Check for
Updates

LiCA: A Fine-grained and Path-sensitive Linux Capability
Analysis Framework

Menghan Sun

Hong Kong, China
sm017@ie.cuhk.edu.hk

Daoyuan Wu

Zirui Song

The Chinese University of Hong Kong The Chinese University of Hong Kong
Hong Kong, China

sz019@ie.cuhk.edu.hk

Xiaoxi Ren
Hunan University
Hunan, China
happyrxx@hnu.edu.cn

Kehuan Zhang

The Chinese University of Hong Kong The Chinese University of Hong Kong

Hong Kong, China
dywu@ie.cuhk.edu.hk

ABSTRACT

The capability mechanism in Linux-based systems is designed for
dispersing the root privileges into a set of more refined capabilities,
making programs gain no-more-necessary privileges. However, it
is challenging to check the necessity and sufficiency of capabilities
assigned to programs due to the highly complicated call chains
invoked in practice. Inappropriate capability assignment brings
threats to the systems. For example, over-privileged programs could
allow an attacker to misuse root privileges, while under-privileged
programs may incur runtime errors.

In this paper, we propose a new Linux capability analysis frame-
work called LICA to find necessary and sufficient capabilities for
programs effectively. LICA presents fine-grained and path-sensitive
code flow analysis based on LLVM to construct accurate mappings
between system calls and their capabilities. In particular, we solve
the constraint equations along each path from a given system call
to individual capabilities and strategically overcome the path explo-
sion problem. Our experiments show that LICA can correctly find
necessary capabilities for the Linux utility programs (e.g., ping and
tcpdump) and the public programs from GitHub. By comparing the
capabilities claimed by program developers and the results from
L1CA, we identify a batch of programs requiring more capabilities
than necessary, even root privileges. Therefore, LICA could help
those third-party developers validate their programs’ capability
setting to achieve the least privilege principle.

CCS CONCEPTS

« Security and privacy — Software and application security.

KEYWORDS

Linux capability, security analysis, mapping

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

RAID 2022, October 26-28, 2022, Limassol, Cyprus

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9704-9/22/10...$15.00
https://doi.org/10.1145/3545948.3545966

364

Hong Kong, China
khzhang@ie.cuhk.edu.hk

ACM Reference Format:

Menghan Sun, Zirui Song, Xiaoxi Ren, Daoyuan Wu, and Kehuan Zhang.
2022. LiCA: A Fine-grained and Path-sensitive Linux Capability Analysis
Framework. In 25th International Symposium on Research in Attacks, Intru-
sions and Defenses (RAID 2022), October 26-28, 2022, Limassol, Cyprus. ACM,
New York, NY, USA, 16 pages. https://doi.org/10.1145/3545948.3545966

1 INTRODUCTION

Privilege management is crucial for the security of Linux systems.
It controls the access to sensitive resources of the system. Since the
birth of Linux, many access control models have been proposed,
e.g., SELinux [36] and AppArmor [33]. The capability mechanism
is the fundamental one [19] that has been widely used in various
Linux-based systems. It disperses the root privilege into a set of
more delicate capabilities. Correctly assigning capabilities can avoid
letting unnecessary programs obtain the root privilege and then
manipulate the system arbitrarily.

If some capabilities have been assigned while the program does
not need them, it may offset the benefits of the capability mecha-
nism over the root mechanism. On the other hand, the insufficient
privileges will result in exceptions and breaks of the normal pro-
cess, which are unexpected for the security of the Linux kernel.
In practice, the over-privileged cases are far more common than
insufficient privilege cases because the over-assigned privileges
will not harm the program’s smooth execution and don’t need the
efforts of developers to check carefully. Users gradually acquiesced
to these over-privileged programs due to the absence of vision
about the long-term harms to the system. However, over-privileged
cases go against the original intention of the capability mechanism
design since adversaries may exploit over-assigned privileges to
compromise the system.

Currently, Linux kernel uses a static and coarse-grained mech-
anism for capability checking, which leaves security loopholes,
e.g., injected malicious code in a victim program may acquire all
capabilities this program has and accomplish privilege escalation
([2, 7, 14, 15]). Existing works ([24, 29]) related to analyzing ca-
pabilities and system calls suffer from either high false positives
or high false negatives. TCLP [29] uses dynamic analysis to moni-
tor which capabilities are checked when system calls are invoked,
but the mapping between system calls and capabilities provided
is coarse-grained. If a program calls a system call that can trigger
multiple capabilities, TCLP will report all the capabilities regardless

https://doi.org/10.1145/3545948.3545966
https://doi.org/10.1145/3545948.3545966
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3545948.3545966&domain=pdf&date_stamp=2022-10-26

RAID 2022, October 26-28, 2022, Limassol, Cyprus

of whether these capabilities are needed. Moreover, the dynamic
analysis may not cover all execution paths, which may result in
false negatives (i.e., insufficient privilege). AutoPriv [24] uses whole
program analysis during link-time optimization to determine where
programs use system calls and remove those related capabilities
when system calls return. However, in practical scenarios, one sys-
tem call may be related to multiple capabilities, but only part of
them will be triggered in one execution. This coarse assignment
results in false positives (over-privileged). These problems motivate
us to invent new techniques that could generate a fine-grained and
path-sensitive mapping between system calls and Linux capabilities.
To correctly assign capabilities to programs, we propose LICA,
a capability analysis framework for Linux kernel to generate path-
sensitive mappings between system calls and Linux capabilities, and
effectively analyze the program. LICA makes it possible to find the
capabilities triggered by a given program precisely. At a high level,
LiCA statically analyzes the Linux kernel and constructs a fine-
grained and path-sensitive mapping between the system call and
Linux capability offline. The mappings are generated by analyzing
the invoked call chain and combining their branch conditions into
mathematical constraint equations. When analyzing the program,
L1CA leverages the mapping to predict the necessary capabilities.
We implemented a full-featured prototype of LICA and evaluated it
on 114 real-world programs. Among these programs, we discovered
three cases requiring more capabilities than they need, three cases
asking users to assign root privilege, one inducing the user to assign
root privilege without providing a capability list, and one program
having different capability settings in different applications.

Contributions. Our paper makes three key contributions.

o New framework. We have proposed a new framework, to gener-
ate a fine-grained and path-sensitive mapping between system
calls and Linux capabilities. Not only it can be used to discover
the wrongly assigned capabilities in existing programs, but it
can also help developers to assign the right capabilities to their
work under the least privilege principle.

o Prototype Implementation. We have implemented a full-featured
prototype LICA. To handle the complex situations inside Linux
kernel source code, we leveraged and customized some tech-
niques, including backward program slicing, branch condition
pruning, code modeling, and constraint equation converting.
Findings and evaluations on real-world programs. We have eval-
uated LICA prototype 114 real-world programs. Discrepancies
are observed, and manual analysis shows that the differences
are caused by various capability setting problems, including
requiring root privilege (sudo), setting more capabilities than
needed, no capability list provided but "no permission error"
when running, and different capabilities being assigned to the
same program in different applications.

Roadmap. The rest of this paper is organized as follows: Section
2 explains the background of our work; Section 3 describes the
fine-grained and path-sensitive analysis with illustrating some mo-
tivation examples; Section 4 introduces our detailed design of LICA;
Section 5 evaluates LICA; Section 6 discusses the limitations of
LiCA; Section 7 reviews the state-of-the-art works related to our
work; Section 8 concludes the paper.

365

Menghan Sun, Zirui Song, Xiaoxi Ren, Daoyuan Wu, and Kehuan Zhang

2 BACKGROUND

This section presents the necessary background of LICA. It begins
with the Linux capability, which is throughout our task, and then
briefly describes the program analysis techniques applied in LICA.

2.1 Privilege Management Primitives

Linux Capabilities. Starting with Linux kernel 2.2, Linux divides
the privileges traditionally associated with superuser into distinct
units, known as capabilities, which can be independently enabled
and disabled [19]. Capabilities provide fine-grained control to su-
peruser permissions and are designed for avoiding misuse of root
privileges. For example, CAP_NET_RAW enables privileges to capture
the network flow but doesn’t enable other network relative privi-
leges like binding port. Likewise, the CAP_SETUID allows a process
to change the user id of one file but doesn’t allow a process to change
the group id. But in practice, the choice of capabilities required by
a program has been made based on the developers™ understand-
ing, which often causes some problems. The so-called "new root"
problem is a prominent example, mis-assigning CAP_SYS_ADMIN to
an untrusted user will generate a powerful adversary with nearly
half of the privileges of a root user. In the recent version of Linux,
CAP_SYS_ADMIN even accounts for more than 45% of all the capa-
bilities [26]. Although Linux has many security mechanisms, the
interdependence and mutual influence relationship among all ker-
nel security mechanisms may make them fall into the "shortboard
effect” and impair their protection capability [30]. Hence, detect-
ing and eliminating vulnerabilities in the Linux kernel is a key for
securing operating systems.

Linux Privilege Escalation. An over-privileged program can
obtain privileges more than needed, leaving the space for the ad-
versary to launch a privilege escalation attack by hijacking this
program. For example, Tar is a normal user runnable program.
Users can use it on previously created archives to extract files,
store additional files, update and list files. In some Linux varia-
tions, Tar has CAP_DAC_READ_SEARCH capability [2] and can ac-
cess anything. Adversaries could get password hashes by using
Tar to read /etc/shadow, the root only readable file. Specifically,
since tar has that capability, the adversary can archive /etc/shadow
and extract it from the archive then read it. Another example is
CAP_DAC_OVERRIDE, which allows full read/write/execute access.
When obtaining this capability, adversaries can add a root user to
/etc/passwd or /etc/shadow, modify cron jobs running by root, add
a public ssh key to /root/authorized_keys, or simply open a root
shell. Moreover, if CAP_SETUID capability is assigned to python,
adversary can use “import os; os.setuid(0); os.system(’/bin/sh’)” to
get the root shell.

2.2 Program Analysis Techniques

Symbolic Execution. Symbolic execution [27] is a widely used
technology that analyze the program to get the set of inputs that
make a specific code area execute smoothly. When applying sym-
bolic execution to analyze a program, inputs of the program will be
replaced with the symbolic formula rather than specific values. In
L1CA, we apply the symbolic execution to organize the extracted
branch conditions and generate the constraint equations for a path.

LiCA: A Fine-grained and Path-sensitive Linux Capability Analysis Framework

Z3 Solver. Z3 [40] is a state-of-the-art SMT (Satisfiability modulo
theories) solver from Microsoft Research. It is designed for solving
the logical formulas during program analysis likes checking the
satisfiability of logical formulas over one or more theories [21]. In
L1CA, we use Z3 to find solutions to satisfy all the constraints in
paths from the system call to the capabilities. According to these
solutions, we can find valid system calls’ arguments that can reach
specific capabilities we want.

3 EXAMPLES OF PATH-SENSITIVE
CAPABILITY TRIGGERING

Previous works only perform a coarse-grained analysis to generate
mappings between system calls and capabilities. For example, sup-
pose capability C is found in a function that is invoked by system call
S, previous works will regard capability C as required by system call
S, regardless of the entrance arguments of system call S. However,
cases in the Linux kernels are more complex. We have obtained the
following observations besides the above direct mapping:

Observation 1: A function can trigger multiple capabilities un-
der different conditions, depending on the arguments of the func-
tion; sometimes no capability is required.

Observation 2: Sometimes a function can work without a capa-
bility it checks - the capability is not compulsory.

Observation 3: Mapping between the system calls and capabil-
ities is many-to-many mapping.

We will present some real-world examples from the Linux kernel
to support the above observations and justify our motivation for a
path-sensitive mapping between system calls and Linux capabilities.

3.1 Different capabilities can be triggered by a
system call under different conditions

Fig. 1 shows system call setsockopt can trigger CAP_NET_ADMIN,

CAP_NET_RAW or no capability with different settings of argument

optname. (Observation 1). The path from system call setsockopt
to CAP_NET_ADMIN and CAP_NET_RAW is shown below:

SYSCALL_DEFINE5(setsockopt) -> __sys_setsockopt
sock_setsockopt -> ns_capable(CAP_NET_ADMIN/RAW)

->

As shown in Fig. 1a, function setsockopt is defined as a system
call (line 1) in Linux kernel and it calls __sys_setsockopt di-
rectly (line 3). In function __sys_setsockopt (Fig. 1b), function
sock_setsockopt is called (line 9) only if (1) optlen >= @ (line 4);
(2) the return sock of function sockfd_lookup_light is not NULL
(line 6); (3) level equals to SOL_SOCKET. If all these three condi-
tions are fulfilled, this function will finally set the option for the
socket. Although CAP_NET_ADMIN appeared in this function many
times (Fig. 1c shows part of the appearances of CAP_NET_ADMIN),
we can notice that CAP_NET_ADMIN is required only when optname
equals to SO_SNDBUFFORCE (line 10) or SO_PRIORITY (line 15) in this
code snippet. Meanwhile, when optname equals to SO_PRIORITY
and @ <= val <= 6, CAP_NET_ADMIN will not be used and there
will be no capability required with no error as well. However, in
traditional capability evaluation methods, CAP_NET_ADMIN will be
regarded as compulsory for the program. When optname equals
to SO_BINDTOIFINDEX, function sock_setbindtodevice_locked
will be called (line 21). As shown in Fig. 1d, the function will check

366

1

RAID 2022, October 26-28, 2022, Limassol, Cyprus

int level, int

int optlen)

SYSCALL_DEFINES5 (setsockopt , int fd,
optname, char __user « optval,

>

return __sys_setsockopt(fd, level,

optlen);

optname, optval,

(a) System call setsockopt first calls __sys_setsockopt (line 3).

int level, int

int optlen)

static int __sys_setsockopt(int fd,
optname, char __user «optval,

2

if (optlen < 0) return —EINVAL;
sock sockfd_lookup_light (fd, &err,&fput_needed);
if (sock != NULL) {

if (level == SOL_SOCKET)
err sock_setsockopt (sock,
optlen);

level , optname, optval,

}

(b) __sys_setsockopt calls sock_setsockopt (line 9) if (1) optlen >=
0 (line 4); (2) the return sock of function sockfd_lookup_light is not
NULL (line 6); (3) 1evel equals to SOL_SOCKET.

int sock_setsockopt(struct socket ssock, int level, int

o

optname, char __user =optval, unsigned int optlen)
switch (optname) {
case SO_BROADCAST: /+ Trigger no capability«/
sock_valbool_flag (sk, SOCK_BROADCAST, valbool);

break;
case SO_SNDBUFFORCE: /« Trigger CAP NET ADMIN =/
if (!capable (CAP_.NET_ADMIN)) {
ret —EPERM;

break;

case SO_PRIORITY:
capability «
if ((val >= 0 && val <= 6)

/« Trigger CAP_NET_ADMIN or no

ns_capable (sock_net (sk)

—>user_ns , CAP_NET_ADMIN))
sk—>sk_priority = val;
else
ret = —EPERM;

break;

case SO_BINDTOIFINDEX: /« Trigger CAP_NET _RAW =«
ret sock_setbindtodevice_locked (sk, val);
break;

}

(c) With different settings of argument optname, CAP_SYS_ADMIN or
no capability will be triggered.

static
int

int sock_setbindtodevice_locked(struct sock =sk,
ifindex)

2

ret = —EPERM;
if (!ns_capable(net—>user_ns,
goto out;

CAP_NET RAW))

out:

return ret;
}

(d) sock_setbindtodevice_locked will be called when optname
equals to SO_BINDTOIFINDEX, then it checks if there is CAP_NET_RAW.

Figure 1: An example of different capabilities can be trig-
gered by a system call under different conditions

RAID 2022, October 26-28, 2022, Limassol, Cyprus

the capability. if there is no CAP_NET_RAW capability, this function
will return -EPERM (Operation not permitted) error.

3.2 Function still works without the Linux
capability it checks
Here is another example from system call open to CAP_SYS_ADMIN:

SYSCALL_DEFINE3(open) -> do_sys_open ->
do_filp_open -> path_openat ->
alloc_empty_file -> capable(CAP_SYS_ADMIN)

As shown in Fig. 2, function alloc_empty_file checks if the
program has capability CAP_SYS_ADMIN (line 4). However, this check
only happens when the result of function get_nr_files (this func-
tion will return the total number of open files in the system) is large
than the maximum value of files set in the system. It means that
privileged users can go above max_files. Without CAP_SYS_ADMIN,
system call open still works when the number of open files is less
than the maximum (Observation 2).

3.3 Mapping between the system calls and
Linux capabilities

The above examples show the traditional way cannot accurately
analyze which capabilities a program requires. There is no tool
for developers and users to figure out which capabilities should be
assigned to a program precisely. It’s essential to get a fine-grained
system call and capability mapping to avoid being over-privileged.
An example of the mapping is shown in Fig. 3, which is repre-
sented as a call graph. The call chain indicates the system call goes
through some functions and then finally reaches the Linux capa-
bility (i.e., the capability is supposed to be checked). The nodes
between the system call and Linux capability represent different
functions invoked within the call chain. The edges indicate the call-
ing relationships (with some/no branch conditions) in the function
call. If the system call entrance arguments cannot satisfy corre-
sponding branch conditions, it means one cannot go through this
call chain and reach the Linux capability.

Fig. 3 also shows that a system call is able to reach multiple
Linux capabilities; meanwhile, different system calls are also able
to trigger the same Linux capability. As a result, it is a many-to-
many mapping between the system calls and Linux capabilities
(Observation 3). With the same system call and different entrance
arguments, the final result as to which Linux capability will be
triggered will be different. As a user program can have a number
of system calls, there can be different capabilities required by it.
Hence the fine-grained and path-sensitive mapping relationship
is necessary for developers and users to prevent programs over-
privileged.

4 DESIGN
4.1 Overview

In this work, we propose a new approach to generate a fine-grained
and path-sensitive mapping from system calls to Linux capabilities.
The whole design overview is shown in Fig.4, where we have com-
bined the technique parts (the top blocks) and the visualization (the
bottom figures) of the result at each step. At a high level, LICA has

367

Menghan Sun, Zirui Song, Xiaoxi Ren, Daoyuan Wu, and Kehuan Zhang

struct file ~alloc_empty_file(int flags, const struct

cred =cred)
{

if (get_nr_files() >= files_stat.max_files && !capable(
CAP_SYS ADMIN)) {
if (percpu_counter_sum_positive(&nr_files) >=
files_stat.max_files)
goto over;

}
f = __alloc_file(flags, cred);

Figure 2: Although this code snippets check CAP_SYS_ADMIN
capability (line 4), this function still works successfully
(line 8). With CAP_SYS_ADMIN, privileged users can go above
max_files.

4 components: path extractor, branch condition analyzer, constraint
equation generator, and user interface.

e Path extractor. The call chains are the backbones of the map-
ping from system calls to Linux capabilities, so the goal is to
precisely extract the call chains from system calls to capabil-
ities. Path extractor takes the LLVM intermediate represen-
tation (LLVM IR) [17] of the Linux kernel as the input and
discovers all the functions invoked between the system calls
and capabilities to build the paths. (A§4.2)

Branch condition analyzer. To generate a fine-grained and
path-sensitive mapping from system calls to capabilities, we
analyze the branch conditions within each function to extract
and organize the branch conditions for each function through
the paths. (A§4.3)

Constraint equation generator. After all the branch condi-
tions are generated, we can derive constraint equations. The
constraint equations are mathematical condition sets that in-
dicate the requirements for entrance arguments to pass the
branch condition and go through the path. (A§4.4)

User interface. With obtained the mapping from system calls
to Linux capabilities, a user interface is needed to leverage the
mapping and analyze the program in practical usage. (A§4.5)

4.2 Function call paths extraction

How to extract the call chains from system calls to capabilities
accurately and completely becomes the first challenge. Instead of
analyzing the source code of the Linux kernel, we choose first to
compile it into LLVM IR. There are two advantages: (1) The LLVM
compiler translates the Linux kernel source code to a representa-
tion closer to machine instructions, which will be more accurate
and accessible for analysis. This is because C/C++ languages use
an archaic syntax and allow for nightmarish language constructs,
which makes static analysis much complex. But IR will be simple as
it eliminates the reliance on the concrete source language, involves
no nesting and has fewer instructions [18, 35]. (2) We can run some
optimization passes over the generated IR to reduce the works (such
as the inline functions) in static analysis.

LiCA: A Fine-grained and Path-sensitive Linux Capability Analysis Framework

RAID 2022, October 26-28, 2022, Limassol, Cyprus

Capability

CAP _NET ADMIN

—»(CAP_NET RAW)

—I sock_setsockopt

System Call

__sys_setsockopt

setsockopt /’l:\li

L»(CAP_IPC_LOCK)

>

=|| do_mmap }—>| can_do_mlock

syslog do_syslog

io,setup » uprobe mmap |—.| install_breakpoint }——| }—>| expand_downwards ’— a NO_CAP

%Ml:ﬂCAP—SYS—ADMINJ

]

—I check syslog permissions }——{CAPﬁSYSiLOG)

Jasil

system_call n 45\

CAP_XXX

Figure 3: An Example of the Paths between System Call and Linux Capability

Backward program slicing. Prior studies ([28, 34]) have con-
firmed that enumerating all execution paths originated from the
entry point of a system call may face the problem of path explosion.
As aresult, the analysis process can keep running for a long time. To
address this problem, we propose a two-way analysis technique. As
the capability macros have been compiled into its defined value (e.g.,
CAP_NET_RAW is compiled into 13), first we need to figure out where
a given capability is used. After going through all the locations of
capability macros in source code, we collected the functions which
contains the capabilities as arguments (these functions will check
if a capability is capable or not), such as capable, file_ns_capable,
ns_capable, inode_capable and etc. Then we can precisely locate
these functions in LLVM IR and figure out which capability is used
according to the its defined value. We also go through all its basic
blocks for each function and collect all the callees and generate a
one-to-many call graph. For example, by going through the basic
blocks in Fig. 5b, we can find that function foo will call function p
by "call void @p(i32)" . With this start, we can do backward
tracing along with the call graph from callee to the caller and so on
until the definition of a system call is reached. During the backward
tracing, we also perform program slicing by removing the functions
that are irrelevant to the interested call trace.

Indirect call-based path extracting. In addition to direct calls,
function pointers are also commonly utilized to facilitate dynamic
program behaviour in the Linux kernel, which are known as indirect
calls [31]. To deal with these kinds of calls, we followed the method
in Pex [41] to find the indirect calls in the Linux kernel. We modify
its source code to print out all the indirect calls and add them to
the callee and caller pairs to generate the call chains with direct
and indirect calls.

4.3 Branch conditions analysis

After the extraction of Linux function call chains, the next step is to
construct branch conditions for each path. The branch conditions
in the functions are mostly represented as "If-Else" statements,
and they are mathematically represented as equality or inequality.
For example, in Fig.3, the system call setsockopt will call the
function__sys_setsockopt and sock_setsockopt. Depending on

368

the entrance arguments, it may finally trigger the CAP_SYS_RAW,
CAP_SYS_ADMIN or no capability.

The branch conditions are based on the function, so we first
split the function call path generated in the last section into (caller,
callee) pairs. For example, the path starting from the system call
setsockopt to CAP_NET_ADMIN and CAP_NET_RAW in Section 3.1
can be divided into three pairs: (setsockopt, __sys_setsockopt),
(__sys_setsockopt, sock_setsockopt) and (sock_setsockopt,
ns_capable). To generate branch conditions for each function pair,
we first need to analyze the Control Flow Graph (CFG).

Control flow graph analyzing. To build the CFG, firstly we it-
erate each basic block and analyze the terminator instruction. As
each basic block has a list of successors - basic blocks to which
control flow may transfer from these basic blocks. It is easy to
obtain the control flow and the branch condition of it by look-
ing at the terminator instruction of the basic blocks as the header
11vm/ADT/PostOrderIterator.h offers iterators for going over
basic blocks inside a function in the post-order traversal. This in-
terlinking of basic blocks constitutes the CFG. However, while the
basic block graph is directed, it’s not necessarily cycle-free. Any
loop in the code translates to a cycle in the basic block graph so
that there can be errors. To deal with this problem, we mark each
visited basic block as visited and would not go through it again.
The next step is to find the basic block location where callee’s
function is called in the caller’s function and trace back the path
how the caller reach the callee from the entry starting to this loca-
tion. Fig. 5a shows a toy example. Function foo has 6 basic blocks:
entry, if.then, if.else, if.then2, if.end and if.end3.
Block entry is the entry point for foo and function p is called in
block if.end3. For this example, there are 3 paths for foo to call
function p: (1) entry -> if.then -> if.end3; (2) entry
-> if.else -> if.then2 -> if.end -> if.end3; (3) entry
-> if.else -> if.end -> if.end3. For each path, we record
the branch conditions such as entry (br i1 %cmp, True) ->
if.then -> if.end3 for path (1). As we only care about the en-
trance arguments - only %4, branch condition instructions, instruc-
tions related to %4 and branch condition instructions, we ignore

RAID 2022, October 26-28, 2022, Limassol, Cyprus

the irrelevant instructions. After applying use-define chain [25],
the output for path (1) is shown below (in reversing order):

call void @p(i32 %4)

%4 = load 132, i32* %n.addr, align 4
True = br i1 %cmp

%cmp = icmp sle i32 %0, 2

%0 = load 132, i32* %b.addr, align 4

store i32 %b, i32% %b.addr, align 4
%b is the argument of function foo

However, two cases require special handling. The first case is
that some functions use context information of the system, such
as the total number of open files in the system in Fig. 2, or some
information from current_task. As static analysis cannot give the
value of these variables, we regard all the related instructions as
True. The second one is that a system call might still work without
the capability as shown in Fig. 2. For some user programs, it might
be essential that the system call always works, so they need the
capability, and for others, it can be fine that it fails sometimes. We
assign this capability to the user program to make it always works.
Fortunately, we found this case is rare in the Linux kernel and will
not cause too much impact.

Branch condition pruning. When analyzing some complex func-
tions, there are over hundreds of branch conditions. For instance,
for function pair (load_module, kobject_uevent), there are 396
branch conditions before function kobject_uevent is called. Sup-
pose one-tenth of them have 2 paths, and there will be 240 =
1.0995116 * 102 paths, which will lead to path explosion. To deal
with this problem, we studied the functions with over 40 branch
conditions in detail and found that (1) many of the branch condi-
tions are the error checking; (2) many branch conditions will reach
the same basic block no matter it is True or False. Fig.6 illustrate
code snippets of the function (load_module, as shown in lines 5,
7, and 8, they will all form branch conditions to determine whether
there is an error or not. If there is no capability checking in such a
branch condition, we can just ignore this branch condition as this
will not affect the final result.. The example in Fig. 5 shows that all
the three paths will finally call function p, so that all the branch
conditions can be eliminated then we can summarize that function
foo will always call function p under all arguments settings. Note
that if there is a capability checking in some paths, the capabil-
ity checked will also be remarked as required by corresponding
branch condition. With this insight in mind, it is obvious that we
can disregard branch conditions if both "then’ and ’else’ branches
join together and prune these branch conditions. After pruning, we
reduced branch conditions by 11% on average, and this number can
reach 50% for functions with significantly more branch conditions
that meet the conditions outlined above.

Leveraging OCaml bindings for LLVM [12], we collected all
branch conditions through all paths. Each path includes massive
serial or parallel branch conditions starting from the system call to
the capability (as shown in Fig.4 Branch Condition Analysis).

4.4 Constraint Equation Generation

After extracting and organizing all the branch conditions, the path
can be mathematically represented as a long expression with

369

Menghan Sun, Zirui Song, Xiaoxi Ren, Daoyuan Wu, and Kehuan Zhang

numerous constraints. Further, a single complete mapping is sup-
posed to consist of all the possible paths from a specific system call
to a particular capability. Therefore, the final generated mapping
ought to include all the single complete mappings, which contain
the paths from all the system calls and all Linux capabilities.

To achieve this, we need to analyze the serial or parallel branch
conditions through a path, then combine them into a precise math-
ematical expression known as the constraint equation. Specifically,
we focus on the constraints in terms of those symbols for the possi-
ble outcomes of each conditional branch, which requires the help
of symbolic execution. In order to do this, we need to solve the
challenges in handling common libraries and loops.

Loop and common library handling. In the preliminary studies,
we have found that common libraries and loops may cause lots of
trouble when performing the aforementioned backward-forward
two-way analysis. Basically, there are two possible problems when
handling common libraries and loops:

e Massive traces may be generated, which symbolic execution
could not efficiently handle. One example is that a simple ker-
nel function with only 20 lines of code will produce more than
4,000,000 lines of traces (mainly due to the deeply cascaded
function calls), also known as the path explosion.

o Difficulty in handling pointer-oriented standard functions,
these functions have the variables based on the pointer, making
the indirect function call analysis more difficult. Commonly
used build-in functions such as strncpy and strncmp are typ-
ical pointer-oriented standard functions, some of which are re-
sponsible for transferring the data from kernel space to the user
space or vice versa. With various variable types and structs,
the functionality of such pointer-oriented standard functions
is difficult to be represented in mathematical expressions.

To address these problems, we propose using the technique of
code modeling at the function level. The idea is inspired by function
modeling (FM)[22], which aims to facilitate the communication as
well as understanding between engineers of various disciplines and
means to make use of computers for reasoning purposes. Mean-
while, we focus on the expressions in terms of those symbols for
expressions and variables instead of considering their trivial prop-
erties, such as in the user space or kernel space. There are several
ways to do the modeling: One is purely manual work by writing
a model to describe the functionality of the target function at a
high level. Specifically, this model is responsible for extracting the
idea of "How-it-is-done" from the function and further representing
the mathematical expression. An alternative approach is to replace
it with a functional equivalent version but can be handled by the
symbolic execution. The code modeling can effectively solve the
path explosion and further handle the pointer-oriented standard
functions in the symbolic execution.

We use case study to demonstrate the procedure and expected
output of function modeling, Fig.7 shows an example of strncpy in
Linux version 5.4.18. This function represents a typical method to
traverse a string in C language. Its functionality is straightforward:
From the starting position of the pointer, store the value pointed by
src into the dest, and no more than count number of characters;
in the case where the length of src is less than that of count, the
remainder of dest will be padded with NULL.

LiCA: A Fine-grained and Path-sensitive Linux Capability Analysis Framework

1
: I Backward Program Slicing I
1 1

— + —>
: Indirect Call Analysis :

Path Extraction

| » None
™ Capability 1
;Capubili[y 2

™ Capability n

—

. 1
Linux Kernel

System call 1

System call 2

System call n

RAID 2022, October 26-28, 2022, Limassol, Cyprus

1
Symbolic Execution :
+ I
1
1
b
! 1

Z3 Solver

Figure 4: The Overview of Methodology and Visualized Examples

entry:

%n.addr = alloca i32, align 4

%Db.addr = alloca i32, align 4

%a = alloca i32, align 4

store 132 %n, i32* %n.addr, align 4

store 132 %b, i32* %b.addr, align 4

store i32 1, i32* %a, align 4

%0 = load i32, i32* %b.addr, align 4
%cmp = icmp sle i32 %0, 2

br il %cmp, label %if.then, label %if.else

T F

if.else:

%2 = load i32, i32* %b.addr, align 4
%cmpl = icmp sgt i32 %2, 3
br il %cmpl, label %if.then2, label %if.end

T [F

if.then2:

%3 = load i32, i32* %a, align 4
%add = add nsw i32 %3, 1
store 132 %add, i32* %a, align 4
br label %if.end

if.then:

%1 = load i32, i32* %ea, align 4
%sub = sub nsw i32 %1, 1
store 132 %sub, 132* %a, align 4
br label %if.end3

if.end:
br label %if.end3

if.end3:

%4 = load 132, i32* %n.addr, align 4
call void @p(i32 %4)

ret voi

CFG for 'foo' function

(a) CFG for foo
void foo(int n, int b)
{
int a = 1;
if (b <= 2)
a —= 1;
else if(b=>3)
a += 1;
p(n);
}

(b) Source code for foo

Figure 5: CFG example

However, in the symbolic execution, we need to unfold the while
loop and execute the branch condition in line 5 repeatedly. In the

symbolic execution, each branch condition will fork a new path.

As a result, this while loop will generate huge trace, the number
of the paths is supposed to be exponentially grown, which is also
known as the path explosion problem. Although there are massive
branch condition in the function strncpy, at a high level, this
function only has two branches: (1) if the length of the string from
the src is more than count, only copy count characters to the

370

Constraint equation of the path: System call x None
A==(..) && B==(..)&& C==(..) .
(() (I:H: Capability a
4}. Entrance argv
Capability b
Find a valid solution: A=1,B=2,C=3
and analyze it in source codes
1 static int load_module(struct load_info =info, const char
__user =uargs, int flags)

err = elf_header_check (info);

if (err) goto free_copy;
err = setup_load_info (info, flags);
if (err) goto free_copy;
if (blacklisted (info—>name)) {
err = —EPERM;
goto free_copy;
}
free_copy:
free_copy (info);
return err;

Figure 6: Pruning the error checking branches

char «strncpy(char =dest, const char «src, size_t count)

{

char «start dest ;
while (count && (»dest++
count ——;
if (count) /+ pad out with zeroes
while (——count)
+dest++ "\ '
return(start);

*»Src++)) /+ copy string «/

*/

Figure 7: Source code for strncpy

dest; (2) otherwise, copy the all the characters from the src to the
dest, the remainder of dest will be padded with NULL. Therefore,
we only need to implement these two branches with a single if-
else statement, instead of going to the while loop and executing
branch condition repeatedly. That’s the idea of function modeling.
After manually writing a model to describe the functionality of
the function strncpy, we can perfectly solve the path explosion
problem in the while loop. As function modeling is a one-time cost
work and most of the functions do not need function modeling
while many functions have no changes or small changes when the
Linux kernel version updates, we think it is acceptable to solve the
path explosion problem leveraging function modeling.

4.5 User Interface

After collecting the constraint equations in A§4.4, we are able to
generate the comprehensive mapping from the system calls (with
their entrance arguments) to capabilities. The mapping consists

RAID 2022, October 26-28, 2022, Limassol, Cyprus

of all the paths (starting from system calls to the capabilities) to-
gether with the constraint equations through the paths. Therefore,
we have proposed an algorithm that allows both the developers
and application users to conveniently traverse the mapping, and
further efficiently apply the mapping to practical usage. Both of
them can use it to make sure the program is the least privileged.
This algorithm is for the interaction between user programs and
the mapping as shown below.

Algorithm 1: Interaction between user programs and the
System call and Capability mapping

Input: SysCallName: System call name
Mapping: Mapping of System call & Capability
EA: Entrance arguments of the system call
Output: CL: Capability List to be triggered

1 CL=(];

2 cap_dict = Mapping[SysCallName];
/* cap_dict = */
/* { CAP_1:Constraint_equations_1, */
/* CAP_2:Constraint_equations_2, */
/* R, */

3 foreach cap € cap_dict.keys() do

'

constraint_equation = cap_dict[cap];

@«

if constraint_equation(EA) then
6 ‘ CL.append(cap);

7 end

s end

return CL;

©

The basic idea of this algorithm is traversing the whole mapping
to find which capability will be triggered with a given system call
and its entrance arguments. The capability settings are usually set
only once when the user program is installed by setcap command
with the root privilege as it assigns capabilities to a program. The
user interface requires no privilege as it only reads the input system
calls and arguments or scans the LLVM IR code of the user program
to get the input. Then it can automatically construct the mapping
of system calls and capabilities then calculates which capabilities
are required by the user program. In practical usage, the developers
and application users only need to find the system calls invoked
in the user program together with the entrance arguments. This
process can be done by the developers or by LICA to analyze a
given user program and apply our method again to the IR code of
user programs to find out where the system calls are triggered and
the arguments for them.

5 IMPLEMENTATION AND EVALUATION

LiCA was implemented using LLVM/Clang-10.0. It contains over
2000 lines of Ocaml/python code. We evaluated LICA with the de-
fault kernel configuration defconfig, the (commonly-used) default
configuration. All experiments were carried out on a virtual ma-
chine with Linux kernel 5.4.18. Fig. 8 shows the overview of the
evaluation. We finished mapping between all 39 capabilities and
428 system calls. There are 46,094 functions and 164,627 function
pairs in total, while only less than 100 functions had to be manually

371

Menghan Sun, Zirui Song, Xiaoxi Ren, Daoyuan Wu, and Kehuan Zhang

modeled. These functions can be decided automatically as they take
much longer time in constraint equation generation than the others.
We identified 16,239 call chains which can trigger capabilities. As a
result, we attach a simple table of the capabilities that system calls
might require in Appendix 3. We empirically evaluate it to address
the following questions:

e RQ1: How about the correctness of LICA with the mapping
between system calls and capabilities?
e RQ2: How effective is LICA in analyzing the user program?

5.1 Correctness of the mapping

To answer RQ1, we prepared two approaches to verify the correct-
ness of the mapping from system calls to Linux capabilities: the first
method is static, which aims to explain the constraint equations in
the mapping, further find the corresponding semantic meaning in
the source code; the second one is dynamic, which leverages the
Linux kernel to provide the ground truth and verify the correct-
ness of the mapping (as shown in Fig.8a). The details of these two
approaches are shown below.

Explaining the Constraint Equations In this method, we try
to correspond the constraint equations we have collected to the
source code in the Linux kernel, and further provides the semantic
meaning of the constraints equations.

Here we use an example to explain the constrain equations
in the mapping. In this part, we consider the paths that starting
from the system call setsockopt and ending with two possibly re-
quired capabilities CAP_NET_ADMIN and CAP_NET_RAW. System call
setsockopt is responsible for setting the option specified by the
optname argument, at the protocol level specified by the level ar-
gument, to the value pointed to by the optvalue argument for the
socket associated with the file descriptor specified by the socket
argument, and it may require CAP_NET_ADMIN or CAP_NET_RAW. In
the previous usage, the developer will always assign both the capa-
bilities in case of the abnormal interruption, however, it is possible
to cause an over-privileged problem. The constraint equations are
shown in Table.1. We write a Python script to trace the equality
and inequality in the mapping back to the source codes and val-
idate if they can be matched. In addition, we manually check a
random subset to ensure correctness. The results show that we
can always find the corresponding branch conditions in the Linux
kernel and we can further explain the purpose of such branch
conditions. As shown in Fig.9, system call setsockopt will first
call __sys_setsockopt, and then sock_setsockopt will be called,
which is meant for all protocols to use and covers goings-on at the
socket level, and everything inside is generic.

There are 7 cases to trigger CAP_NET_ADMIN and 2 cases to trig-
ger CAP_NET_RAW (source codes are shown in Appendix). All of
these cases have some common branch conditions to detect the in-
valid input, such as checking fd and return the prepared sock (line
20), or return error if the optlen < 0 (line 17-18). Meanwhile, in
sock_setsockopt there has branch condition to check the optlen
(line 40). All these branch conditions have been captured during the
mapping generation, hence the constraint equations can mathemat-
ically represent such branch conditions, for example, the equation
False (optlen < @) corresponds to the code in line 17-18,
and False == (optlen < 4) corresponds to the code in line 40.

LiCA: A Fine-grained and Path-sensitive Linux Capability Analysis Framework

fd = (.)
level = (..)
@ optname = (..)
optval = (..)
System Call: __sys_setsockopt optlen = (.)

Entrance Arguments

!

Disable CAP_NET_ADMIN or CAP_NET_RAW

|
Test

(a) Evaluate Correctness of Mapping from System Call to CAP

Recommended capabilities list

RAID 2022, October 26-28, 2022, Limassol, Cyprus

Dynamic Analysis

2

User Program

|
From author

Capabilitiy_1
Capabilitiy_2

Capabilitiy_n

A

System call & Arguments —Test—»

| —
[N /br'\x_ﬁ Analyze Linux kernel
% R,
% |
S Trigger Capabilitiy_x !
: or e—Verify
1

! No Capability has been triggered :

Analysis Result

(b) Evaluate Effectiveness in Analyzing User Program

Figure 8: Evaluation Overview

case SO_DEBUG CAP_NET_ADMIN

N

(__sys_setsockopt (fd, level, optname, optval, optlen))

!

Call sock_setsockopt (...) |—>| switch (optname) |

&

]

No Capability

[case so_BINDTODEVICE |
:|—> CAP_NET_RAW
[case SO_BINDTOIFINDEX |

Figure 9: Real Case Example in Linux Kernel from System Call setsockopt

Therefore, in the mapping from the system call setsockopt, there
has the constraint equations related to optlen as shown in Table.1.

Besides, considering different cases that may trigger the ca-
pability, the decisive factor is the value of the optname. Similar
to the previous explanations, we can clearly align the constraint
equations we have generated with the branch conditions in the
source code. For example, when the arguments satisfy the condi-
tion optname == SO_BINDTODEVICE == 25, it will call the function
sock_setbindtodevice (line 37-39). This function will further call
the function sock_setbindtodevice_locked (line 83), which fi-
nally triggers the CAP_NET_RAW at line 88. This result verifies the
constraint equations (The 3xd path in Table.1). In conclusion, the
equality optname 25 or optname 62 correspond to trigger-
ing the CAP_NET_RAW; on the other hand, the optname == 1, or
optname == 32, or optname == 33, or optname == 36, or optname
== 46, or optname == 61 or optname == 62 correspond to trigger-
ing the CAP_NET_ADMIN. As we can see, these cases exactly match
the constraint equations generated by LICA.

Testing in Linux Kernel For verifying the correctness of our
mapping, we use Linux kernel to provide the undeniable ground
truth. In this method, we tried to directly test the system call with
its entrance arguments in the Linux kernel by disabling the cor-
responding capability, which L1CA has found. There can be two
different results after calling such system call with disabling cor-
responding capability: (1) If the system call can run smoothly and

372

complete its task, it indicates the system call does not require the
capability which LICA has found, which means LICA made a mis-
take in terms of the mapping. (2) If the system call interrupts during
the process, it proves that the system call with these entrance ar-
guments does need the capability, which means the mapping is
correct and the result is exactly as what LICA has analyzed.

We use an example to explain the details of verifying the correct-
ness of our mapping with testing in Linux kernel, which is shown
in Fig.8a. We used the same path as the last part. We collected the
related constraint equations in the mapping (Table 1) and prepared
a set of entrance arguments by enumeration. Some of the entrance
arguments are struct defined in Linux kernel or not determinant in
the branch condition, hence we retain the parameter names as the
input arguments with mark %. We test the entrance arguments in
Linux kernel by disabling one of the capabilities, and observe the
execution performance in the Linux kernel, we can find that the
results in Linux kernel match the results from the analysis of LICA
(Table.4 in Appendix shows part of the results).

5.2 Effectiveness in analyzing user program

The adoption of Linux capabilities has actually been very slow in
the community and we find that only a small set of Linux programs
used capabilities. Some programs required root privilege are highly-
privilege and can benefit from the deployment of capabilities if we
can identify the capabilities they used. As there is no such kind of

RAID 2022, October 26-28, 2022, Limassol, Cyprus

Menghan Sun, Zirui Song, Xiaoxi Ren, Daoyuan Wu, and Kehuan Zhang

Path

Constrain Equations

setsockopt -> __sys_setsockopt ->
sock_setsockopt -> capable(CAP_NET_ADMIN)

False == (fd == 0) && False == (optlen < 0) &&
level == 1 && False == (optlen < 4) &&

(optname == 1 || optname == 32 || optname == 33 || optname == 46)

setsockopt -> __sys_setsockopt ->
sock_setsockopt -> ns_capable(CAP_NET_ADMIN)

False == (fd == 0) && False == (optlen < 0) &&
level == 1 && (False == (optlen < 4) &&
(optname == 12||optname == 36||optname == 61))

setsockopt -> __sys_setsockopt ->
sock_setsockopt -> ns_capable(CAP_NET_RAW)

False == (fd == 0) && False == (optlen < 0) &&
level ==1 &&

(optname == 25 || (False == (optlen < 4) && (optname == 62)))

Table 1: Constrain Equations of Path from System call setsockopt to Capability CAP_NET_ADMIN and CAP_NET_RAW

testing program set related to capability studies, we have to build
our own and will later share it with the community. The evaluation
program set was constructed with the following rules, to provide
an accurate evaluation of LICA:

e The program requires some capabilities or root privilege.
e The program is open-sourced so that it can be downloaded,
built, and tested on our evaluation platform.

Based above rules, we then wrote some scripts to crawl data from
Github automatically. After some manual vetting and removing of
duplicates, we finally collected 100 programs requiring capabilities
and another 10 requiring root privilege. Besides, we also add several
well-known utility programs (like ping, traceroute, etc.) into our
evaluation program set, serving as the ground truth to some degree.
These selected programs from Github have 43.3 stars on average,
and the most popular one has 953 stars.

To answer RQ2, we conducted an evaluation on the program set
we collected as shown in Fig.8. First, we need to extract the system
calls and their arguments. We applied two methods to do this. The
first one is the dynamic approach. We leveraged radamsa [6] to
randomly fuzz the input for a given program. For each program,
we first generate a list of sample inputs (the length of this list
depends on the number of combinations of different parameters of
the program) and ensure the samples include every parameter of the
program. After that, we run radamsa for each sample 10000 times
and use strace [1] to trace the system calls and their arguments.
In addition to this, if the result of the dynamic approach does
not match the capabilities provided by the developer, we have the
second approach to apply our method again to the user program and
regard the system call as our target (the original target is capability).
By tracing back the call chain for a system call, we can compute the
changes for the arguments. Most times the arguments are constants
defined in other functions, while little of them are related to the
user input. For such cases, we assume that the argument will cover
all input for the constraint equation. As for the external libraries,
we can also collect their source code and compile it into LLVM
IR. Given that the mapping is ready and only requires computing
the results using the constraint equations, it takes less than two
seconds to obtain the capability result when providing the system
calls and their inputs for a user application.

After analyzing the user program and deriving the required ca-
pabilities by analyzing the system calls together with their entrance
arguments, we use the output result to justify the correctness of
the recommended capability list from the program author: if the

373

capabilities reported by LICA matches the recommended capability
list from the author, it means the program has no privilege problem;
if our output required capabilities consist of a capability that is
not included in the recommended capability list, we find it’s an
insufficient privileges problem, it will lead to exceptions and break
of normal functions; on the other hand, if there is a capability in the
recommended capability list which is not included in our output
results, we find it’s an over-privileged problem, which is supposed
to be avoided. Both the problems are double-checked by manually
analyzing the program, including using gdb to run the program
step by step and tracing back to the source code level to check each
system call with its arguments. For the 114 programs we collected,
we discovered three cases requiring more capabilities than they
need, three cases asking users to assign root privilege, one inducing
the user to assign root privilege without providing a capability list,
and one program having different capability settings in different
applications.

However, static analysis indeed may introduce false positives
and false negatives. In this work, false positives indicate that LICA
report the capabilities which are not required by the user program;
false negatives indicate that the program requires specific capabili-
ties but not reported by LICA. We aims to be conservative and try to
remove all false positives, as false positives will bring unnecessary
capabilities and lead to a wider attacking surface. We used A/B
testing to evaluate the false positives: suppose LICA reports N capa-
bilities for a program, we run the program with each combination
of (N-1) capabilities. If there is an error for every run, it means the
list of capabilities reported by LICA has no false positives. Other-
wise, we can compute the false positives. In the evaluation of the
collected program set, no false positives have been observed.

Meanwhile, false negatives are spotted during the evaluation. For
example, we have come across false negatives caused by indirect
calls (some function pairs missed in the mapping), even though we
have used state-of-the-art techniques. There are 139,638 functions
and 210,720 function call pairs in the default setting, and Pex reports
2,529 indirect call pairs. As Pex can cover over 92% of the indirect
calls, the false negatives of LICA should be less than 8%.

5.3 Capability setting problems case study

We identified multiple capability setting problems from the program
set we collected:

Problem 1: Abusing root privilege. When searching key words
like "run with root privilege" in Github, over 88 millions of code

LiCA: A Fine-grained and Path-sensitive Linux Capability Analysis Framework

RAID 2022, October 26-28, 2022, Limassol, Cyprus

Tool name

Description

Capabilities set by de-
fault

Capabilities reported by

LiCA

Problem

Netsniff-ng [38]

Linux networking toolkit.

CAP_NET RAW,
CAP_NET_ADMIN,
CAP_SYS_ADMIN,
CAP_IPC_LOCK

part of the capabilities for
each tool as shown above

over capability set

Mcsauna [16] hottest keys tracking tool on | CAP_NET_RAW, CAP_NET RAW over capability set
memcached instances. CAP_SETPCAP
DOSBox-pigeos [9] | a modified version of DOSBox | CAP_NET_RAW, CAP_NET RAW over capability set
(emulator of DOS program). CAP_SETPCAP
iftop [13] display bandwidth usage on in- | root CAP_NET_RAW requesting root privilege
terfaces
probedhcp [4] a tool for sending IPv4 DHCP | root CAP_NET_RAW requesting root privilege
packets with increasing TTL
scan_iface [11] a tool for scanning AP root CAP_NET_RAW requesting root privilege
macchanger [5] a tool for maniputation of MAC | none CAP_NET_ADMIN no capability list provided

addresses of network interfaces
(a) Capability setting problems

Tool name Description # of system calls used | CAP1 | CAP2 | CAP3 | CAP4
netsniff-ng a zero-copy packet analyzer, pcap capturing/replaying tool 22 v v v v
trafgen a multithreaded low-level zero-copy network packet generator 25 v v X X
mausezahn high-level packet generator for appliances with Cisco-CLI 6 v X X X
ifpps a top-like kernel networking and system statistics tool 8 X v X X
curvetun a lightweight curve25519-based multiuser IP tunnel 16 v v v X
astraceroute an autonomous system trace route and DPI testing utility 11 v v X X
flowtop a top-like netfilter connection tracking tool 16 X v X X
bpfc a Berkeley Packet Filter compiler, Linux BPF JIT disassembler 12 X X X X
V: capabilities reported by LICA X: set by default but not reported by LICA
CAP1: CAP_NET_RAW; CAP2: CAP_NET_ADMIN; CAP3: CAP_IPC_LOCK; CAP4: CAP_SYS_ADMIN
(b) Netsniff-ng toolkit result
Tool name Description # of system | Capabilities set by default | Capabilities reported by
calls used LiICA
ping a simple utility used to check whether a network | 12 CAP_NET_RAW CAP_NET_RAW
is available and if a host is reachable.
traceroute a tool to track the route packets taken from an | 8 CAP_NET RAW CAP_NET _RAW
IP network on their way to a given host.
tcpdump a tool to analyze traffic sourced or destined to | 13 CAP_NET _RAW, CAP_NET_RAW,
your own host or capture traffic between two CAP_NET_ADMIN CAP_NET_ADMIN
or more endpoints
httpd(Apache2) | an open-source HTTP server 52 CAP_NET BIND_SERVICE | CAP_NET BIND_ SERVICE

(c) Linux utility result

Table 2: Capabilities reported by LICA for the programs in the wild

results are presented. Three millions of them use Markdown lan-
guage, which indicates "run with root privilege" may be found in
Readme or Makefile file. Here we present three programs which
need to be run with root privileges (their authors write this in their
readme file). It may be due to sometimes it is not clear what ca-
pabilities does a program need even for their authors so they just
require root privilege for convenience. For instance, iftop [13] is
a tool used for displaying bandwidth usage on an interface with

374

"iftop must be run as root." is shown on its git main page. However,
setting up CAP_NET_RAW capability has already fulfilled its needs.

Problem 2: Setting more capabilities than they need. For the
programs from Github, discrepancies are observed in three pro-
grams. Manual inspections and testings show that some open-
source programs are recommending more capabilities than actually
needed. We will show the details below:

RAID 2022, October 26-28, 2022, Limassol, Cyprus

o Netsniff-ng [38] is a free Linux networking toolkit including
8 tools. In the installation description, it requires setting four
capabilities: sudo setcap cap_net_raw, cap_ipc_lock,
cap_sys_admin, cap_net_admin=eip {toolname} Asa
result, we must be a root user or we set above 4 capabilities for
each tool if we want to run it. It is strange for a networking
tool to have such a crucial capability CAP_SYS_ADMIN. So we
evaluate the 8 tools in it and the results are shown in Table 2b.
As expected, only one tool (netsniff-ng) needs all 4 capabilities
for execution. Most of the tools only need one or two capabili-
ties while there is one tool (tpfc) that needs no capability. It is
used for translating Berkeley Packet Filter (BPF) assembler-like
mnemonics into a numerical or C-like format, that can be read
by tools such as iptables.

Mcsauna [16] is a tool allows user to track the hottest keys on
Memcached instances, reporting back in a graphite-friendly
format. After analyzed by LICA, we found that although it set
cap_net_raw and cap_setpcap by default cap_setpcap is not
necessary and not used in this program.

DOSBox-pigeos [9] is a modified version of DOSBox [8], which
is a free and open-source emulator of an Intel x86 personal
computer designed for the purpose of running software created
for disk operating systems on IBM PC compatibles, primarily
DOS video games. It also set cap_net_raw and cap_setpcap
by default and only cap_net_raw is reported by LICA. It is
dangerous to assign cap_setpcap capability to this program as
it is an emulator which can run programs inside it. For example,
CVE-2019-12594 [3] shows a program running inside DOSBox
can access the contents of /proc (e.g. /proc/self/mem).

For Linux utilities, as many of them do not require any capabili-
ties, we selected some most commonly used programs for evalua-
tion. The results are illustrated in Table 2c. LICA is able to report the
same set of needed capabilities. Interestingly, by detailed checking
the documents and settings of Apache2, we found that this program
runs as a root user by default. Thus it will have full capabilities at
most times, which does not follow the least privilege principle. As a
normal user, only CAP_NET_BIND_SERVICE is required for binding
to privileged ports such as 80 and 443.

Problem 3: Missing privilege settings. Apart from analyzing
programs with capabilities settings, we also evaluated some pro-
grams with no capabilities set by default - neither mentioning the
capabilities they need nor asking users to run as root. However, for
one program Macchanger [5], LICA reports CAP_NET_RAW capabili-
ties. We manually checked this program and found an "operation
did not permit" error when we tried to execute it as a normal user
with no privilege. Such a case shows that some programs are miss-
ing privilege settings and leave this problem to users. Usually, the
user will use root privilege to run them as they do not know which
capabilities are used, violating the principle of least privilege.

Problem 4: Mismatch capability settings between users for
the same program. Addition to problem 3 above, users may add
the capabilities by themselves, for example, most of the users set
CAP_NET_RAW and CAP_NET_ADMIN for tcpdump, but in one repos-
itory [10], CAP_NET_BIND_SERVICE is also set to it. Actually, it is
hard to decide proper capabilities for users as they can only refer
to the descriptions of the programs.

375

1

Menghan Sun, Zirui Song, Xiaoxi Ren, Daoyuan Wu, and Kehuan Zhang

All these problems show that it is essential to set correct capabil-
ities to user programs, regardless of developer and users and LICA
is able to fill the gap of this.

5.4 Comparison with prior works

We compare LICA with related works TCLP [29]. TCLP is a dy-
namic analysis system that monitors the system calls in run time
to find the least capabilities required for running the containers,
which also generate a coarse mapping between system calls and
capabilities. It monitors which capabilities are checked when sys-
tem calls are triggered in run time. However, ilf a system call can
trigger multiple capabilities and a program calls this system call,
TCLP will report all the capabilities regardless whether these ca-
pabilities are really needed. Moreover, the dynamic analysis may
not be able to cover all execution paths, which may result in false
negatives. LICA generates fine-grained mappings between system
calls and capabilities and is able to decide the precise capability
required by a system call under specific conditions. We found TCLP
will generate more false positives than ours. For the 8 programs
reported by LICA, TCLP can report three of them with the same
capabilities with LICA but more capabilities for the other five. We
manually analyzed the difference and found that TCLP reported
them because some functions in the program can trigger those ca-
pabilities with some arguments but those arguments will never be
fulfilled. A sample is the handling of the setsockopt system call in
the testing program mausezahn [38]. TCLP will report the require-
ment of CAP_NET_ADMIN as it may appear in setsockopt system call,
but LICA will not because it will analyze the arguments to setsock-
opt and find that arguments provided inside this specific testing
program mausezahn will eventually not trigger CAP_NET_ADMIN.

6 DISCUSSION

While LICA has made a first step towards find-grained and path-
sensitive Linux capability analysis with considering the indirect
call, it still has a number of limitations.

First, some situations will fail the static analysis. When handling
the common libraries, the function resource allocation may be be-
yond the scope of static analysis, as some functions will ask for the
resource related to the user management of processes. One example
is function inode_owner_or_capable, which checks current task
permissions of the inode, and returns true if current either has
CAP_FOWNER , or owns the file. Function current_fsuid is respon-
sible for checking whether this inode owner owns the file, which is
related to the user identification of the file system. This function
is vital in determining whether trigger the capability CAP_FOWNER.
However, for static analysis, we are not able to obtain the process
or user information in terms of the file system. Hence, it is impossi-
ble to generate the constraint equations towards current_fsuid
which represent the branch condition in line 4. Although we mark
the branch condition and retain such function in the final constraint
equations for the reminder, the static analysis cannot give the final
result about whether it can trigger the capability. It is needed to be
combined with further dynamic tests in practical usage.

bool inode_owner_or_capable(const struct inode +inode)

>

3

4

5

struct user_namespace #ns;
if (uid_eq(current_fsuid (), inode—>i_uid))
return true;

LiCA: A Fine-grained and Path-sensitive Linux Capability Analysis Framework

ns = current_user_ns();
if (kuid_has_mapping(ns,
, CAP_FOWNER))
return true;
return false;

inode—>i_uid) && ns_capable (ns

}

Second, when a program creates a child process by calling ex-
ecve() to invoke another program, the capability of the child is the
intersection between the capability set from the parent and the
child. For these situations, both child and parent’s programs must
be considered, so that the capability list for the parent program
must be added with the capabilities of the child, which may also
cause overprivileged problems.

7 RELATED WORK

7.1 Linux kernel analysis

PeX [41] is a static Permission check error detector for Linux, which
takes as input a kernel source code and reports any missing, in-
consistent, and redundant permission checks. By analyzing dis-
cretionary access control (DAC), Capabilities, and Linux security
module (LSM) permission checks in the latest Linux kernel v4.18.5
using PeX, 36 new permission check bugs are reported. Yamaguchi
et al. [39] developed Chucky, a method to expose missing checks
in source code. Since many vulnerabilities result from insufficient
input validation, Chucky uses taint analysis to identify anomalous
or missing conditions linked to security-critical objects. Sparse [37]
is a semantic checker for C programs, which can be used to find a
number of potential problems with kernel code.

7.2 Linux capability security analysis

There is a series of studies on Linux capabilities. Hallyn et al. [23]
demonstrates how to use the Linux implementation of these capabil-
ities and how capabilities enhance the security of the modern Linux
system. AutoPriv [24] uses whole-program analysis to determine
where programs use privileges and then transforms programs to
remove unnecessary privileges during their execution, which helps
programmers use capabilities more easily. Lin et al. [30] provide
an in-depth analysis on the privilege escalation attacks, especially
the effectiveness of kernel security mechanisms (i.e., Capability),
container mechanisms, and CPU protection mechanisms on pre-
venting privilege escalation against the container platform. Priv-
Analyzer [20] is an automated tool that measures how effectively
programs use Linux capabilities. It aims to help security-critical
software developers to minimize privileges use. TCLP [29] is a dy-
namic analysis system that monitors the system calls in run time
to find the least capabilities required for running the containers.

7.3 Indirect call analysis

In the Linux kernel analysis, handling the indirect call is a hard
problem, as the modern compilers do not recognize indirect call
targets by default. MLTA [32] is a new approach for effectively
refining indirect-call targets for C/C++ programs. It relies on an
observation that function pointers are commonly stored into objects
whose types have a multi-layer type hierarchy; before indirect calls,
function pointers will be loaded from objects with the same type
hierarchy "layer by layer". By matching the multi-layer types of

376

RAID 2022, October 26-28, 2022, Limassol, Cyprus

function pointers and functions, MLTA can dramatically refine
indirect-call targets.

8 CONCLUSION

This paper presents LICA, a fine-grained and path-sensitive Linux
capability analysis framework, which can generate accurate map-
pings between system calls and capabilities. LICA utilized LLVM,
symbolic execution, and existing indirect call analysis methods to
overcome the path explosion problem inside the Linux kernel source
code. We evaluated LICA on the standard Linux utility programs
as well as open source projects from GitHub. For standard Linux
utility programs, our framework reports all the needed capabilities
that are same with what utility programs require, while for code
from GitHub, discrepancies are observed. Manual inspections and
testings show that those open source programs are recommending
more capabilities than what they actually needed. We believe that
LiCA allows developers to validate the capability setting for their
programs to achieve the least privilege principle.

ACKNOWLEDGMENTS

We want to thank our shepherd Nathan Burow and all the anony-
mous reviewers for their valuable comments. This work was sup-
ported in part by National Key Research & Development Project of
China (Grant No. 2019YFB1804400), and Hong Kong S.A R. Research
Grants Council (RGC) General Research Fund (No. 14209720).

REFERENCES

n
[2

1996. strace(1) - Linux man page. https://linux.die.net/man/1/strace

2018. https://nxnjz.net/2018/08/an-interesting- privilege- escalation-vector-
getcap/

2019. CVE - CVE-2019-12594. https://cve.mitre.org/cgi-bin/cvename.cgi?name=
CVE-2019-12594.

2021. aledwmorris/probedhcp: Simple program for sending IPv4 DHCP packets
with increasing TTL. https://github.com/aledwmorris/probedhcp/tree/master.
2021. alobbs/macchanger: GNU MAC Changer. https://github.com/alobbs/
macchanger.

2021. aoh/radamsa: a general-purpose fuzzer. https://github.com/aoh/radamsa.
2021. Becoming Root Through Overprivileged Processes | by Vickie Li | Bet-
ter Programming. https://betterprogramming.pub/becoming-root-through-
overprivileged-processes-{26{83e18059.

2021. DOSBox, an x86 emulator with DOS. https://www.dosbox.com/.

2021. hastho/dosbox-pigeos. https://github.com/hastho/dosbox-pigeos.

2021. jupyter. https://github.com/jsand66/jupyter/blob/master/setcap.txt.

2021. kongbiji/scan_iface. https://github.com/kongbiji/scan_iface/tree/master.
2021. The OCaml bindings distributed with LLVM. https://opam.ocaml.org/
packages/llvm/

2021. Paul Warren / iftop - GitLab. https://code.blinkace.com/pdw/iftop

2021. PayloadsAllTheThings/Linux - Privilege Escalation.md at master - swis-
skyrepo/PayloadsAllTheThings - GitHub. https://github.com/swisskyrepo/
PayloadsAllTheThings.

2021. Privilege escalation via Docker - Chris Foster. https://fosterelli.co/privilege-
escalation-via-docker.html.

2021. reddit/mcsauna: Track hottest memcached keys by regex in a graphite-
friendly format. https://github.com/reddit/mcsauna.

2022. The LLVM Compiler Infrastructure Project. https://llvm.org/.

2022. LLVM, Intermediate Representation, and Static Analysis! Oh My! -
GaZAR. https://gazar.eu/2021/02/21/llvm-intermediate-representation-and-
static-analysis-oh-my/.
Canonical. 2019.
capabilities.7.html
John Criswell, Jie Zhou, Spyridoula Gravani, and Xiaoyu Hu. 2019. PrivAnalyzer:
Measuring the Efficacy of Linux Privilege Use. Proceedings - 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN 2019 (2019),
593-604. https://doi.org/10.1109/DSN.2019.00065

Leonardo De Moura and Nikolaj Bjerner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337-340.

(15]

[16

[17
[18]

[19

http://manpages.ubuntu.com/manpages/precise/man7/

[20

[21

https://linux.die.net/man/1/strace
https://nxnjz.net/2018/08/an-interesting-privilege-escalation-vector-getcap/
https://nxnjz.net/2018/08/an-interesting-privilege-escalation-vector-getcap/
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12594
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2019-12594
https://github.com/aledwmorris/probedhcp/tree/master
https://github.com/alobbs/macchanger
https://github.com/alobbs/macchanger
https://github.com/aoh/radamsa
https://betterprogramming.pub/becoming-root-through-overprivileged-processes-f26f83e18059
https://betterprogramming.pub/becoming-root-through-overprivileged-processes-f26f83e18059
https://www.dosbox.com/
https://github.com/hastho/dosbox-pigeos
https://github.com/jsand66/jupyter/blob/master/setcap.txt
https://github.com/kongbiji/scan_iface/tree/master
https://opam.ocaml.org/packages/llvm/
https://opam.ocaml.org/packages/llvm/
https://code.blinkace.com/pdw/iftop
https://github.com/swisskyrepo/PayloadsAllTheThings
https://github.com/swisskyrepo/PayloadsAllTheThings
https://fosterelli.co/privilege-escalation-via-docker.html
https://fosterelli.co/privilege-escalation-via-docker.html
https://github.com/reddit/mcsauna
https://llvm.org/
https://gazar.eu/2021/02/21/llvm-intermediate-representation-and-static-analysis-oh-my/
https://gazar.eu/2021/02/21/llvm-intermediate-representation-and-static-analysis-oh-my/
http://manpages.ubuntu.com/manpages/precise/man7/capabilities.7.html
http://manpages.ubuntu.com/manpages/precise/man7/capabilities.7.html
https://doi.org/10.1109/DSN.2019.00065

RAID 2022, October 26-28, 2022, Limassol, Cyprus

[22] M.S. Erden, H. Komoto, TJ. van Beek, V. D’Amelio, E. Echavarria, and T.
Tomiyama. 2008. A review of function modeling: Approaches and applications.
Artificial Intelligence for Engineering Design, Analysis and Manufacturing 22, 2
(2008), 147-169. https://doi.org/10.1017/s0890060408000103

Serge E Hallyn and Andrew G Morgan. 2008. Linux capabilities: Making them
work. (2008).

Xiaoyu Hu, Jie Zhou, Spyridoula Gravani, and John Criswell. 2018. Transforming
code to drop dead privileges. Proceedings - 2018 IEEE Cybersecurity Development
Conference, SecDev 2018 February 2019 (2018), 45-52. https://doi.org/10.1109/
SecDev.2018.00014

Ken Kennedy. 1978. Use-definition chains with applications. Computer Languages
3,3 (1978), 163-179. https://doi.org/10.1016/0096-0551(78)90009-7

Michael Kerrisk. 2012. CAP_SYS_ADMIN: the new root. https://lwn.net/Articles/
486306/

James C King. 1976. Symbolic execution and program testing. Commun. ACM
19, 7 (1976), 385-394.

Saparya Krishnamoorthy, Michael S. Hsiao, and Loganathan Lingappan. 2010.
Tackling the Path Explosion Problem in Symbolic Execution-Driven Test Gen-
eration for Programs. In 2010 19th IEEE Asian Test Symposium. 59-64. https:
//doi.org/10.1109/ATS.2010.19

Suyeol Lee, Jaechyun Nam, Junsik Seo, and Seungwon Shin. 2019. Poster: TCLP:
Enforcing least privileges to prevent containers from kernel vulnerabilities. Pro-
ceedings of the ACM Conference on Computer and Communications Security (2019),
2665-2667. https://doi.org/10.1145/3319535.3363282

Xin Lin, Lingguang Lei, Yuewu Wang, Jiwu Jing, Kun Sun, and Quan Zhou. 2018. A
Measurement Study on Linux Container Security: Attacks and Countermeasures.
In Proceedings of the 34th Annual Computer Security Applications Conference (San
Juan, PR, USA) (ACSAC ’18). Association for Computing Machinery, New York,
NY, USA, 418-429. https://doi.org/10.1145/3274694.3274720

Kangjie Lu and Hong Hu. 2019. Where Does It Go? Refining Indirect-Call
Targets with Multi-Layer Type Analysis. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security (London, United Kingdom)
(CCS ’19). Association for Computing Machinery, New York, NY, USA, 1867-1881.
https://doi.org/10.1145/3319535.3354244

Kangjie Lu and Hong Hu. 2019. Where Does It Go?: Refining Indirect-Call Targets
with Multi-Layer Type Analysis. 1867-1881. https://doi.org/10.1145/3319535.
3354244

Novell. 2020. Home - Wiki - AppArmor / apparmor. https://gitlab.com/apparmor/
apparmor/-/wikis/home

Jan Obdrzalek and Marek Trtik. 2011. Efficient Loop Navigation for Symbolic
Execution. In Automated Technology for Verification and Analysis, Tevfik Bultan
and Pao-Ann Hsiung (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 453
462.

Philipp Dominik Schubert, Ben Hermann, and Eric Bodden. 2019. PhASAR: An
Inter-procedural Static Analysis Framework for C/C++. In Tools and Algorithms
for the Construction and Analysis of Systems, Tomas Vojnar and Lijun Zhang (Eds.).
Springer International Publishing, Cham, 393-410.

Stephen Smalley, Chris Vance, and Wayne Salamon. 2001. Implementing SELinux
as a Linux security module. NAI Labs Report 1, 43 (2001), 139.

Linus Torvalds. 2003. Sparse. https://www.kernel.org/doc/html/v4.14/dev-
tools/sparse.html

Maciej Treder. 2020. ng toolkit. http://netsniff-ng.org/

Fabian Yamaguchi, Christian Wressnegger, Hugo Gascon, and Konrad Rieck. 2013.
Chucky: Exposing Missing Checks in Source Code for Vulnerability Discovery.
Proceedings of the ACM Conference on Computer and Communications Security.
https://doi.org/10.1145/2508859.2516665

Z3Prover. 2008. Z3Prover/z3. https://github.com/Z3Prover/z3

Tong Zhang, Wenbo Shen, Ahmed M. Azab, Dongyoon Lee, Changhee Jung, and
Ruowen Wang. 2019. PEX: A permission check analysis framework for linux
kernel. Proceedings of the 28th USENIX Security Symposium (2019), 1205-1220.

[23

[24]

[25]

™
&

[27

[28]

[29]

[30

[31]

[32]

[33

[34]

[35

R I T I

3717

Menghan Sun, Zirui Song, Xiaoxi Ren, Daoyuan Wu, and Kehuan Zhang

APPENDIX

#define SOL_SOCKET oxffff

#define SO_DEBUG 0x0001

#define SO_SNDBUFFORCE 0x100a

#define SO_RCVBUFFORCE 0x100b

#define SO_PRIORITY 12

#define SO_BINDTODEVICE 25

#define SO_MARK 36

#define SO_BUSY_POLL 46

#define SO_TXTIME 61

#define SO_BINDTOIFINDEX 62

static int __sys_setsockopt(int fd, int level, int
optname, char __user xoptval, int optlen)

{

struct socket =sock;

if (optlen < 0)
return —EINVAL;

sock = sockfd_lookup_light(fd, &err, &fput_needed);
if (level == SOL_SOCKET)
err = sock_setsockopt(sock, level, optname, optval,
optlen);
out_put:
}
return err;
}
int sock_setsockopt(struct socket ssock, int level, int
optname, char __user xoptval, unsigned int optlen)
{
if (optname == SO_BINDTODEVICE)
/+ Trigger the CAP_NET RAW «/
return sock_setbindtodevice (sk, optval, optlen);
if (optlen < sizeof(int))
return —EINVAL;
switch (optname) {
case SO_DEBUG: /« Trigger the CAP_NET ADMIN =/
if (val && !capable (CAP_NET ADMIN))
{...
case SO_SNDBUFFORCE: /« Trigger the CAP_NET ADMIN =/
if (! capable (CAP_NET_ADMIN))
{...
case SO_RCVBUFFORCE: /« Trigger the CAP_NET ADMIN =/
if (! capable (CAP_NET_ADMIN))
{...}
case SO_PRIORITY: /+ Trigger the CAP_NET _ADMIN =/
if ((val >= 0 && val <= 6) || ns_capable(sock_net(sk)
—>user_ns, CAP_NET ADMIN))
{...}
case SO_MARK: /+« Trigger the CAP_NET_ADMIN =/
if (! ns_capable(sock_net(sk)—>user_ns, CAP_NET_ADMIN))
{...}
case SO_BUSY POLL: /« Trigger the CAP_NET ADMIN =/
if ((val > sk=>sk_ll_usec) && !capable (CAP_NET_ADMIN))
{...
case SO_TXTIME: /+« Trigger the CAP_NET_ADMIN =/
if (!ns_capable(sock_net(sk)—>user_ns, CAP NET ADMIN))
{...
case SO_BINDTOIFINDEX: /« Trigger the CAP_NET RAW «/
ret = sock_setbindtodevice_locked (sk, wval);
break;
}

https://doi.org/10.1017/s0890060408000103
https://doi.org/10.1109/SecDev.2018.00014
https://doi.org/10.1109/SecDev.2018.00014
https://doi.org/10.1016/0096-0551(78)90009-7
https://lwn.net/Articles/486306/
https://lwn.net/Articles/486306/
https://doi.org/10.1109/ATS.2010.19
https://doi.org/10.1109/ATS.2010.19
https://doi.org/10.1145/3319535.3363282
https://doi.org/10.1145/3274694.3274720
https://doi.org/10.1145/3319535.3354244
https://doi.org/10.1145/3319535.3354244
https://doi.org/10.1145/3319535.3354244
https://gitlab.com/apparmor/apparmor/-/wikis/home
https://gitlab.com/apparmor/apparmor/-/wikis/home
https://www.kernel.org/doc/html/v4.14/dev-tools/sparse.html
https://www.kernel.org/doc/html/v4.14/dev-tools/sparse.html
http://netsniff-ng.org/
https://doi.org/10.1145/2508859.2516665
https://github.com/Z3Prover/z3

LiCA: A Fine-grained and Path-sensitive Linux Capability Analysis Framework

RAID 2022, October 26-28, 2022, Limassol, Cyprus

System calls

Capabilities may require by some branch conditions

linkat

CAP_DAC_READ_SEARCH

mincore, mmap_pgoff

CAP_FOWNER

setitimer

CAP_FSETID

mlock, mlockall, mmap, io_setup, io_uring_setup, shm-
ctl, unshare, get_mempolicy

CAP_IPC_LOCK

tkill, kill, rt_tgsigqueueinfo CAP _KILL
mknod CAP_MKNOD
mgq_timedsend, mq_notify CAP_NET_RAW
setreuid, setuid, setresuid, setfsuid CAP_SETUID
setgid, setfsgid CAP_SETGID

ptrace

CAP_SYS_ADMIN, CAP_SYS_PTRACE

add_key, mount, umount, quotactl, pivot_root, swapon,
swapoff, sethostname, setdomainname, ioprio_set, ac-
cept, pipe, setns, madvise, fanotify_init, keyctl

CAP_SYS_ADMIN

chroot

CAP_SYS_CHROOT

vhangup, init_module, delete_module

CAP_SYS_ MODULE

adjtimex

CAP_SYS TIME

syslog, inotify_init, getitimer, recvmmsg, clock_gettime,
getdents64, sendmmsg, sendmsg, lookup_dcookie,
timerfd_gettime

CAP_SYSLOG, CAP_SYS_ADMIN

timerfd_settime

CAP_WAKE_ALARM

getxattr

CAP_FOWNER, CAP_SYS_ADMIN

setxattr, removexattr

CAP_FOWNER, CAP_SETFCAP, CAP_FSETID, CAP_SYS_ADMIN

shmat

CAP_FOWNER, CAP_IPC LOCK

execve, execveat

CAP_FOWNER, CAP_SYS_ADMIN

futex CAP_IPC_LOCK, CAP_SYSLOG

shutdown, close, sync CAP_KILL, CAP_SYS_ADMIN

setsockopt CAP_NET ADMIN, CAP_NET RAW

read CAP_SYS_RESOURCE, CAP_SYS_ADMIN

getrusage, times CAP_CHOWN, CAP_FSETID, CAP_SETUID

poll CAP_SYS_RESOURCE, CAP_KILL, CAP_SYS_ADMIN

connect, nice, sched_setscheduler, sched_setattr

CAP_SYS_NICE, CAP_KILL, CAP_SYS_ADMIN

bind

CAP_NET_BIND_SERVICE, CAP_KILL, CAP_SYS_ADMIN

send

CAP_NET_ADMIN, CAP_SETGID, CAP_SETUID

utimes, ftruncate, sysctl, truncate, fchown, fchow-
nat, fchmod, fchmodat, readv, preadv, writev, pwritev,

CAP_CHOWN, CAP_FSETID, CAP_FOWNER, CAP_SETUID

pwrite64
fentl CAP_CHOWN, CAP_FSETID, CAP_LEASE, CAP_SETUID
fork CAP_CHOWN, CAP_FSETID, CAP_NET_RAW, CAP_SETUID

dup3, sched_rr_get_interval CAP_CHOWN, CAP_FSETID, CAP_FOWNER, CAP_SETUID,

CAP_SYS_ADMIN

ioctl CAP_SYSLOG, CAP_NET_ADMIN, CAP_SYS_ADMIN,
CAP_SYS_TTY_CONFIG, CAP_SYS_RAWIO

open CAP_CHOWN, CAP_SYS_RESOURCE, CAP_FOWNER, CAP_FSETID,
CAP_SETUID, CAP_DAC_READ_SEARCH, CAP_SYS_ADMIN

write CAP_CHOWN, CAP_SYS_RESOURCE, CAP_SYSLOG, CAP_FSETID,

CAP_FOWNER, CAP_SETUID, CAP_SYS_ADMIN
CAP_CHOWN, CAP FSETID, CAP KILL,
CAP_SYS_ADMIN, CAP_SYS_MODULE,
CAP_IPC_LOCK

Table 3: System calls and the capabilities may be required

exit CAP_SETUID,

CAP_NET_RAW,

378

RAID 2022, October 26-28, 2022, Limassol, Cyprus

Menghan Sun, Zirui Song, Xiaoxi Ren, Daoyuan Wu, and Kehuan Zhang

fd | level | optname | optval | optlen | Trigger Capability | Execution without CAP_NET_ADMIN | Execution without CAP_NET_RAW
%td 6 1 %0 4 Null Success Success

%fd 1 2 %0 4 Null Success Success

%fd 1 2 %1 4 Null Success Success

%td 1 9 %0 4 Null Success Success

%fd 0 10 %0 4 Null Success Success

%fd 1 12 %0 4 CAP_NET_ADMIN Interrupt Success

%td | 263 20 %0 4 Null Success Success

%fd 1 25 %a %conv CAP_NET_RAW Success Interrupt

%td | 41 26 %0 4 Null Success Success

Table 4: Analysis Result with system call setsockopt and its Entrance Arguments when Disabling the CAP_NET_ADMIN or

CAP_NET_RAW in Linux Kernel

static int sock_setbindtodevice(struct sock «sk, char
__user +optval, int optlen)

>

80

3

83

#ifdef CONFIG_NETDEVICES
ret = sock_setbindtodevice_locked (sk, index);

out:
#endif
return ret;

}

static int sock_setbindtodevice_locked (struct sock sk,
int ifindex)

379

84

85

{

ss #ifdef CONFIG_NETDEVICES

89
90
91
92
93

94

if (! ns_capable (net—>user_ns, CAP_NET RAW))
goto out;

out:
#endif

return ret;

}

Source code from system call setsockopt

	Abstract
	1 Introduction
	2 Background
	2.1 Privilege Management Primitives
	2.2 Program Analysis Techniques

	3 Examples of path-sensitive capability triggering
	3.1 Different capabilities can be triggered by a system call under different conditions
	3.2 Function still works without the Linux capability it checks
	3.3 Mapping between the system calls and Linux capabilities

	4 Design
	4.1 Overview
	4.2 Function call paths extraction
	4.3 Branch conditions analysis
	4.4 Constraint Equation Generation
	4.5 User Interface

	5 Implementation and Evaluation
	5.1 Correctness of the mapping
	5.2 Effectiveness in analyzing user program
	5.3 Capability setting problems case study
	5.4 Comparison with prior works

	6 Discussion
	7 Related Work
	7.1 Linux kernel analysis
	7.2 Linux capability security analysis
	7.3 Indirect call analysis

	8 Conclusion
	Acknowledgments
	References

