output Capacitor (C_O)/Equivalent Series Resistance (R_E)</td>
<td>1 μF/0.35 Ω</td>
</tr>
<tr>
<td>$\Delta V_O/V_O$</td>
<td>2.5%</td>
</tr>
<tr>
<td>Load Regulation ($\Delta V_O/\Delta I_O$)</td>
<td>$-75 \mu V/mA$ at V_{IN} = 1.2 V</td>
</tr>
<tr>
<td>Line Regulation ($\Delta V_O/\Delta V_{IN}$)</td>
<td>22.7 mV/V at I_O = 100 mA</td>
</tr>
<tr>
<td>PSRR</td>
<td>-35 dB at 100 kHz -47 dB at 3 MHz</td>
</tr>
<tr>
<td>Active Chip Area</td>
<td>224.9 μm x 108.8 μm</td>
</tr>
</tbody>
</table>

Fig. 10. Measured and simulated line transient responses.

For dynamic performances, line and load transient responses as well as PSRR are investigated. Both the measured and simulated line transient responses are shown in Fig. 10. In this investigation, V_{IN} is changed between 1.2 and 1.8 V in 100 ns, where I_O is 100 mA. The selection of an edge time of 100 ns is reasonable since the loop bandwidth is 12.5 MHz and this means the proposed LDO should be able to respond to the line change in 100 ns. From the measured results, the transient error voltage of V_O is within 20 mV. The steady-state error voltage of V_O is 13.6 mV, which yields the previously mentioned line regulation of 22.7 mV/V. On the other hand, the simulated transient and steady-state errors are about 13 and about 10 mV, respectively.

The differences between the measured and simulated results are probably due to the extrapolated values of channel-modulation coefficients of the NMOS and PMOS transistors with nonminimum channel length (noted that the selected channel length of all the NMOS and PMOS transistors used in the EA is 0.5 μm and not the minimum value of 0.18 μm). The inaccurately estimated drain resistance results in the deviation of the loop gain, and hence, the actual loop bandwidth is also slightly different with respect to the estimated expression in (5). As a result, it is possible that the steady-state accuracy (i.e., line regulation) and also dynamic accuracy (i.e., the magnitude of the overshoot in the line transient response) cannot be accurately predicted by simulations. However, the reported measured results are according to the trend predicted by the proposed theory. The steady-state and dynamic performances are shown to be reasonably good.

The measured load transient responses at $V_{IN} = 1.2$ V is given in Fig. 11. Fig. 11(a) indicates clearly the measured load current changing between 0 and 100 mA with edge time of 10 ns. The load transient is generated by connecting a power switch in series with a load resistor. The ON and OFF of the power switching is controlled by an external clock generator. The zoom-in views are provided in Fig. 12(a) and (b). The edge time of I_O change is 10 ns, which is much faster than the
response time of the proposed LDO with a UGF of 12.5 MHz. From the results, the measured undershoot is about 25 mV, and almost no overshoot can be found. In fact, from Fig. 12(a), the undershoot of V_O occurs within 10 ns. This undershoot should not be coming from the LDO’s response since the response time of LDO is about 100 ns (i.e., $\text{UGF} = 12.5 \text{MHz}$). The cause of this rapid undershoot is probably due to the bond-wire inductance and/or the inductance of the output capacitor. As a result, the true undershoot of V_O should be counted at around 100 ns after the load change. Thus, the true undershoot is less than 20 mV. The calculated transient error voltage, which is a product of the change of I_O and the ESR value, is 35 mV.

Similar to the line transient responses, the simulated results cannot estimate the transient overshoot and load regulation accurately. But, the measured results show much better performance than the simulated one. Finally, a careful investigation of the overshoot observed in the simulation when I_O decreases from 100 mA to 0 A is conducted. As a remark, this overshoot does not appear in measurement.

Fig. 13 shows the measured PSRR of the proposed LDO at $V_{IN} = 1.2 \text{V}$ and under $I_O = 100 \text{mA}$, which is the worst case since the drain resistance of M_P would be the smallest with minimum V_{SD} and maximum I_{SD}. As such, the isolation ability between V_{IN} and V_O by M_P alone should be the worst. The PSRR in this situation relies on the loop gain and also its loop bandwidth to correct the high-frequency error voltages at V_O. In particular, the measured PSRR values at 100 kHz and 3 MHz are -35 and -47 dB, respectively. Again, the measured results show a similar trend as the simulations do. The difference may be mainly due to the inaccurate simulation model of the channel-modulation effect to cause the difference of the PSRR in the low- and mid-frequency range. For the high-frequency response, it may be due to the influence of the inductance of the output capacitor.

A PSRR dip is noted at around 2.5 MHz in the simulated curve shown in Fig. 13. An analysis is conducted and it is found that having less bias current in the proposed transconductance cell and a capacitor with a smaller ESR can enhance the PSRR in the range of 1 to 4 MHz. With less bias current in the proposed transconductance cell, the equivalent resistance between the supply and the cell increases. Furthermore, a smaller ESR implies that the output capacitor is more ac short-circuited between the LDO output and the clean ground. The lowering of both bias current and capacitor ESR can improve the PSRR in the moderate-frequency range (i.e., 1–4 MHz).

Finally, the proposed LDO is compared against the state-of-the-art designs implemented in technologies with similar feature size so that the power consumption, response speed, as well as transientundershoots and overshoots do not take the advantage of the small parasitic capacitances of the advanced technologies. Two state-of-the-art designs reported in [17] and [18] are chosen for comparison. A design based on zero-generation for pole-zero cancellation [3] is also included in the benchmarking though the design is based on 0.5-μm CMOS process. Table III shows a summary of the comparison.

Although the proposed LDO consumes more quiescent current due to the proposed transconductance cell, it outperformed the other three LDOs in terms of load regulation (related to steady-state accuracy) and the magnitude of undershoot/overshoot (related to transient speed and accuracy). It is noted that the maximum load current for the design in [18] is only 25 mA. Theoretically, the overshoot and undershoot should be increased by four times (which are 40 mV for undershoot and 60 mV for overshoot, respectively) if the same circuit is
revised to deliver 100 mA, which is the same output-current level of the proposed LDO.

IV. CONCLUSION

A CMOS LDO with DPS has been reported in this paper. The DPS is based on a triple-input EA which generates a 90° phase leading signal to drive the power transistor such that the overall delay of the signal path can be reduced. The principle of operation of the proposed LDO design and experimental results has verified that the proposed idea is able to improve the dynamic performances of LDO substantially. The potential drawback of the proposed DPS technique is that the quiescent current of the LDO is higher, but it can be reduced when the transconductance of the input differential pair is reduced. However, the achieved current efficiency remains high and equals to 99.86%.

REFERENCES

Marco Ho (S’09–M’13) received the B.Sc. (Hons.) degree in computer engineering from Queen’s University, Kingston, ON, Canada, in 2004, and the M.Sc. (IC Design) and Ph.D. degrees in electronic engineering from the Chinese University of Hong Kong, Hong Kong, in 2009 and 2013, respectively.

He joined the Chinese University of Hong Kong in 2008 as a Research Assistant, where he was involved in research on radio frequency identification tag system and adaptive power-management circuits for systems-on-chips. Since 2013, he has been appointed by different engineering departments in the Chinese University of Hong Kong—as a Postdoctoral Fellow in the Department of Electronic Engineering from 2013 to 2014; as a Lecturer in the Department of Information Engineering in 2015; and as a Research Associate in the Department of Mechanical and Automation Engineering since 2015. His current research interests include analog/mixed-signal circuit design and power-management integrated circuits, especially for biomedical, energy-harvesting, and wireless power transfer applications.

Dr. Ho received Tutor Awards for four consecutive years from 2010 to 2013 and the PCCW Foundation Scholarship in 2009–2010. He coreceived the Best Paper Award in 2015 IEEE Region 10 Conference and the Best Student Paper Award in 2011 IEEE Student Symposium on Electron Devices and Solid-State Circuits.

Jianping Guo (S’09–M’13) received the B.Sc. and M.Sc. degrees in electronic engineering from Xi’an University, Xi’an, China, in 2003 and 2006, respectively, and the Ph.D. degree in electronic engineering from The Chinese University of Hong Kong, Hong Kong, in 2011.

In July 2012, he joined the School of Physics and Engineering, Sun Yat-sen University (SYSU), Guangzhou, China. He is currently at the School of Microelectronics, SYSU, and the SYSU-CMU Shunde International Joint Research Institute, Foshan, China. His current research interest includes low-power analog/RF ICs and power-management ICs.
Kai Ho Mak (S’14) received the B.Eng. and M.Phil. degrees in electronic engineering from the Chinese University of Hong Kong (CUHK), Hong Kong, in 2009 and 2013, respectively, where he is currently working toward the Ph.D. degree in electronic engineering.

He is a Teaching Assistant in analog integrated circuit courses. His research interests include analog and power-management IC design.

Mr. Mak received the Tutor Commendation from the Department of Electronic Engineering, CUHK, in 2013, the Cheng Yick Chi Graduate Fellowship and Solomon Systech Scholarship in 2014–2015, the Best Paper Award at the IEEE Student Symposium on Electron Devices and Solid-State Circuits in 2014, and the Outstanding Tutor Award from the Department of Electronic Engineering in 2012 and 2014, and the Faculty of Engineering in 2012.

Yanqi Zheng received the B.S. degree in microelectronic technology from the South China University of Technology, Guangzhou, China, in 2004, and the Ph.D. degree from the Department of Electronic Engineering, Chinese University of Hong Kong, in 2010.

From 2004 to 2006, he was with eWave Integrated Circuit Design House, Co., Ltd., Guangzhou, China, as a Design Engineer. From 2010 to 2012, he was a Postdoctoral Fellow with the Department of Electronic Engineering, Chinese University of Hong Kong, and became a Research Assistant with the same department in 2013. He is currently at the School of Microelectronics, Sun Yat-sen University, Guangzhou, and the SYSU-CMU Shunde International Joint Research Institute, Foshan, China. His design interest is power-management IC, especially in switching mode power converter design.

Wang Ling Goh (S’91–M’06–SM’09) received the B.Eng. degree in electrical and electronic engineering and the Ph.D. degree in microelectronics from Queen’s University of Belfast, Belfast, U.K., in 1990 and 1995, respectively.

She was a Research Engineer with the Northern Ireland Semiconductor Research Centre while working toward the Ph.D. degree. She joined the School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore, as a Lecturer in 1996, and became an Associate Professor in 2004. Her research interests include digital/mixed-signal IC design, telemetry circuits, neural recording ICs, and 3-D IC.

Shi Bu (S’12) received the B.Eng. degree in electronic engineering from The Chinese University of Hong Kong, Hong Kong, in 2014, where he is currently working toward the M.Phil. degree.

His research interests include low-power analog integrated circuits and power-management integrated circuits.

Xian Tang (M’14) received the Bachelor’s degree in electronic science and technology from the Huazhong University of Science and Technology, Wuhan, China, in 2007, and the Ph.D. degree in electronic engineering from the Chinese University of Hong Kong, Hong Kong, in 2013.

She was the International Visiting Student with the University of Toronto, Toronto, ON, Canada, in 2011. She is currently an Assistant Professor at the Graduate School at Shenzhen, Tsinghua University, Shenzhen, China. Her current research interests include CMOS analog/mixed-signal integrated circuits design, in particular, power-management integrated circuits.

Dr. Tang received the Global Scholarship Program for Research Excellence-CNOOC Grants 2010–2011 from the Chinese University of Hong Kong in 2010, and the Student Travel Grant Award from the IEEE Solid-State Society and the International Solid-State Circuits Conference in 2012.

Ka Nang Leung (S’02–M’03–SM’08) received the B.Eng., M.Phil., and Ph.D. degrees in electrical and electronic engineering from the Hong Kong University of Science and Technology (HKUST), Hong Kong, in 1996, 1998, and 2002, respectively.

In 2002, he was a Visiting Assistant Professor at HKUST. In 2005, he joined the Department of Electronic Engineering, Chinese University of Hong Kong, Hong Kong, where he is currently an Associate Professor. His research interests include power-management integrated circuits and low-voltage low-power analog integrated circuits.

Dr. Leung was the Chairman of the IEEE (Hong Kong) Electron Device/Solid-State Circuit Joint Chapter in 2012. He serves in the Editorial Board of Active and Passive Electronic Components, Hindawi Publishing Corporation, Cairo, Egypt, and he serves as a Paper Reviewer in numerous IEEE and IET journals and international conferences. Moreover, he involves actively in the organization of several IEEE international conferences. He co-received the Best Paper Awards in 2015 TENCON and IEEE Student Symposium ED/SSC in 2011 and 2014.