
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022 4433

FLAM-PUF: A Response–Feedback-Based
Lightweight Anti-Machine-Learning-Attack PUF

Linjun Wu , Yupeng Hu , Senior Member, IEEE, Kehuan Zhang, Member, IEEE,
Wenjia Li , Senior Member, IEEE, Xiaolin Xu, Member, IEEE, and Wanli Chang , Member, IEEE

Abstract—Physical unclonable functions (PUFs) have been
adopted in many resource-constrained Internet of Things (IoT)
applications to provide effective and lightweight solutions for
device authentication. However, an attacker can collect challenge–
response pairs (CRPs) of a strong PUF, to build a machine
learning (ML) model and mimic its behavior, i.e., predicting the
responses of unseen challenges with high accuracy. Although sev-
eral PUFs have been proposed to resist such modeling attacks,
they incur high hardware overhead. Developing a PUF primitive
with low hardware cost and high resistance to ML attacks is
thus a crucial task. In this article, we propose the first response–
feedback-based lightweight anti-ML-attack PUF (FLAM-PUF).
It is only composed of one arbiter PUF (APUF) and one Galois
linear-feedback shift register (LFSR), with some basic logic gates,
reducing more than 62% hardware cost compared with the state-
of-the-art robust strong PUFs. Specifically, FLAM-PUF leverages
a cost-effective feedback loop structure to dynamically control
and update the LFSR configuration. FLAM-PUF has two main
characteristics: 1) it feeds back a 1-bit response in every cycle to
intentionally poison the data of the CRP set for training. To resist
ML-based modeling attacks, the 1-bit response can randomly
update one coefficient of the feedback polynomial to implant more
complex correlations into the model built by attackers and 2) it
takes advantage of an n−bit response feedback-controlled recon-
figurable Galois LFSR to enlarge the original challenge space of
the APUF. Extensive experimental results show that the proposed
FLAM-PUF achieves near-optimal uniformity, uniqueness, and
reliability. Our scheme works well under standard attack mod-
els with public crucial initial information. In particular, the
prediction accuracy of modeling attacks against FLAM-PUF is
nearly 50% under the four widely used ML algorithms, i.e.,

Manuscript received 14 July 2022; accepted 26 July 2022. Date of current
version 24 October 2022. This work was supported in part by the Hunan
Province Outstanding Youth Fund Project under Grant 2022JJ10018; in part
by the National Natural Science Foundation of China under Grant 61872130;
and in part by the Hong Kong, SAR, Research Grants Council (RGC) General
Research Fund under Grant 14208818. This article was presented in the
International Conference on 2022 and appears as part of the ESWEEK-
TCAD special issue. This article was recommended by Associate Editor
A. K. Coskun. (Corresponding authors: Yupeng Hu; Wanli Chang.)

Linjun Wu and Yupeng Hu are with the College of Computer Science and
Electronic Engineering, Hunan University, Changsha 410012, Hunan, China
(e-mail: wulinjun777@hnu.edu.cn; yphu@hnu.edu.cn).

Kehuan Zhang is with the Department of Information Engineering,
The Chinese University of Hong Kong, Hong Kong, China (e-mail:
khzhang@ie.cuhk.edu.hk).

Wenjia Li is with the Department of Computer Science, New York Institute
of Technology, New York, NY 10023 USA (e-mail: wli20@nyit.edu).

Xiaolin Xu is with the Department of Electrical and Computer
Engineering, Northeastern University, Boston, MA 02115 USA (e-mail:
x.xu@northeastern.edu).

Wanli Chang is with the College of Computer Science and Electronic
Engineering, Hunan University, Changsha 410012, Hunan, China, and also
with the Central Software Institute, Huawei Technologies, Shenzhen 518129,
China (e-mail: wanli.chang.rts@gmail.com).

Digital Object Identifier 10.1109/TCAD.2022.3197696

support vector machines (SVMs), logistic regression (LR), covari-
ance matrix adaptation evolution strategy (CMA-ES), and deep
neural networks (DNNs), indicating excellent resistance against
these ML attacks.

Index Terms—Lightweight, machine learning (ML) attacks,
physical unclonable function (PUF), reconfigurable linear-
feedback shift register (LFSR), response feedback.

I. INTRODUCTION

MANUFACTURERS and designers did not prioritize
security issues during the early years of the Internet

of Things (IoT) design and applications. Nowadays, various
IoT services, which are designed for industrial automation [1],
smart home [2], traffic safety [3], e-health [4], etc., are exposed
to cyber threats [5]. These security issues are becoming a
bottleneck limiting the development of IoT, especially the low-
end and low-cost IoT devices with minimal or no security
solutions, such as sensors and radio-frequency identification
(RFID) tags [6], [7]. Consequently, hackers may compro-
mise the IoT devices to launch attacks. For example, around
150 000 infected IoT devices caused a massive attack [8] in
2016. These infected IoT devices involve surveillance cam-
eras, routers, and other intelligent devices. The combination
of computing and networking power of thousands of IoT
devices makes the IoT environment a potentially deadly cyber
threat [9].

State-of-the-art cryptographic-based security mechanisms
introduce high computational complexity and high cost to store
secret keys. While most IoT node devices have limited central
processing unit (CPU), memory, and battery power resources,
it is challenging for them to afford the high hardware and
power consumption of complex cryptographic algorithms, key
stores, and protection mechanisms. Therefore, it is impera-
tive to seek a cost-effective system security solution. Physical
unclonable function (PUF) is a promising hardware security
primitive that provides a lightweight solution for key gener-
ation, intellectual property (IP) licensing, key sharing, and
hardware metering. A PUF generates a unique input-output
mapping relationship for each device leveraging the inherent
random process variations from manufacturing. Specifically,
these input and outputs are called challenge–response pairs
(CRPs). Ideally, a PUF instance should be unclonable and
unpredictable thanks to its disordered and complex structure.
According to the security properties of CRPs, PUFs can be
classified into strong PUFs and weak PUFs. The weak PUF

1937-4151 c© 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 30,2023 at 11:44:56 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5786-7439
https://orcid.org/0000-0002-7358-7426
https://orcid.org/0000-0001-6059-6422
https://orcid.org/0000-0002-4053-8898

4434 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

only has a small CRPs space and is mostly used for key gen-
eration [10]. In contrast, the strong PUF, like arbiter PUF
(APUF) [11], has a huge CRPs space (e.g., exponential num-
bers of CRPs) and is used in device authentication and identity
recognition. It is expected that even given access to the PUF
instance, an adversary still cannot predict the unseen CRPs.
Moreover, the strong PUFs will discard the used CRPs from
the available CRPs pool to protect against man-in-the-middle
and replay attacks [12].

Strong PUFs are subject to severe security issues due to the
emergence of machine learning (ML)-based modeling attacks.
In a modeling attack, an adversary builds a generic model with
polynomial parameters for a class of PUFs to simulate the CRP
mapping relationship. If the model is linear, the adversary can
simply apply ML algorithms to estimate the model parameters
by observing the obtained CRP set. It is infeasible to build an
accurate model of the strong PUF that uses only a subset of
CRPs to “train” the model to learn its complete CRP behav-
ior. However, once the model is able to predict the response
of the PUF with an error probability lower than the maxi-
mum environmental variation, the adversary can impersonate
the original PUF with the model successfully [13].

ML technique is a natural and powerful tool to train models
for modeling attacks. The attacker divides the obtained CRP
subset into a training set and a testing set. In each iteration,
the ML algorithms input challenge into the established PUF
mathematical model and calculate the corresponding response.
Then, the algorithm calculates the loss function based on the
difference between the response output of the model and the
actual value. The model parameters are updated according
to a specific strategy (the gradient descent for the logistic
regression (LR) algorithm and the maximum likelihood for
the support vector machines (SVMs) algorithm in this arti-
cle). When the iteration termination condition is satisfied, the
training process ends. The degree of difference between the
model trained by the algorithm and the real PUF mapping can
be verified by the prediction accuracy of the testing set. The
experimental results in [14] show that the modeling accuracy
is over 95% in 0.01 s by collecting 650 pairs of CRPs for a
64-stage APUF [11]. It is easy for an attacker to obtain CRPs
due to the lack of a protection mechanism to restrict access to
CRPs. Once an accurate model is built successfully with the
CRPs of a PUF, the protocols built on it are vulnerable.

Motivated thereby, a plethora of efforts have been devoted
recently to improving the robustness of strong PUFs against
ML attacks. The existing high-security strong PUF solutions
still suffer from high complexity and hardware overhead [15],
[16], [17]. Nevertheless, most of these PUF structures can
still be modeled successfully by various attack methods [11].
Linear-feedback shift register (LFSR) is a high-performance
and low-overhead sequential circuit that can generate repeat-
able pseudo-random sequences. It has found important utiliza-
tion in traditional information security, such as stream encryp-
tion and cyclic redundancy check (CRC). Combining LFSR
with classical PUFs turns out to be a worthy research direc-
tion. In existing works, LFSRs with fixed feedback coefficients
were often used for expanding the challenge space [18], [19] or
CRPs confusion [20]. For instance, CRC PUF [21] is the first

work to make CRPs confused by randomly updating feedback
polynomial g(x) for LFSR, without detailing how the feedback
polynomial is updated; SRPUF [22] needs (n + k) APUFs to
update the feedback coefficient, leading to an unaffordable
hardware overhead. Therefore, developing a PUF primitive
with low hardware overhead but high resistance to ML attacks
has become a primary challenge in recent years.

Our contributions to this work are as follows.
Response Feedback Loop-Based Resistance to ML: This

work proposes the first response–feedback-based lightweight
anti-ML-attack PUF (FLAM-PUF). A FLAM-PUF is com-
posed of an APUF and a reconfigurable Galois LFSR in
a loop structure. The reconfigurable LFSR updated by the
response feedback of APUF is the central part of the obfus-
cation method in this article. Unlike existing configurable
LFSRs, our LFSR generates the direct challenge C∗ for the
APUF, then a 1-bit response r∗ of the APUF will dynami-
cally be fed back to the reconfigurable LFSR, to randomly
update its polynomial in each cycle. Subsequently, FLAM-
PUF can intentionally poison the data of CRP set for training
by implanting problematic correlations into the target model
of attackers, improving the obfuscation and resistance to
ML modeling attacks. Moreover, FLAM-PUF exploits a n-
bit response feedback-controlled reconfigurable Galois LFSR
to enlarge the original challenge space of the APUF.

Lightweight Architecture: Instead of comprising multiple
strong PUF combinations or complex encryption circuits,
FLAM-PUF is lightweight and only consists of an APUF, a
Galois LFSR, and some basic logic gates. Furthermore, we did
not need any extra secret key information, and thus there is
no additional memory overhead. Compared to state-of-the-art
robust strong PUFs, FLAM-PUF has a lightweight hardware
architecture, which can reduce more than 62% hardware area
in the 64 stage and 128 stage.

Public Circuits Structure: The circuit structure of FLAM-
PUF can be public as follows. First, we assume that the
attackers know some crucial initial information, including the
circuit structure and the feedback polynomial initial state.
Second, we can leak out the specific position of feedback point
in circuit structure to attackers to demonstrate the security of
our obfuscation, as we show in Sections V-D and V-E. Third,
the attackers can eavesdrop on the part of the CRPs from the
unreliable channel.

Extensive Experiments: The experimental results demon-
strate that the proposed reconfigurable solution can achieve a
prediction accuracy of nearly 50% with four well-known ML
algorithms, equivalent to a random guess. Additionally, the
uniqueness, uniformity, and reliability of the proposed PUF
are close to the ideal value.

The remainder of this article is organized as follows. Related
works and technical challenges are reviewed in Section II.
Section III introduces the preliminaries of classic PUF mod-
els, LFSR, and four widely used modeling attack algorithms.
Section IV presents the structure of the proposed FLAM-
PUF. Section V elaborates on the comprehensive evaluations of
performance evaluations and security for FLAM-PUF. Finally,
Section VI concludes this article and points out future research
directions.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 30,2023 at 11:44:56 UTC from IEEE Xplore. Restrictions apply.

WU et al.: FLAM-PUF: A RESPONSE–FEEDBACK-BASED LIGHTWEIGHT ANTI-MACHINE-LEARNING-ATTACK PUF 4435

II. RELATED WORK AND CHALLENGES

Strong PUFs are subject to various ML modeling
attacks [13], [14], [23]. The main threat model in these works
is that an attacker can build a generic model to approximate
the input-output mapping of a given PUF, and then use the
eavesdropped CRPs set to estimate the model parameters for
a specific PUF instance. The ML algorithms that improve the
efficiency of estimating parameters have undermined the secu-
rity of strong PUF. For example, in the APUF circuits, there is
a linear relationship between the accumulative path delay and
the challenge vectors. The additive linear delay model can
accurately describe the functionality of APUF. Recent years
have seen considerable defense technologies for improving the
anti-ML-attack abilities of strong PUFs.

A. Related Work of Defense Technologies

Existing anti-ML-attack solutions could broadly be divided
into two categories as follows.

Strong PUF Combination and Confusion: These solutions
combine the classic strong PUFs (e.g., APUF) with other func-
tion modules to strengthen the whole security of the circuit
structure. The most representative XOR APUF [24] can obtain
a global response from parallel APUFs by XORing the orig-
inal responses. Ising PUF [15] applies each APUF spin to
the Ising model, and the interaction between the spins pro-
duces a global response. Interpose PUF [25] contains two
XOR APUFs, i.e., n-stage x-XOR APUF and (n + 1)-stage
y-XOR APUF. The 1-bit response of x-XOR APUF is inserted
into the original-bit challenge to form the (n + 1)th bit chal-
lenge, which is provided to the y-XOR APUF to produce a
global response. Wang et al. [26] proposed a dual-mode PUF
that utilizes the parity of the number of inverters to resist
modeling attacks. Configurable tristate (CT) PUF [17] can
flexibly perform as an APUF, a ring oscillator (RO) PUF, or
a bistable ring (BR) PUF [27], through a bitwise XOR-based
mechanism obfuscating the challenge and response relation-
ship. Controlled PUF [28], PUF-FSM [29], and OB-PUF [30]
all use a hash module for logical obfuscation. In RPUF [31],
CRC-PUF [21], and SR-PUF [22], an LFSR module under-
takes a crucial role in CRPs confusing. In [32], an inverter is
activated under certain conditions and reverses the response. A
reverse response bit serves as poison data that interferes with
attacker modeling. Zhang et al. [33] increased the difficulty
of modeling by limiting the number of CRPs leaked out to
attackers.

Nonlinear Sequential Circuits: In addition to reinforcing
the classic strong PUFs, researchers are exploring a vari-
ety of nonlinear circuit characteristics, such as glitches [34]
and voltage transfer characteristics (TVCs) [35]. Kumar and
Burleson [36] and He et al. [37] created new CRP map-
ping based on the strong nonlinearity between the deviation
of the symmetrical structure and the circuit characteristics.
Various emerging micro–nano devices have brought forth new
technologies for strong PUF, such as resistive random access
memory (ReRAM) [38] and spin-transfer torque magnetore-
sistive random access memory (STT-MRAM) [39]. In [16],

to produce CRPs, the PUF array is organized as two cou-
pled inverter-based entropy sources cascaded via nonlinear
Sbox transformations. The work in [40] exploits the sequence-
dependent behavior to expand the CRP space for a memory
PUF. The subthreshold operating state of complementary
metal–oxide–semiconductor (CMOS) devices has the advan-
tages of lower voltage, lower power consumption, and stronger
nonlinear compared to its saturated operating state. Recently,
some schemes employ the subthreshold current array as a
basic PUF element to realize a highly nonlinear operation
characteristic to resist ML attacks [41], [42], [43].

B. Technical Challenges

The primary technical challenge of the state-of-the-art
obfuscation for resisting ML attacks is the excessive hard-
ware overhead when the circuits confuse a CRP map-
ping with sufficient complexity to increase the difficulty of
modeling attacks. A linear model easily simulates the prop-
erties of a single simple nonlinear circuit. Currently, more
researchers are working on confounding CRPs by building a
complex nonlinear system composed of multiple functional
circuits. There must be enough circuit modules to success-
fully achieve the expected complexity and defend against
ML modeling attacks. For instance, the number of APUFs
in XOR-APUF cannot be smaller than 7. The combina-
tion of multiple circuits will inevitably cause more hard-
ware overhead. Awano and Sato [15], Suresh et al. [16],
Zhang et al. [17], and Rührmair et al. [44] combined some
classic PUF circuits to increase the complexity of CRPs
mapping while incurring high hardware costs.

On the other hand, APUF is a classic strong PUF, and its
challenge–response space size is exponentially related to the
number of switch modules. Compared with other PUFs, APUF
can generate many CRPs with lower hardware resources,
thus realizing key generation at a lower cost. However,
APUF is subject to modeling attacks [45]. To resist modeling
attacks, a series of strong PUFs are designed based on APUF
like XOR APUF [24], feed-forward APUF [46], lightweight
secure PUF [47], and interpose PUF [25]. Similarly, LFSR
can efficiently generate pseudo-random sequences via sim-
ple operations and plays an important role in cryptography.
The configurable LFSR dynamically updates the correlations
between inputs and outputs with strong nonlinearity and ran-
domness. Thereby LFSR can avoid cryptanalysis attacks by
merely adding some simple logic gates (e.g., AND, NOT,
and NAND). In this way, the LFSR enables the high security
and low overhead tradeoff in lightweight application scenar-
ios. Therefore, we employ the APUF and reconfigurable LFSR
to build a response feedback-based lightweight anti-ML-attack
strong PUF.

III. PRELIMINARIES

This section introduces the preliminaries of classic PUF
models, LFSR, and modeling attack algorithms. Table I lists
some important parameters and terminologies used here.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 30,2023 at 11:44:56 UTC from IEEE Xplore. Restrictions apply.

4436 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

TABLE I
LIST OF PARAMETERS AND TERMINOLOGIES IN THIS ARTICLE

A. Classic PUF Descriptions and Models

Arbiter PUF: The APUF circuits consist of a sequence of
multiplexer chains. The same signal propagates through two
paths in parallel (top and bottom) to generate 1-bit response
output. In a parallel or cross mode, the connection of each
path is determined by the challenge bit provided to the two
multiplexers at each stage. Ideally, the delays of two paths
giving the same challenge should be the same. However, the
actual delays of the two paths will be slightly different owing
to process deviations. At the end of the chain, a latch is utilized
as an arbiter to compare the delay difference between the top
and bottom paths.

The additive linear delay model has become a standard
description for the functionality of APUFs [14], [48] [23].
This model describes the total time delay difference between
the top and bottom paths. As shown in Table I, � = �w �� is
the sum of the delays in the stages, where the time delay
feature vector �w = (w1, w2, . . . , wn, wn+1)T . δ

0/1
i denotes

the time delay in stage i for the crossed (δ1
i) or in paral-

lel (δ0
i) signal path, respectively. Then, w1 = ([δ0

1 − δ1
1]/2),

wi = ([δ0
i−1 + δ1

i−1 + δ0
i − δ1

i]/2) for all i = 2, . . . , n, and
wn+1 = (δ0

n + δ1
n/2). The feature vector �� is the func-

tion of the applied n-bit challenge C = (c1, c2, . . . , cn).
Namely, ��(�C) = (�1(�C), . . . , �k(�C), 1)T , where ��l(�C) =∏n

i=l(1 − 2ci) for i ∈ [1, k]. It is worth noting that for the
convenience of modeling, the original challenge or response
of value “0” is reprocessed as “−1.” The response r of an
APUF is defined as follows:

r = Sgn(�) = Sgn
(
�w ��
)
. (1)

XOR Arbiter PUF: XOR APUF [14], [24] employs k indi-
vidual n-stage APUFs in parallel and provides the same
challenge C to all of them. Each APUF generates its indi-
vidual response ri and then XORs the ri to produce a global
response. Assuming ri ∈ {−1, 1} as mentioned above, then we
have rXOR = ∏k

i=1 ri. According to (1), the parametric model
of a k-XOR APUF is

tXOR =
k∏

i=1

Sgn
(

�ωT
i

��i

)
= Sgn

(
k∏

i=1

�ωT
i

��i

)

(2)

= Sgn

(
k⊗

i=1

�ωT
i

k⊗

i=1

��i

)

= Sgn
(

�ωT
XOR

��XOR

)
. (3)

MPUF and Logical Approximation Model: An MPUF [11]
consists of (2k+k) APUFs and a (2k : 1) multiplexer (MUX). It
provides the same challenge C to all of the (2k+k) APUFs. The
responses (rd

0, rd
1, . . . , rd

2k−1
) generated from the 2k APUFs

will be sent to the (2k : 1) multiplexer in parallel. The other k
APUFs’ responses (rs

0, rs
1, . . . , rs

k−1) are responsible for select-
ing one response in (rd

0, rd
1, . . . , rd

2k−1
) as the global response.

In the logical approximation model, the (2k : 1) multiplexer
can be decomposed into several 2 : 1 MUXs. Each 2 : 1 MUX
can be implemented by the basic logical operations (NOT,
AND, and OR), which can be approximated by the following
functions:

NOT a = 1 − a (4)

a AND b ≈ σ(20a + 20b − 30) (5)

a OR b ≈ σ(20a + 20b − 10). (6)

Finally, the global response output the O of MPUF with k
selection APUFs, which can be modeled as

O ≈
2k−1∑

i=0

⎛

⎝ri × sinc

⎛

⎝i −
k−1∑

j=0

2j × rj

⎞

⎠

⎞

⎠ (7)

where σ(x) and sinc(x) are common activation functions in
ML algorithms.

B. Linear-Feedback Shift Register

The input bit of an LFSR is the output of a linear function of
two or more for its previous states (taps). There are two major
schemes for connecting taps: 1) Fibonacci and 2) Galois. Here,
we only focus on the Galois LFSR form. Let sj (j ∈ [0, n−1])
represent the output state of each register and gj (i ∈ [0, n]) is
the feedback coefficient of LFSR, which controls whether the
output of the final register sn−1 participates in the feedback
operation (XOR). If gj = 1, the input of the next register is
sj ⊕ sn−1; otherwise, gj = 0, sj does not participate in the
feedback operation and directly enters the following register.
It is worth noting that gn and g0 must be 1 to ensure that
LFSR is dynamic and effective.

The register state of Galois LFSR is updated in every clock
cycle by the state transition function T : GF(2n) → GF(2n).
Ti indicates that the state of the registers has been updated i
times. Let Si(i ∈ [1,+∞]) represent the register state of the
LFSR in ith cycle and S0 represent the initial state, and then
Si can be defined as follows:

Si = Ti
(

S0
)
. (8)

The updating of n registers in the ith clock cycle is described
as follows:

⎛

⎜
⎜
⎜
⎜
⎝

si
0· · ·

si
j

· · ·
si

n−1

⎞

⎟
⎟
⎟
⎟
⎠

→

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

si−1
n−1· · ·

t
(

si−1
j−1

)

· · ·
t
(

si−1
n−2

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(9)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 30,2023 at 11:44:56 UTC from IEEE Xplore. Restrictions apply.

WU et al.: FLAM-PUF: A RESPONSE–FEEDBACK-BASED LIGHTWEIGHT ANTI-MACHINE-LEARNING-ATTACK PUF 4437

Fig. 1. Galois LFSR structure.

where si
j defines the state of the jth register in the ith cycle.

Let ⊕ denote addition operation in GF(2), the function t is
defined as follows:

t(si
j) = si−1

n−1 × gj ⊕ si−1
j−1. (10)

With the development of cryptography, the security of tra-
ditional LFSR is not optimistic. Attackers can collect enough
output sequences to calculate its structure. Therefore, the
researchers proposed configurable LFSRs, which realize the
dynamic configuration of LFSR parameters through different
circuit structures. The configurable parameters involved in the
previous works include: 1) the number of stages in the LFSR;
2) the number of taps in the feedback path; and 3) each tap
position in the shift register stage [49], [50], [51]. In [21]
and [22], it is adopted the 2-input AND gates to realize the
configurable feedback function of LFSR.

C. Modeling Attack Algorithms

SVM Attacks: For each given CRPs train data set, attackers
create a PUF model and use SVMs [13] to learn the CRPs
train set. Challenges are the feature vector, and corresponding
responses are as the label. After training, the SVM generates
a learning model and is applied to learn a CRPs test set. Then,
for each PUF, the learning results are compared with the actual
results and calculate the correct rate as the prediction accuracy.

LR Attacks: LR is a widely used supervised ML algorithm
in PUF attacks. In [14], the authors showed the LR attacking
some strong PUFs like XOR APUF turns out to be signifi-
cantly better than SVM and evolution strategy (ES). The LR
algorithm uses the sigmoid function to convert the input data
into probabilities and determines the label to which the feature
vector belongs based on the probability values. In the appli-
cation of the PUF attack, each n bit challenge C is used as
the n-dimensional feature vector of LR. The response is the
label judged according to the predicted probability result, and
the time delay feature vector corresponds to the parameter of
the maximum likelihood function to be solved. Whether the
feature vector and the label have a linear relationship signifi-
cantly impacts the quality of the prediction result. Therefore,
the premise of an effective LR attack against PUF is that the
PUF has a linear structure.

CMA-ES Attacks: Covariance matrix adaptation evolution
strategy (CMA-ES) is a stochastic method for real-parameter
optimization of nonlinear, nonconvex function [52]. The
CMA-ES algorithm uses the parent’s delay vector and some
random modifications to generate the children’s delay vec-
tor in each iteration. Then the algorithm selected the fittest
instances from these child instances and kept them for the next
generation as parents. In the experiment, we use the default
parameters in [53].

Fig. 2. FLAM-PUF structure and data obfuscation flow. The thin line between
the modules in the figure represents a 1-bit signal, and the bold line represents
a multibit signal (e.g., n bits). There are two steps (3) since the 1-bit response
generated by APUF will be fed back to LFSR and buffer for temporary storage
simultaneously.

DNN Attacks: Deep neural networks (DNN) construct a non-
linear model with a multilayer neural network and a nonlinear
activation function. It is a powerful black box tool to solve
different complex tasks in artificial intelligence.

IV. PROPOSED METHOD: RESPONSE FEEDBACK-BASED

LIGHTWEIGHT PUF

Neither PUF combinations nor nonlinear circuits are cost
effective in terms of their hardware implementations. To
overcome the challenge brought by the high cost of hard-
ware implementation, we leverage a cost-effective response
feedback loop structure to control and update the LFSR
configuration in every cycle dynamically.

A. Structure Overview

Fig. 2 shows the structure overview of the proposed FLAM-
PUF, an APUF combined with a reconfigurable LFSR can
form a close loop structure for CRPs confusion. The critical
characteristics of FLAM-PUF are as follows. First, FLAM-
PUF feeds back a 1-bit response in every cycle to intentionally
poison the data of the CRP set for training. Notably, the 1-bit
response can randomly update one coefficient of feedback
polynomial to implant problematic correlations into the model
to be built by attackers to resist ML-based modeling attacks.
Second, a FLAM-PUF exploits an n-bit response feedback-
controlled reconfigurable Galois LFSR to enlarge the original
challenge space of the APUF. In this way, FLAM-PUF can
combine circuit obfuscation with timing obfuscation at the
cost of a simple loop circuit structure that obtains a significant
degree of CRP obfuscation.

Based on the LFSR and APUF, the data obfuscation flow
concludes the following steps, as also illustrated in Fig. 2.

Step (1): LFSR receives and confuses the n-bit original
challenge C first.

Step (2): Then, LFSR produces a direct challenge C∗ for
the APUF. This step expands an original challenge C into a

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 30,2023 at 11:44:56 UTC from IEEE Xplore. Restrictions apply.

4438 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

Fig. 3. First confusion and APUF.

series of direct challenges C∗. The attacker can only obtain
the original challenge C and not the direct challenge C∗.

Step (3): In each cycle, APUF generates a 1-bit direct
response r∗ and transmits it simultaneously to LFSR for con-
figuration updating and cache buffer. The 1-bit direct response
r∗ output by the APUF can be nearly equally likely to be 0
or 1. There will also be two equal possibilities for the follow-
ing direct challenge generated by the LFSR aliasing affected
by the feedback r∗.

Step (4): After repeating steps (2) and (3) for n times, the
buffer collects a (n−1)-bit response R∗ = (r∗

1, r∗
2, . . . , r∗

(n−1))

and feed them back to LFSR as the feedback coefficient for the
secondary confusion. The 1-bit direct response r∗ generated
per cycle will cause (1/2) uncertainty in the system. At this
step, (n−1) bits of direct responses R∗ have been generated,
bringing 2n−1 uncertainties to our system.

Step (5): LFSR repeats the same operation of step (2) based
on the input R∗, and then generates a new C∗.

Step (6): FLAM-PUF will generate the final response r at
the kth cycle. It can also output an n-bit R from the kth to
the (k + n − 1)th cycle to enhance the obfuscation further.
The entire PUF structure hides the real CRPs of APUF, which
significantly increases the modeling difficulty for attackers.

Among the above six steps, steps (3) and (4) return the
APUF responses to the LFSR to update configuration, which
is critical to ensure the dynamic update of the entire design
with high randomness, complexity, and security.

B. Initialization and First Confusion

In our scheme, the LFSR circuit plays a critical role in
obfuscation. In each cycle, the LFSR produces a new challenge
for the APUF and receives 1-bit response feedback from the
APUF. The FLAM-PUF does not generate the final response r
immediately in the first (n−1) cycles, i.e., the first confusion,
as shown in Fig. 3. During the first confusion, the feedback
coefficient set G1 is fixed. Only one feedback coefficient can
be affected in each run since only a 1-bit response is fed back
to implant problematic correlations into the target model of
attackers. Specifically, the 1-bit response loaded in specific
registers is responsible for poisoning the data of the CRP set
for training by randomly updating one coefficient of feedback
polynomial.

Challenges of APUF: The n-bit original challenge C =
(c0, c1, . . . , cn−1) is first loaded into LFSR as its initial state
S0, C = S0. The feedback coefficients G1 = (g1,1, . . . , g1,n−1)

for the first confusion control the registers input via 2-input
AND gates. As mentioned in Section III-B, to ensure the

effectiveness of LFSR, gn and g0 should always be set to 1.
Therefore, our method just needs (n−1) feedback coeffi-
cient parameters. In each cycle, the n registers in LFSR
{a0, a1, . . . , an−1} will generate an n-bit output as a direct
challenge C∗ of APUF. For instance, the first direct challenge
is C∗

1 = S1 = T1(S0) = T1(C), where T1() is the transition
function of LFSR in the first cycle. Similarly, we have

C∗
i = Si = Ti

(
S0
)

= Ti(C). (11)

From (11), we can get the ith direct challenge C∗
i by obfus-

cating the original challenge C via LFSR’s i runs.
One-Bit Response Feedback: For each direct challenge C∗,

the APUF generates the corresponding 1-bit response r∗ and
sends it to the buffer. At the same time, r∗ is fed back to
the XOR gate before the jth register aj in LFSR, and affects
the corresponding output s1

j . In Fig. 3, we replace a 2-input
AND with two 2-input NAND gates as the feedback module.
If r∗ = 0, si,j = ¬si−1,j−1, thus r∗ flips the state of si

j directly;

otherwise, r∗ = 1, si
j = si−1

j−1 ⊕ si−1
n−1, leading to g1,j = 1. Based

on (1) and the sign function Sgn(x), we can obtain

r∗
i = Sgn

(
w1�1

(
Si)+ w2�2

(
Si)+ · · · + wn�n

(
Si))+ wn+1

= Sgn(�w ��(Ti(C)
)

(12)

and r∗
0 is directly generated from the original challenge C

r∗
0 = Sgn

(
�w ��(C)

)
. (13)

Notably, Fig. 4 abstracts the workflow of response feedback
in the ith and (i + 1)th cycle during the first confusion. We
assume that in the initial feedback coefficient set G1, only g1,1
equals 1; the others are 0 in this case. The feedback position
is between the second and the third register, thus the ith direct
response r∗

i will influence the third register’s state.

C. Secondary Confusion and Final Response

To strengthen the obfuscation, we will perform secondary
obfuscation, as shown in Fig. 5. After (n−1) cycles, the buffer
can collect and assemble an (n-1)-bit direct response R∗ =
(r∗

1, r∗
2, . . . , r∗

n−1), which is employed to update the feedback
coefficient parameters of LFSR for the secondary confusion,
namely, G2 = (r∗

1, r∗
2, . . . , r∗

n−1). The initial state of the LFSR
for the secondary confusion is Sn−1, which is the state set
at the (n−1)th cycle. Therefore the FLAM-PUF can generate
1-bit final response r at any kth cycle for k ≥ n (e,g., k = n).
According to (11) and (12), we can get

r = r∗
k = Sgn(�w ��

(
Tk(C)

)
. (14)

To improve the authentication efficiency, we can generate
an n-bit response from kth cycle to (k + n − 1)th cycle as
a final response R. In this case, the n-bit final response is
R = (r∗

k , r∗
k+1, . . . , r∗

k+n−1). Obviously, the more obfuscation
runs, the better obfuscation effect we can obtain at the cost of
a longer delay.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 30,2023 at 11:44:56 UTC from IEEE Xplore. Restrictions apply.

WU et al.: FLAM-PUF: A RESPONSE–FEEDBACK-BASED LIGHTWEIGHT ANTI-MACHINE-LEARNING-ATTACK PUF 4439

Fig. 4. Workflow diagram of response feedback in the in the ith and (i + 1)th cycles.

Fig. 5. Secondary confusion.

(a)

(b)

(c) (d)

Fig. 6. Case study. (a) Initialization. (b) First confusion. (c) Second
confusion. (d) CRP of APUF.

D. Case Study

Fig. 6 showcases the efficiency of the proposed method with
a 4-stage APUF and an LFSR as follows.

1) Initialization: If the original challenge C = S0 =
(s0

0, s0
1, s0

2, s0
3) = (0110) is loaded into the LFSR as

the initial state, the initial feedback coefficient set is
G1 = (100), and the feedback position is between the
second and the third register (i.e., a1 and a2). Also, we
assume r∗

0 = 0.
2) First Confusion: LFSR generates the first direct chal-

lenge C∗
1 = S1 = (s1

0, s1
1, s1

2, s1
3), where s1

0 = s0
3 = 0,

s1
1 = s0

0 ⊕ s0
3 = 0, s1

2 = ¬s0
1 = 0, s1

3 = s0
2 = 1.

Namely, C∗
1=(0001), and r∗

1=1. Similarly, we can obtain
C∗

2 = (1110), r∗
2 = 0, and C∗

3 = (0101), r∗
3 = 1.

3) Second Confusion: Next, LFSR updates the feedback
coefficients with direct responses G2 = (r∗

1, r∗
2, r∗

3) =
(101). Consequently, C∗

4 = S4 = (s4
0, s4

1, s4
2, s4

3), where
s4

0 = s3
3 = 1, s4

1 = s3
0 ⊕ s3

3 = 0, s4
2 = ¬s0

1 = 0, s4
3 =

s0
2 = 1. In this case, we take (r∗

4, r∗
5, r∗

6, r∗
7) as the 4-bit

final response R.
Attackers can only eavesdrop on the original challenge C =

(0110) and the 4-bit final response R = (0111). Therefore,
owing to the 1-bit response in the first confusion poisoning the
CRP set, the direct correlation between C and R has been cut
successfully, enhancing the prediction difficulty of attackers
significantly.

V. PERFORMANCE EVALUATIONS AND

SECURITY ANALYSIS

This section presents the performance evaluations of the
proposed FLAM-PUF on 64-stage and 128-stage variants via
Python simulation. The simulation and modeling attacks are
implemented using Python 3.9 and executed on Windows 10
with 16 GB of main memory, an Intel Core i7-7700HQ CPU
(2.8 GHz), and a Samsung 981A SSD of 512G. We used
the Python-based APUF simulation model built in [48] and
[54]. In this model, each stage delay parameter of APUF
follows Gaussian random distribution (μ = 0.1, δ = 1),
meanwhile we have considered additive random noise with
N(0, 0.01) [14], [55].

A. Uniformity

Uniformity describes the ratio of 1 to 0 in the response.
Actually, if the “1/0” ratio is 50%, the uniformity of a PUF is
ideal. The uniformity can be measured by the hamming weight
(HW) of the response sequence, which is defined as follows:

HW(R) =
N∑

i=1

ri (15)

where ri represents the ith bit in N-bit response R. The
probability of 1 in K responses with N-bits is

P1 = 1

K

K∑

j=1

N∑

i=1

HW(Rj)

N
× 100%. (16)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 30,2023 at 11:44:56 UTC from IEEE Xplore. Restrictions apply.

4440 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

(a) (b)

Fig. 7. Uniformity of (a) 64-stage and (b) 128-stage FLAM-PUF.

(a) (b)

Fig. 8. Uniqueness of (a) 64-stage and (b) 128-stage FLAM-PUF.

Fig. 7(a) and (b) illustrates the distribution of P1 of 100
64-stage and 100 128-stage FLAM-PUFs with K = 1000 for
each entity, respectively. The average value of P1 is about
49.73% and 49.99% for 64-stage and 128-stage FLAM-PUFs,
respectively. As we can see, the distribution of P1 of 64-stage
FLAM-PUFs falls within the range of 45%–53%, and over
30% of P1 values roughly equal the ideal value 50%. For
128-stage FLAM-PUFs, all P1 fall within 46%–54%, and over
70% of them are within the range of 49%–51%.

B. Uniqueness

Even with the same structure and challenges, different PUF
entities will generate different responses. Uniqueness indicates
the difference between different PUFs, which is defined with
the inter Hamming distance (HD)

HD(Ri, Rj) =
N∑

n=1

(
Ri[n] ⊕ Rj[n]

)
(17)

where Ri and Rj indicate the responses generated by two differ-
ent PUF entities, PUFi and PUFj, under the same challenges.
N represents the total number of bits in response. For K PUFs
with N-bit response, the normalized inter HD is commonly
employed to measure the uniqueness in

HDnor = 2

K(K − 1)

N−1∑

i=1

N∑

j=i+1

HD(Ri, Rj)

N
× 100%. (18)

The ideal uniqueness is 50% for all PUF entities, which
means half of the bits between two responses are different. Let
K = 2, Fig. 8(a) and (b) plots the distribution of HDnor for 100
pairs of 64-stage and 128-stage FLAM-PUFs with 1000 chal-
lenges for each pair, respectively. The average value of HDnor
is 49.81% and 49.85% for 64-stage and 128-stage FLAM-
PUFs, respectively. All HDnor of 64-stage FLAM-PUFs fall
within 47%–53%, and over 26% of them equal the ideal

(a) (b)

Fig. 9. Reliability of (a) 64-stage and (b) 128-stage FLAM-PUF.

value 50%. For 128-stage FLAM-PUFs, all HDnor fall within
46%–53%, and more than 62% of them are within 49%–51%.

C. Reliability

A PUF is expected to produce the same responses when
receiving the same challenges under different environmental
conditions. The reliability is calculated as follows:

Reliability = 1 − 1

S

S∑

i=1

HD(Ri, Ri,p)

N
× 100%. (19)

A PUF obtains S responses with n bit from the same challenge.
HD(Ri, Ri,p) represents the HD between the sampled value and
the standard value. Ideally, the reliability of a PUF is expected
to be 100%. Fig. 9(a) and (b) measures the average reliability
of 16 64-stage and 128-stage FLAM-PUFs under the same 100
challenges for 100 runs, respectively. All of the reliabilities of
PUF entities are higher than 94%. For example, the average
reliability for 64-stage and 128-stage FLAM-PUFs is 95.59%
and 96.58%, respectively.

D. Threat Model and Security Analysis

Threat Model: As shown in Fig. 2, we first present the
adversary model that is adopted in this work and then analyze
the security of our approach in the presence of adversaries.

1) We assume that attackers can obtain some crucial initial
information, including the circuit structure of FLAM-
PUF, the position of the feedback point, and the initial
state G1 of the first confusion. In the IC supply chain,
the foundry, the test facility, and the end user may all be
untrusted attackers. Hence, attackers may directly access
or use reverse engineering to master the circuit net list
and circuit functions (including feedback point locations
and initial information).

2) Attackers may also be capable of getting part of the orig-
inal CRPs through an untrusted channel. For example,
in PUF-based authentication, a verifier sends a challenge
to a prover. The prover calculates the corresponding
response by the PUF entity and sends it back to the
verifier. An attacker can obtain this CRP if the ver-
ifier and prover transmit the challenge and response
in plain text on an untrusted channel [56]. The direct
CRP of APUF is essentially the intermediate result of
calculation, which is only transmitted and temporarily
stored inside the chip and will not reach the outside
channel through the interface. In consequence, attackers
cannot directly access the FLAM-PUF’s internal circuit,

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 30,2023 at 11:44:56 UTC from IEEE Xplore. Restrictions apply.

WU et al.: FLAM-PUF: A RESPONSE–FEEDBACK-BASED LIGHTWEIGHT ANTI-MACHINE-LEARNING-ATTACK PUF 4441

especially the original CRPs of APUF, e.g., the critical
1-bit response feedback.

3) However, the state of LFSR in FLAM-PUF is not
allowed to be all 0 [21].

Security Analysis: We take the Galois LFSR as an example
to analyze the security of FLAM-PUF.

1) The reconfigurable LFSR expands the original challenge
C to a group of direct challenges. Usually, static LFSR is
exploited to generate sequences as new challenges with
a fixed algorithm. However, if polynomial coefficients
G(x) are not set properly, the cycles for LFSR to gener-
ate a repeatable sequence may be shortened, which will
significantly weaken the obfuscation and make modeling
attacks easier to be successfully launched. In contrast,
LFSR can generate multiple CRPs for the APUF, i.e.,
{C∗

0, r∗
0}, {C∗

1, r∗
1}, {C∗

2, r∗
2}, . . . Since APUF is subject

to ML-based modeling attacks, an attacker can obtain
the direct CRPs from the APUF. Nevertheless, in our
scheme, the attacker can only access the original chal-
lenge C of the first CRP {C∗

0, r∗
0} and the final response r

of the last CRP, not the direct challenges and responses
of APUF. As a result, the attacker cannot accurately
model the FLAM-PUF based on the misleading CRP
mapping correlations, owing to a vast input space of C∗
and the indirect output r.

2) The final response r or R is a strongly nonlinear func-
tion of the original challenge C. The final response
can be calculated by the XORed several products of the
time delay feature vector �w and the feedback coefficient
G1, G2. An algorithm such as LR [14], which relies on
a linear function to fit the mapping between the origi-
nal challenge and the final response, cannot achieve the
intended prediction accuracy in our scheme, which has
been clearly shown in Section V-E. Notably, we feed
the response back to LFSR to construct a loop circuit
structure, which can simultaneously achieve strong space
and timing confusion. Time confusion is one of FLAM-
PUF’s key characteristics, which benefits from a loop
process, causing the prediction of a r to depend on all
the preceding responses. Thus, the double confusion of
space and time can boost the system complexity and
thus enhance the resistance to modeling attacks.

3) The reconfigurable LFSR randomly updated by 1-bit
response feedback can implant problematic correlations
into the target model of attackers. We feed back the
1-bit direct response to randomly update one feedback
coefficient to introduce (1/2) uncertainty in each cycle.
Specifically, the circuit structure and the position of the
feedback point are public, only if an attacker does not
know the correct r∗

i . For example, as shown in Fig. 4,
there are two possible CRPs in the next cycle, which
will introduce some poisoned data to the dataset for the
ML-based modeling attackers.

Consequently, the response feedback brings at least an expo-
nential uncertainty to the system. For an n-bit response, given
that the total number of poisoned CRPs is n, the probability
of an attacker guessing all n bit responses should be (1/2)n.
For instance, the probability is 5.42e-20 and 2.93e-39 when

n = 64 and 128, respectively. On the other hand, suppose that
the attacker does not know the location of the feedback point,
there will be (n−1) possible feedback coefficients. The attack
difficulty will approximately increase by n times.

E. Resistance to Modeling Attacks

In this section, we evaluate the prediction accuracy of
modeling attacks under four well-known ML algorithms, i.e.,
LR, SVM, CMA-ES, and DNN, to verify the resistance of
FLAM-PUF. Our experiments have modeled three scales of
FLAM-PUF, i.e., 32-stage, 64-stage, and 128-stage, generat-
ing the 1-bit final response at the (n + 1)th and 2nth cycle,
respectively. In addition, the experiment collects 106 CRPs
from each FLAM-PUF instance for testing.

The SVM attack is built on Python’s sklearn library func-
tion sklearn.svm.SVC. All parameters are set by default,
including the regularization parameter C = 0.1 and the
kernel type kernel = “rbf.” We employ ten-fold cross-
validation to test the accuracy of the algorithm. The LR
attack takes advantage of Python’s sklearn library function
sklearn.linear_model.LogisticRegression. Similarly, all param-
eters are set by default, where C = 0.1 and kernel = rbf. It
utilizes the ten-fold cross-validation to test the accuracy of the
algorithm as well. The CMA-ES attack exploits Python’s cma
library function cma.CMAEvolutionStrategy. Most parameters
are set by default. All initial solutions are set to 0, and the
initial standard deviation sigma0 = 0.5. Moreover, we take
70% of the CRP set as the training set and the remaining 30%
as the test set. For the DNN attack, we construct a four-layer
neural network, also taking 70% of the CRP set as the training
set and the remaining 30% as the test set.

All initial solutions are set to 0, and the initial standard
deviation sigma0 = 0.5. Moreover, we take 70% of the CRP
set as the training set and the remaining 30% as the test set.
For the DNN attack, we construct a four-layer neural network,
also taking 70% of the CRP set as the training set and the
remaining 30% as the test set.

Fig. 10 demonstrates that in the presence of the modeling
attacks with 106 CRPs data set, the prediction accuracy val-
ues of the FLAM-PUF fluctuate around 50%, and they all
fall below 55% without an apparent rising trend, indicating its
excellent resistance to state-of-the-art modeling attacks. It can
be seen from the four figures that when the data set is small
(≤ 104), the prediction accuracy fluctuates relatively remark-
ably, owing to the uneven data distribution. The fluctuation
of the prediction accuracy tends to converge around 50% as
the number of CRPs exceeds 105. It is also noteworthy that
it is sufficient to use up to 106 CRPs to train and verify the
security of our solution.

Specifically, the prediction accuracy of the LR algorithm is
not less than 50% and its fluctuation range is the smallest.
To solve the problem that the LR and SVM may fall into
the local optimal solution, CMA-ES updates the parameters
in a randomized manner, but its convergence is not as good
as LR and SVM. The model established by DNN in a black-
box manner may significantly mismatch with the actual CRPs
mapping, and most prediction results are lower than 50%.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 30,2023 at 11:44:56 UTC from IEEE Xplore. Restrictions apply.

4442 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

(a) (b) (c) (d)

Fig. 10. Resistance of FLAM-PUF under four ML algorithms (i.e., LR, SVM, CMA-ES, and DNN). (a) Resistance against SVM attacks. (b) Resistance
against LR attacks. (c) Resistance against CMA-ES attacks. (d) Resistance against DNN attacks.

TABLE II
COMPARISON ON PRIMARY METRICS BETWEEN FLAM-PUF AND PRIOR STRONG PUFS

Thanks to the response feedback-controlled LFSR, the
FLAM-PUF input-output mapping is a robust nonlinear func-
tion, resisting the linear modeling attacks for feature vectors.
The LR and SVM algorithms are more suitable for linear rela-
tions, with a poor fitting effect on nonlinear functions. The
CMA-ES algorithm can solve nonlinear nonconvex functions,
yet the convergence speed is slow due to the random update
strategy. Although DNNs can build nonlinear models as an
empirical black-box model at the cost of increasing param-
eters by manual setting, it lacks targeted analysis and thus
becomes ineffective if used for modeling our proposed PUFs.

To summarize, as shown in Table II, the uniqueness and
uniformity of our FLAM-PUF are all close to the ideal value of
50%. The reliability is higher than 95%, which is comparable
to other works. The prediction accuracy of the four typical
attack algorithms is lower than 55%, which is approximate to
random guessing. Our proposed PUF can well balance safety
and performance. It is worth noting that the PUFs proposed
in [22] and [57] both adopt a reliability enhancement method.

F. Hardware Cost Comparisons

The CMOS technology of 65 nm has become the de-
facto standard in mainstream processor manufacturers these
years. According to [21], Table III lists the gate equiva-
lent (GE) in 65-nm CMOS technology. A GE stands for
a unit of measure which allows specifying manufacturing-
technology-independent complexity of digital electronic cir-
cuits. In Table IV, we compare the number of GEs of
FLAM-PUF with state-of-the-art robust strong PUFs under the
same attack prediction accuracy (i.e., roughly 50%).

First, we take 128-stage APUF as an example to illustrate
the calculation of GE. In the 128-stage APUF, the multiplexers
chain consists of 128 × 2 = 256 MUXs, and the arbiter is

TABLE III
GE HARDWARE OVERHEAD IN 65-NM CMOS TECHNOLOGY

realized with a flip-flop. According to Table III, it is easy to
calculate the total number of GEs required for a 128-stage
APUF is equal to (256 × 2.5 + 1 × 6.25) ≈ 646. Besides
APUF, the LFSR incurs the primary hardware cost of FLAM-
PUF, which is roughly 3× the number of GEs of a standard
APUF. For instance, a 128-stage reconfigurable LFSR in our
design includes 128 flip-flops as registers, 127 2-input XOR,
126 2-input AND, and 2 2-input NAND as feedback module.
As Table IV shows, the total number of GEs required for a
128-stage FLAM-PUF is (256 × 2.5 + 129 × 6.25 + 127 ×
2.5 + 126 × 1.5 + 2 × 1) ≈ 1955. In contrast, x-XOR APUF
is resistant to LR attacks only when x is very large, but the
hardware overhead overgrows as x increases. The 128-stage
x-XOR APUF with x ≤ 7 can be successfully attacked by
LR algorithm [57]. While the 8-XOR APUF calculating the
responses of 8 APUFs via XOR operations will incur about 8×
the number of GEs of a single APUF, i.e., about 5100 GEs. In
Ising-PUF [15], each cell PUF includes a 4-stage APUF and
corresponding control circuits. The 128-stage Ising-PUF costs
about 7000 GEs, i.e., 3.6× the number of GEs of our scheme.

Similarly, 64-stage 8-XOR APUF costs about half of the
number of GES of 128-stage 8-XOR APUF. The (x, y)-iPUF
combines an n stage x-XOR APUF with an (n+1)-stage y-XOR.
The hardware overhead of a (x, y)-iPUF is close to (x + y)×
of an APUF. The (1, 9)-iPUF of 64-stage and (8, 8)-iPUF
of 64-stage in [54] require about 10× and 16× the number
of GEs of a 64-stage APUF, respectively. As we can see in

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 30,2023 at 11:44:56 UTC from IEEE Xplore. Restrictions apply.

WU et al.: FLAM-PUF: A RESPONSE–FEEDBACK-BASED LIGHTWEIGHT ANTI-MACHINE-LEARNING-ATTACK PUF 4443

TABLE IV
HARDWARE COST COMPARISON OF FLAM-PUF WITH OTHER ROBUST PUFS UNDER THE SAME ATTACK PREDICTION ACCURACY

Table IV, the Ising-PUF, (1, 9)-iPUF, and (8, 8)-iPUF of 64-
stage need about 3.6×, 3.3×, and 5.3× of hardware cost of the
64-stage FLAM-PUF, respectively. The experimental results
in [17] show that a 64-stage CT-PUF needs 731 look-up tables
(LUTs) and 486 flip-flops. Each LUT is roughly equivalent to
10–20 prime logical gates, and the number of GEs required
for the entire circuit is larger than 10 000.

In summary, compared with classic robust strong PUFs, i.e.,
x-XOR APUF, Ising-PUF, iPUF, and CT PUF, FLAM-PUF
can reduce at least 62% hardware overhead in 64-stage and
128-stage.

Evaluation Summary: FLAM-PUF can achieve excellent
resistance to widely used modeling algorithms by introducing
nonlinear obfuscation and exponential uncertainty. When the
attack model is very close to the PUF mapping, the prediction
accuracy of the attack algorithm on the test set is high, indicat-
ing a successful attack. In the experiment, the results for the
1-bit response can only be 1 or 0. Hence, when the prediction
accuracy is close to 50%, indicating a failing attack. FLAM-
PUF as a defense entity makes the prediction accuracy of all
four attack algorithms around 50%, showing that it can well
resist existing modeling attacks. FLAM-PUF mainly consists
of a reconfigurable Galois LFSR and an APUF. Compared with
state-of-the-art robust strong PUFs, FLAM-PUF is lightweight
and can achieve more than a 62% reduction in hardware
overhead in 64-stage and 128-stage.

VI. CONCLUSION

We presented FLAM-PUF, the first response feedback-based
lightweight PUF with high anti-ML-attack ability. FLAM-
PUF was mainly composed of a reconfigurable LFSR and
an APUF. Specifically, FLAM-PUF leverages a cost-effective
feedback loop structure to control and update the LFSR con-
figuration dynamically, achieving at least a 62% reduction in
hardware cost compared with state-of-the-art robust strong
PUFs. In addition to exploiting a n-bit response feedback-
controlled reconfigurable Galois LFSR to enlarge the original
challenge space of the APUF, FLAM-PUF feeds back a 1-bit
response in every cycle to intentionally poison the data of the
CRP set for training, by randomly updating one coefficient
of feedback polynomial to implant problematic correlations
into the target model of attackers. The extensive experimental
results demonstrated that FLAM-PUF achieves near-optimal

uniformity, uniqueness, and reliability, and works well under
standard attack models with public crucial initial information.
The prediction accuracy of modeling attacks against FLAM-
PUF is nearly 50% under the four widely used ML algorithms,
i.e., LR, SVM, DNN, and CMA-ES. On the other hand,
our solution requires at least (n + 1) cycles to generate the
final responses. We next intend to design more efficient PUF
solutions in both area and time delay.

REFERENCES

[1] H. P. Breivold and K. Sandström, “Internet of Things for industrial
automation—Challenges and technical solutions,” in Proc. IEEE Int.
Conf. Data Sci. Data Intensive Syst., 2015, pp. 532–539.

[2] T. Malche and P. Maheshwary, “Internet of Things (IoT) for building
smart home system,” in Proc. Int. Conf. IoT Soc. Mobile Anal. Cloud
(I-SMAC), 2017, pp. 65–70.

[3] D. Vishal, H. S. Afaque, H. Bhardawaj, and T. K. Ramesh, “IoT-
driven road safety system,” in Proc. Int. Conf. Elect. Electron. Commun.
Comput. Optim. Techn. (ICEECCOT), 2017, pp. 1–5.

[4] M. Neyja, S. Mumtaz, K. M. S. Huq, S. A. Busari, J. Rodriguez, and
Z. Zhou, “An IoT-based E-health monitoring system using ECG signal,”
in Proc. IEEE Global Commun. Conf. (GLOBECOM), 2017, pp. 1–6.

[5] “IoT security—A guide to a safer connected experience.” 2021. [Online].
Available: https://www.appsealing.com/iot-security/

[6] E. Dubrova, M. Näslund, G. Selander, and F. Lindqvist, “Message
authentication based on cryptographically secure CRC without poly-
nomial irreducibility test,” Cryptography Commun., vol. 10, no. 2,
pp. 383–399, 2018.

[7] W. Trappe, R. Howard, and R. S. Moore, “Low-energy security: Limits
and opportunities in the Internet of Things,” IEEE Security Privacy,
vol. 13, no. 1, pp. 14–21, Jan./Feb. 2015.

[8] D. Pishva, “IoT: Their conveniences, security challenges and possible
solutions,” Adv. Sci. Technol. Eng. Syst. J, vol. 2, no. 3, pp. 1211–1217,
2017.

[9] M. Šimon, L. Huraj, and T. Horák, “DDoS reflection attack based on
IoT: A case study,” in Cybern. Algorithms Intell. Syst., R. Silhavy, Ed.
Cham, Switzerland: Springer Int., 2019, pp. 44–52.

[10] Y. Hu et al., “STT-MRAM-based reliable weak PUF,” IEEE Trans.
Comput., vol. 71, no. 1, pp. 1564–1574, Jul. 2022.

[11] J. Shi, Y. Lu, and J. Zhang, “Approximation attacks on strong PUFs,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 39, no. 10,
pp. 2138–2151, Oct. 2020.

[12] S. Bhunia and M. Tehranipoor, “Chapter 12—Hardware security prim-
itives,” in Hardware Security, S. Bhunia and M. Tehranipoor,
Eds. London, U.K.: Morgan Kaufmann, 2019, pp. 311–345.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/B9780128124772000174

[13] D. Lim, J. W. Lee, B. Gassend, G. E. Suh, M. van Dijk, and S. Devadas,
“Extracting secret keys from integrated circuits,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 13, no. 10, pp. 1200–1205, Oct. 2005.

[14] U. Rührmair, F. Sehnke, J. Sölter, G. Dror, S. Devadas, and
J. Schmidhuber, “Modeling attacks on physical unclonable functions,” in
Proc. 17th ACM Conf. Comput. Commun. Security, 2010, pp. 237–249.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 30,2023 at 11:44:56 UTC from IEEE Xplore. Restrictions apply.

4444 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 41, NO. 11, NOVEMBER 2022

[15] H. Awano and T. Sato, “Ising-PUF: A machine learning attack resistant
PUF featuring lattice like arrangement of arbiter-PUFs,” in Proc. Design
Autom. Test Europe Conf. Exhibit. (DATE), 2018, pp. 1447–1452.

[16] V. B. Suresh, R. Kumar, and S. Mathew, “A 0.% BER, machine-
learning resistant 1028 challenge-response PUF in 14nm CMOS fea-
turing stability-aware adversarial challenge selection,” in Proc. 57th
ACM/IEEE Design Autom. Conf. (DAC), 2020, pp. 1–3.

[17] J. Zhang, C. Shen, Z. Guo, Q. Wu, and W. Chang, “CT PUF:
Configurable tristate PUF against machine learning attacks for IoT
security,” IEEE Internet Things J., vol. 9, no. 16, pp. 14452–14462,
Aug. 2022.

[18] L. Yu, X. Wang, F. Rahman, and M. Tehranipoor, “Interconnect-based
PUF with signature uniqueness enhancement,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 28, no. 2, pp. 339–352, Feb. 2020.

[19] Y. Wang, C. Wang, C. Gu, Y. Cui, M. O’Neill, and W. Liu, “A dynami-
cally configurable PUF and dynamic matching authentication protocol,”
IEEE Trans. Emerg. Topics Comput., vol. 10, no. 2, pp. 1091–1104,
Apr.–Jun. 2022.

[20] M. Elshamy and H.-G. Stratigopoulos, “Neuron-PUF: Physical
Unclonable function based on a single spiking neuron,” in Proc. 27th
IEEE Int. Symp. On-Line Test. Robust Syst. Design, 2021, pp. 1–6.

[21] E. Dubrova, O. Näslund, B. Degen, A. Gawell, and Y. Yu, “CRC-PUF: A
machine learning attack resistant lightweight PUF construction,” in Proc.
IEEE Eur. Symp. Security Privacy Workshops (EuroS & PW), 2019,
pp. 264–271.

[22] S. Hou, D. Deng, Z. Wang, J. Shi, S. Li, and Y. Guo, “A dynamically
configurable LFSR-based PUF design against machine learning attacks,”
CCF Trans. High Perform. Comput., vol. 3, no. 1, pp. 31–56, 2021.

[23] U. Rührmair et al., “PUF modeling attacks on simulated and silicon
data,” IEEE Trans. Inf. Forensics Security, vol. 8, no. 11, pp. 1876–1891,
Nov. 2013.

[24] G. E. Suh and S. Devadas, “Physical unclonable functions for device
authentication and secret key generation,” in Proc. 44th ACM/IEEE
Design Autom. Conf., 2007, pp. 9–14.

[25] P. H. Nguyen, D. P. Sahoo, C. Jin, K. Mahmood, U. Rührmair, and
M. van Dijk, “The interpose PUF: Secure PUF design against state-of-
the-art machine learning attacks,” in Proc. IACR Trans. Cryptograph.
Hardw. Embedded Syst., 2019, pp. 243–290.

[26] Q. Wang, M. Gao, and G. Qu, “A machine learning attack resistant
dual-mode PUF,” in Proc. Great Lakes Symp. VLSI, 2018, pp. 177–182.

[27] X. Xu, U. Rührmair, D. E. Holcomb, and W. Burleson, “Security eval-
uation and enhancement of bistable ring PUFs,” in Proc. Int. Workshop
Radio Freq. Identif. Security Privacy Issues, 2015, pp. 3–16.

[28] J. Delvaux, D. Gu, D. Schellekens, and I. Verbauwhede, “Helper data
algorithms for PUF-based key generation: Overview and analysis,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 34, no. 6,
pp. 889–902, Jun. 2015.

[29] Y. Gao, H. Ma, S. F. Al-Sarawi, D. Abbott, and D. C. Ranasinghe, “PUF-
FSM: A controlled strong PUF,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 37, no. 5, pp. 1104–1108, May 2018.

[30] Y. Gao, S. F. Al-Sarawi, D. Abbott, A.-R. Sadeghi, and
D. C. Ranasinghe, “Modeling attack resilient reconfigurable latent
obfuscation technique for PUF based lightweight authentication,” 2017,
arXiv:1706.06232.

[31] J. Ye, Y. Hu, and X. Li, “RPUF: Physical unclonable function with
randomized challenge to resist modeling attack,” in Proc. IEEE Asian
Hardw. Oriented Security Trust (AsianHOST), 2016, pp. 1–6.

[32] S.-J. Wang, Y.-S. Chen, and K. S.-M. Li, “Adversarial attack against
modeling attack on PUFs,” in Proc. 56th ACM/IEEE Design Autom.
Conf. (DAC), 2019, pp. 1–6.

[33] J. Zhang, L. Wan, Q. Wu, and G. Qu, “DMOS-PUF: Dynamic multi-key-
selection obfuscation for strong PUFs against machine learning attacks,”
2018, arXiv:1806.02011.

[34] D. Suzuki and K. Shimizu, “The glitch PUF: A new delay-PUF architec-
ture exploiting glitch shapes,” in Proc. Cryptograph. Hardw. Embedded
Syst. (CHES), 2010, pp. 366–382.

[35] A. Vijayakumar and S. Kundu, “A novel modeling attack resistant PUF
design based on non-linear voltage transfer characteristics,” in Proc.
Design Autom. Test Europe Conf. Exhibit. (DATE), 2015, pp. 653–658.

[36] R. Kumar and W. Burleson, “On design of a highly secure PUF based on
non-linear current mirrors,” in Proc. IEEE Int. Symp. Hardw. Oriented
Security Trust (HOST), 2014, pp. 38–43.

[37] Z. He, M. Wan, J. Deng, C. Bai, and K. Dai, “A reliable strong PUF
based on switched-capacitor circuit,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 26, no. 6, pp. 1073–1083, Jun. 2018.

[38] F. Afghah, B. Cambou, M. Abedini, and S. Zeadally, “A reram phys-
ically unclonable function (ReRAM PUF)-based approach to enhance
authentication security in software defined wireless networks,” Int. J.
Wireless Inf. Netw., vol. 25, no. 2, pp. 117–129, 2018.

[39] S. Khaleghi, P. Vinella, S. Banerjee, and W. Rao, “An stt-MRAM
based strong PUF,” in Proc. IEEE/ACM Int. Symp. Nanoscale Archit.
(NANOARCH), 2016, pp. 129–134.

[40] S. Jeloka, K. Yang, M. Orshansky, D. Sylvester, and D. Blaauw, “A
sequence dependent challenge-response PUF using 28nm SRAM 6T bit
cell,” in Proc. IEEE Symp. VLSI Circuits, 2017, pp. 270–271.

[41] X. Xi, H. Zhuang, N. Sun, and M. Orshansky, “Strong subthreshold
current array PUF with 265 challenge-response pairs resilient to machine
learning attacks in 130nm CMOS,” in Proc. Symp. VLSI Circuits, 2017,
pp. 268–269.

[42] J. Liu, Y. Zhu, C.-H. Chan, and R. P. Martins, “A 0.46pJ/bit ultralow-
power entropy-preselection-based strong PUF with worst-case BER ≤
6.7 × 10−6,” in Proc. IEEE Asian Solid-State Circuits Conf. (A-SSCC),
2021, pp. 1–3.

[43] Y.-C. Lai, C.-Y. Yao, S.-H. Yang, Y.-W. Wu, and T.-T. Liu, “A robust
area-efficient physically unclonable function with high machine learning
attack resilience in 28-nm CMOS,” IEEE Trans. Circuits Syst. I, Reg.
Papers, vol. 69, no. 1, pp. 347–355, Jan. 2022.

[44] U. Rührmair et al., “Efficient power and timing side channels for phys-
ical unclonable functions,” in Proc. Int. Workshop Cryptograph. Hardw.
Embedded Syst., 2014, pp. 476–492.

[45] X. Xu and W. Burleson, “Hybrid side-channel/machine-learning attacks
on PUFs: A new threat?” in Proc. IEEE Design Autom. Test Europe
Conf. Exhibit. (DATE), 2014, pp. 1–6.

[46] B. Gassend, D. Lim, D. Clarke, M. Van Dijk, and S. Devadas,
“Identification and authentication of integrated circuits,” Concurrency
Comput. Pract. Exp., vol. 16, no. 11, pp. 1077–1098, 2004.

[47] M. Majzoobi, F. Koushanfar, and M. Potkonjak, “Lightweight secure
pufs,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, 2008,
pp. 670–673.

[48] B. Gassend, D. Clarke, M. Van Dijk, and S. Devadas, “Silicon physical
random functions,” in Proc. 9th ACM Conf. Comput. Commun. Security,
2002, pp. 148–160.

[49] S. Saranyadevi and M. Thangavel, “A low power structure design of
2D-LFSR and encoding technique for bist,” Int. J. Adv. Sci. Technol.,
vol. 18, pp. 11–22, May 2010.

[50] C.-I. Chen and K. George, “Configurable two-dimensional linear feed-
back shifter registers for parallel and serial built-in self-test,” IEEE
Trans. Instrum. Meas., vol. 53, no. 4, pp. 1005–1014, Aug. 2004.

[51] S. Mishra, R. R. Tripathi, and D. K. Tripathi, “Implementation of con-
figurable linear feedback shift register in VHDL,” in Proc. Int. Conf.
Emerg. Trends Elect. Electron. Sustain. Energy Syst. (ICETEESES),
2016, pp. 342–346.

[52] N. Hansen, “The CMA evolution strategy: A tutorial,” 2016,
arXiv:1604.00772.

[53] G. T. Becker, “The gap between promise and reality: On the insecurity
of XOR arbiter PUFs,” in Proc. Int. Workshop Cryptograph. Hardw.
Embedded Syst., 2015, pp. 535–555.

[54] N. Wisiol et al., “Splitting the interpose PUF: A novel modeling attack
strategy,” in Proc. IACR Trans. Cryptograph. Hardw. Embedded Syst.,
2020, pp. 97–120.

[55] J. Delvaux and I. Verbauwhede, “Side channel modeling attacks on 65nm
arbiter PUFs exploiting CMOS device noise,” in Proc. IEEE Int. Symp.
Hardw. Oriented Security Trust (HOST), 2013, pp. 137–142.

[56] R. Pappu, B. Recht, J. Taylor, and N. Gershenfeld, “Physical one-way
functions,” Science, vol. 297, no. 5589, pp. 2026–2030, 2002.

[57] J. Tobisch and G. T. Becker, “On the scaling of machine learning attacks
on PUFs with application to noise bifurcation,” in Proc. Int. Workshop
Radio Freq. Identif. Security Privacy Issues, 2015, pp. 17–31.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on July 30,2023 at 11:44:56 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

