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Abstract

Recent works have shown that interval bound propaga-

tion (IBP) can be used to train verifiably robust neural net-

works. Reseachers observe an intriguing phenomenon on

these IBP trained networks: CROWN, a bounding method

based on tight linear relaxation, often gives very loose

bounds on these networks. We also observe that most neu-

rons become dead during the IBP training process, which

could hurt the representation capability of the network.

In this paper, we study the relationship between IBP and

CROWN, and prove that CROWN is always tighter than

IBP when choosing appropriate bounding lines. We further

propose a relaxed version of CROWN, linear bound prop-

agation (LBP), that can be used to verify large networks

to obtain lower verified errors than IBP. We also design

a new activation function, parameterized ramp function

(ParamRamp), which has more diversity of neuron status

than ReLU. We conduct extensive experiments on MNIST,

CIFAR-10 and Tiny-ImageNet with ParamRamp activation

and achieve state-of-the-art verified robustness. Code is

available at https://github.com/ZhaoyangLyu/

VerifiablyRobustNN .

1. Introduction

Deep neural networks achieve state-of-the-art perfor-

mance in many tasks, e.g., image classification, object de-

tection, and instance segmentation, but they are vulnerable

to adversarial attacks. A small perturbation that is imper-

ceptible to humans can mislead a neural network’s predic-

tion [22, 4, 1, 13, 3]. To mitigate this problem, Madry et

al. [15] develop an effective framework to train robust neu-

ral networks. They formulate adversarial training as a ro-

bust optimization problem. Specifically, they use projected

gradient descent (PGD) to find the worst-case adversarial

example near the original image and then minimize the loss

at this point during training. Networks trained under this

framework achieve state-of-the-art robustness under many

attacks [34, 26, 18]. However, these networks are only em-

perically robust, but not verifiably robust. They become vul-

nerable when stronger attacks are presented [24, 6, 23].

(a) Constant (b) Tight

(c) Adaptive: Case |l| > u (d) Adaptive: Case |l| ≤ u

Figure 1. Illustration of different strategies to choose bounding

lines for the three status of a ReLU neuron. Dead: l ≤ u ≤ 0;

Unstable: l < 0 < u; Alive: 0 ≤ l ≤ u. [l, u] is the input range

of the neuron. (a) chooses constant bounding lines. (b) is the tight

strategy. (c) and (d) are the two cases of unstable neurons in the

adaptive strategy. The adaptive strategy chooses the same bound-

ing lines as the tight strategy for dead and alive neurons. See more

details in Appendix A.7.

This leads to the development of robustness verification,

which aims to provide a certificate that a neural network

gives consistent predictions for all inputs in some set, usu-

ally an lp ball around a clean image. The key of robust-

ness verification is to compute the lower and upper bounds

of the output logits when input can take any value in the lp
ball. The exact bounds can be computed through Satisfiabil-

ity Modulo Theory [11] or solving a Mixed Integer Linear

Programming (MILP) problem [23, 5]. Relaxed bounds can

be obtained by reduce the bound computation problem to

a linear programming (LP) problem [28] or a semidefinite

programming (SDP) problem [7]. However, these program-

ming based methods are expensive and difficult to scale to

large networks. To this end, another approach that makes

linear relaxations of the nonlinear activation functions in a

network is proposed [20, 21, 25, 27, 33, 12]. Figure 1 il-

lustrates different strategies to make linear relaxations of a
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ReLU neuron. These methods can compute bounds analyti-

cally and efficiently. In this paper, we focus on the study of

CROWN [33], which can compute relatively tight bounds

while being fast. Other similar approaches [20, 21, 25, 27]

are either a special case of CROWN or a different view of it

as demonstrated by Salman et al. [19].

Wong et al. [28] propose to incorporate bounds com-

puted by the aforementioned linear relaxation based meth-

ods in the loss function to train verifiably robust net-

works. Similar approaches are proposed in several other

works [16, 8, 17, 24]. However, these methods generally

bring heavy computational overhead to the original training

process. Gowal et al. [9] propose to use a simple technique,

interval bound propagation (IBP), to compute bounds. IBP

is fast and can scale to large networks. Despite being

loose, IBP outperforms previous linear relaxation based

methods in terms of training verifiably robust networks.

Zhang et al. [32] further improve this method by combin-

ing IBP with the tighter linear relaxation based method,

CROWN. The resulting method is named CROWN-IBP.

They use CROWN-IBP to compute bounds at the initial

training phase and achieve the lowest l∞ verified errors.

We notice that both IBP trained networks [9] and

CROWN-IBP trained networks [32] are verified by IBP af-

ter training. One natural question is whether we can use

tighter linear relaxation based methods to verify the net-

works to achieve lower verified error. Surprisingly, Zhang

et al. [32] find the typically much tighter method, CROWN,

gives very loose bounds for IBP trained networks. It seems

that IBP trained networks have very different verification

properties from normally trained networks. We also find

that CROWN cannot verify large networks due to its high

memory cost. Another phenomenon we observe on IBP and

CROWN-IBP trained networks is that most neurons become

dead during training. We believe that this could restrict the

representation capability of the network and thus hurt its

performance. In this paper, we make the following contri-

butions to tackle the aforementioned problems:

1. We develop a relaxed version of CROWN, linear

bound propagation (LBP), which has better scalabil-

ity. We demonstrate LBP can be used to obtain tighter

bounds than IBP on both normally trained networks or

IBP trained networks.

2. We prove IBP is a special case of CROWN and LBP.

The reason that CROWN gives looser bounds than IBP

on IBP trained networks is that CROWN chooses bad

bounding lines when making linear relaxations of the

nonlinear activation functions. We prove CROWN and

LBP are always tighter than IBP if they adopt the tight

strategy to choose bounding lines as shown in Figure 1.

3. We propose to use a new activation function, param-

eterized ramp function (ParamRamp), to train verifi-

ably robust networks. Compared with ReLU, where

most neurons become dead during training, Param-

Ramp brings more diversity of neuron status. Our ex-

periments demonstrate networks with ParamRamp ac-

tivation achieve state-of-the-art verified l∞ robustness

on MNIST, CIFAR-10 and Tiny-ImageNet.

2. Background and Related Work

In this section, we start by giving definition of an m-layer

feed-forward neural network and then briefly introduce the

concept of robustness verification. Next we present interval

bound propagation, which is used to train networks with

best verified errors. Finally we review two state-of-the-art

verifiable adversarial training methods [9, 32] that are most

related to our work.

Definition of an m-layer feed-forward network.

z
(k) = W

(k)
a
(k−1) + b

(k),a(k) = σ(z(k)),

k = 1, 2, · · · ,m.
(1)

W
(k),b(k),a(k), z(k) are the weight matrix, bias, activation

and pre-activation of the k-th layer in the network, respec-

tively. σ is the elementwise activation function. Note that

we always assume σ is a monotonic increasing function in

rest part of the paper. a(0) = x and z
(m) are the input and

output of the network. We also use nk to denote the number

of neurons in the k-th layer and n0 is the dimension of the

input. Although this network only contains fully connected

layers, our discussions on this network in rest part of the

paper readily generalize to convolutional layers as they are

essentially a linear transformation as well [2].

Robustness verification. Robustness verification aims to

guarantee a neural network gives consistent predictions for

all inputs in some set, typically an lp ball around the original

input: Bp(x0, ǫ) = {x | ||x − x0||p ≤ ǫ}, where x0 is the

clean image. The key step is to compute the lower and upper

bounds of the output logits z(m) (or the lower bound of the

margin between ground truth class and other classes as de-

fined in (4)) when the input can take any value in Bp(x0, ǫ).
We can guarantee that the network gives correct predictions

for all inputs in Bp(x0, ǫ) if the lower bound of the ground

truth class is larger than the upper bounds of all the other

classes (or the lower bound of the margin is greater than 0).

The verified robustness of a network is usually measured by

the verified error: The percentage of images that we can not

guarantee that the network always gives correct predictions

for inputs in Bp(x0, ǫ). Note that the verified error not only

depends on the network and the allowed perturbation of the

input, but also the method we use to compute bounds for the

output. CROWN and IBP are the two bounding techniques

that are most related to our work. We briefly walk through

CROWN in Section 3 and introduce IBP right below.

Interval bound propagation. Assume we know the

lower and upper bounds of the activation of the (k − 1)-

th layer: l̂
(k−1) ≤ a

(k−1) ≤ û
(k−1). Then IBP computes
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bounds of z(k), l(k) and u
(k), in the following way:

l
(k) = relu(W(k))̂l(k−1) + neg(W(k))û(k−1) + b

(k),

u
(k) = relu(W(k))û(k−1) + neg(W(k))̂l(k−1) + b

(k),
(2)

where relu is the elementwise ReLU function and neg is

the elementwise version of the function neg(x) = x, if x ≤

0; neg(x) = 0, else. Next, bounds of a(k), l̂(k) and û
(k),

can be computed by

l̂
(k) = σ(l(k)), û(k) = σ(u(k)). (3)

IBP repeats the above procedure from the first layer and

computes bounds layer by layer until the final output as

shown in Figure 2(b). Bounds of a(0) = x is known if the

allowed perturbation is in an l∞ ball. Closed form bounds

of z(1) can be computed using Holder’s inequality as shown

in (13) if the allowed perturbation is in a general lp ball.

Train Verifiably Robust Networks. Verifiable adversar-

ial training first use some robustness verification method to

compute a lower bound l
ω of the margin ω between ground

truth class y and other classes:

ωi(x) = z
(m)
y (x)− z

(m)
i (x), i = 1, 2, · · · , nm.

l
ω(x0, ǫ) ≤ ω(x), ∀x ∈ Bp(x0, ǫ).

(4)

Here we use “≤” to denote elementwise less than or equal

to. For simplicity, we won’t differentiate operators between

vectors and scalars in rest part of the paper when no am-

biguity is caused. Gowal et al. [9] propose to use IBP to

compute the lower bound l
ω

IBP(x0, ǫ) and minimize the fol-

lowing loss during training:

E
(x0,y)∈X

κL(z(m)(x0), y) + (1− κ)L(−l
ω

IBP(x0, ǫ), y), (5)

where X is the underlying data distribution, κ is a hyper pa-

rameter to balance the two terms of the loss, and L is the

normal cross-entropy loss. This loss encourages the net-

work to maximize the margin between ground truth class

and other classes. Zhang et al. [32] argue that IBP bound

is loose during the initial phase of training, which makes

training unstable and hard to tune. They propose to use a

convex combination of the IBP bound l
ω

IBP and CROWN-

IBP bound l
ω

C.-IBP as the lower bound to provide supervision

at the initial phase of training:

l
ω = (1− β)lωIBP + βlωC.-IBP. (6)

The loss they use is the same as the one in (5) except for

replacing l
ω

IBP with the new l
ω defined in (6). They design

a schedule for β: It starts from 1 and decreases to 0 during

training. Their approach achieves state-of-the-art verified

errors on MNIST and CIFAR-10 datasets. Xu et al. [30]

propose a loss fusion technique to speed up the training

process of CROWN-IBP and this enables them to train

large networks on large datasets such as Tiny-ImageNet and

Downscaled ImageNet.

3. Relaxed CROWN

CROWN is considered an efficient robustness verifica-

tion method compared with LP based methods [27, 33, 14],

but these works only test CROWN on small multi-layer per-

ceptrons with at most several thousand neurons in each hid-

den layer. Our experiment suggests that CROWN scales

badly to large convolutional neural networks (CNNs): It

consumes more than 12 GB memory when verifying a sin-

gle image from CIFAR-10 for a small 4-layer CNN (See its

detailed structure in Appendix B.1), which prevents it from

utilizing modern GPUs to speed up computation. There-

fore, it is crucial to improve CROWN’s scalability to em-

ploy it on large networks. To this end, we develop a relaxed

version of CROWN named Linear Bound Propagation

(LBP), whose computation complexity and memory cost

grow linearly with the size of the network. We first walk

through the deduction process of the original CROWN.

The original CROWN. Suppose we want to compute

lower bound for the quantity W
obj

z
(k) + b

obj . W
obj

and b
obj are the weight and bias that connect z(k) to the

quantity of interests. For example, the quantity becomes

the margin ω(x) if we choose appropriate W
obj and set

b
obj = 0, k = m. Assume we already know the bounds of

pre-activation of the (k − 1)-th layer:

l
(k−1) ≤ z

(k−1) ≤ u
(k−1), ∀x ∈ Bp(x0, ǫ). (7)

Next CROWN finds two linear functions of z
(k−1) to

bound a
(k−1) = σ(z(k−1)) in the intervals determined by

l
(k−1),u(k−1).

h
(k−1)L(z(k−1)) ≤ σ(z(k−1)) ≤ h

(k−1)U (z(k−1)),

∀ l(k−1) ≤ z
(k−1) ≤ u

(k−1),
(8)

where

h
(k−1)L(z(k−1)) = s

(k−1)L ∗ z(k−1) + t
(k−1)L,

h
(k−1)U (z(k−1)) = s

(k−1)U ∗ z(k−1) + t
(k−1)U .

(9)

Here we use “∗” to denote elementwise product.

s
(k−1)L/U , t(k−1)L/U are constant vectors of the same di-

mension of z(k−1). We use L,U in the superscripts to de-

note quantities related to lower bounds and upper bounds,

respectively. We also use L/U in the superscripts to de-

note “lower bounds or upper bounds”. The linear functions

h
(k−1)L/U (z(k−1)) are also called bounding lines, as they

bound the nonlinear function σ(z(k−1)) in the intervals de-

termined by l
(k−1),u(k−1). See Figure 1 for a visualiza-

tion of different strategies to choose bounding lines. Next

CROWN utilizes these bounding lines to build a linear func-

tion of z(k−1) to lower bound W
obj

z
(k) + b

obj :

W
obj

z
(k) + b

obj ≥ W
(k,k−1)L

z
(k−1) + b

(k,k−1)L. (10)
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(a) CROWN vs Relaxed-CROWN-2

(b) IBP vs LBP

Figure 2. Illustration of CROWN, Relaxed-CROWN, IBP and

LBP. (a) shows how CROWN and Relaxed-CROWN-2 compute

bounds for the 4-th layer of a 5 layer network. (b) shows how IBP

and LBP compute bounds layer by layer for a 3 layer network.

See the detailed formulas of W(k,k−1)L,b(k,k−1)L in Ap-

pendix A.1. In the same manner, CROWN builds a lin-

ear function of z(k−2) to lower bound W
(k,k−1)L

z
(k−1) +

b
(k,k−1)L if bounds of z(k−2) are known. CROWN repeats

this procedure: It back-propagates layer by layer until the

first layer z(1) as shown in Figure 2(a):

W
obj

z
(k) + b

obj ≥ W
(k,k−1)L

z
(k−1) + b

(k,k−1)L ≥ · · ·

W
(k,k−2)L

z
(k−2) + b

(k,k−2)L ≥ W
(k,1)L

z
(1) + b

(k,1)L.

(11)

Notice z(1) = W
(1)

x+b
(1). We plug it in the last term of

(11) and obtain a linear function of x.

W
obj

z
(k) + b

obj ≥ W̃
(k)L

x+ b̃
(k)L, (12)

where W̃
(k)L = W

(k,1)L
W

(1), b̃(k)L = W
(k,1)L

b
(1) +

b
(k,1)L. Now we can compute the closed-form lower bound

of Wobj
z
(k) + b

obj through Holder’s inequality:

W
obj

z
(k) + b

obj ≥ W̃
(k)L

x+ b̃
(k)L ≥

W̃
(k)L

x0 + b̃
(k)L − ǫ||W̃(k)L||q, ∀x ∈ Bp(x0, ǫ),

(13)

where 1/p+1/q = 1 and ||W̃(k)L||q denotes a column vec-

tor that is composed of the q-norm of every row in W̃
(k)L.

We can compute a linear function of x to upper bound

W
obj

z
(k) + b

obj in the same manner and then compute its

closed-form upper bound. See details in Appendix A.1.

Let’s review the process of computing bounds for

W
obj

z
(k) + b

obj . It requires us to know the bounds of the

previous (k− 1) layers: z(1), z(2), · · · , z(k−1). We can ful-

fill this requirement by starting computing bounds from the

first layer z(1), and then computing bounds layer by layer in

a forward manner until the (k − 1)-th layer. Therefore, the

computation complexity of CROWN is of the order O(m2).
And its memory cost is of the order O(maxk 6=v nknv),
where 0 ≤ k, v ≤ m, and nk is the number of neurons in

the k-th layer. This is because we need to record a weight

matrix W
(k,v) between any two layers as shown in (11).

This makes CROWN difficult to scale to large networks. To

this end, we propose a relaxed version of CROWN in the

next paragraph.

Relaxed CROWN. As the same in the above CROWN

deduction process, suppose we want to compute bounds for

the quantity W
obj

z
(k)+b

obj . In the original CROWN pro-

cess, we first compute linear functions of x to bound the

pre-activation of the first (k − 1) layers:

W̃
(v)L

x+ b̃
(v)L ≤ z

(v) ≤ W̃
(v)U

x+ b̃
(v)U ,

∀x ∈ Bp(x0, ǫ), v = 1, 2, · · · , k − 1,
(14)

and use these linear functions of x to compute closed-form

bounds for the first (k − 1) layers. We argue that in the

back-propagation process in (11), we don’t need to back-

propagate to the first layer. We can stop at any interme-

diate layer and plug in the linear functions in (14) of this

intermediate layer to get a linear function of x to bound

W
obj

z
(k) + b

obj . Specifically, assume we decide to back-

propagate v layers:

W
obj

z
(k) + b

obj ≥ W
(k,k−1)L

z
(k−1) + b

(k,k−1)L

≥ · · · ≥ W
(k,k−v)L

z
(k−v) + b

(k,k−v)L, v < k.
(15)

We already know

W̃
(k−v)L

x+ b̃
(k−v)L ≤ z

(k−v) ≤ W̃
(k−v)U

x+ b̃
(k−v)U .

We can directly plug it to (15) to obtain a lower bound of

W
obj

z
(k) + b

obj :

W
obj

z
(k) + b

obj ≥

relu(W(k,k−v)L)[W̃(k−v)L
x+ b̃

(k−v)L] + b
(k,k−v)L

+ neg(W(k,k−v)L)[W̃(k−v)U
x+ b̃

(k−v)U ].

(16)

Now the last line of (16) is already a linear function of

x and we can compute the closed-form lower bound of

W
obj

z
(k)+b

obj in the same manner as shown in (13). The

upper bound of Wobj
z
(k) + b

obj can also be computed by

back-propagating only v layers in the same gist.

We have shown we can only back-propagate v layers,

instead of back-propagating to the first layer, when com-

puting bounds for the k-th layer. In fact, we can only

back-propagate v layers when computing bounds for any

layer. If the layer index k is less than or equal to v, we just
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back-propagate to the first layer. In other words, we back-

propagate at most v layers when computing bounds for any

layer in the process of CROWN. We call this relaxed ver-

sion of CROWN Relaxed-CROWN-v. See a comparison

of CROWN and Relaxed-CROWN in Figure 2(a).

Linear Bound Propagation. We are particularly inter-

ested in the special case of Relaxed-CROWN-1, namely, we

only back-propagate 1 layer in the process of CROWN. This

leads us to the following theorem.

Theorem 1 Assume we already know two linear functions

of x to bound z
(k−1):

W̃
(k−1)L

x+ b̃
(k−1)L ≤ z

(k−1) ≤ W̃
(k−1)U

x+ b̃
(k−1)U .

We then compute the closed-form bounds l
(k−1),u(k−1)

of z
(k−1) using these two linear functions, and choose

two linear functions h
(k−1)L(z(k−1)),h(k−1)U (z(k−1)) to

bound a
(k−1) = σ(z(k−1)) as shown in (9). Then un-

der the condition that s(k−1)L ≥ 0, s(k−1)U ≥ 0, z(k) =
W

(k)σ(z(k−1)) + b
(k) can be bounded by

W̃
(k)L

x+ b̃
(k)L ≤ z

(k) ≤ W̃
(k)U

x+ b̃
(k)U , (17)

where

W̃
(k)L = [relu(W(k)) ∗ s(k−1)L]W̃(k−1)L

+ [neg(W(k)) ∗ s(k−1)U ]W̃(k−1)U ,

b̃
(k)L = b

(k) + [relu(W(k)) ∗ s(k−1)L]b̃(k−1)L

+ [neg(W(k)) ∗ s(k−1)U ]b̃(k−1)U

+ relu(W(k))t(k−1)L + neg(W(k))t(k−1)U ,

(18)

where the operator “∗” between a matrix W and a vector

s is defined as (W ∗ s)ij = Wijsj .

We refer readers to Appendix A.3 for the formulas of

W̃
(k)U , b̃(k)U and the proof of Theorem 1. Note that the

condition s
(k−1)L ≥ 0, s(k−1)U ≥ 0 in Theorem 1 is not

necessary. We impose this condition because it simplifies

the expressions of W̃(k)L, b̃(k)L, and it generally holds true

when people choose bounding lines.

The significance of Theorem 1 is that it allows us to com-

pute bounds starting from the first layer z(1), which can be

bounded by W
(1)

x + b
(1) ≤ z

(1) ≤ W
(1)

x + b
(1), and

then compute bounds layer by layer in a forward manner

until the final output just like IBP. The computation com-

plexity is reduced to O(m) and memory cost is reduced to

O(n0 max{n1, n2, · · · , nm}), since we only need to record

a matrix W̃
(k) from the input x to every intermediate layer

z
(k). We call this method Linear Bound Propagation

(LBP), which is equivalent to Relaxed-CROWN-1. See a

comparison of LBP and IBP in Figure 2(b). As expected,

there is no free lunch. As we will show in the next sec-

tion, the reduction of computation and memory cost of LBP

makes it less tight than CROWN. Although developed from

a different perspective, we find LBP similar to the forward

mode in the work [30]. See a detailed comparison between

them in Appendix A.3.

Zhang et al. [32] propose to compute bounds for the first

(m−1) layers using IBP and then use CROWN to compute

bounds for the last layer to obtain tighter bounds of the last

layer. The resulting method is named CROWN-IBP. In the

same gist, we can use LBP to compute bounds for the first

(m − 1) layers and then use CROWN to compute bounds

for the last layer. We call this method CROWN-LBP.

4. Relationship of IBP, LBP and CROWN

In Section 3, we develop a relaxed version of CROWN,

LBP. In this section, we study the relationship between

IBP, LBP and CROWN, and investigate why CROWN gives

looser bounds than IBP on IBP trained networks [32].

First, we manage to prove IBP is a special case of

CROWN and LBP where the bounding lines are chosen as

constants as shown in Figure 1(a):

h
(k)L(z(k)) = σ(l(k)),h(k)U (z(k)) = σ(u(k)),

k = 1, 2, · · · ,m− 1.
(19)

In other words, CROWN and LBP degenerate to IBP when

they choose constant bounding lines for every neuron in ev-

ery layer. See the proof of this conclusion in Appendix

A.5. On the other hand, Lyu et al. [14] prove tighter

bounding lines lead to tighter bounds in the process of

CROWN, where h̃
(k)L/U
i (z

(k)
i ) is defined to be tighter than

ĥ
(k)L/U
i (z

(k)
i ) in the interval [l

(k)
i ,u

(k)
i ] if

ĥ
(k)L
i (z

(k)
i ) ≤ h̃

(k)L
i (z

(k)
i ),h̃

(k)U
i (z

(k)
i ) ≤ ĥ

(k)U
i (z

(k)
i ),

∀z
(k)
i ∈[l

(k)
i ,u

(k)
i ].

(20)

We manage to prove it is also true for LBP in Appendix A.3.

Therefore, if CROWN and LBP adopt the tight strategy in

Figure 1(b) to choose bounding lines, which is guaranteed

to be tighter than the constant bounding lines in a specified

interval, CROWN and LBP are guaranteed to give tighter

bounds than IBP. We formalize this conclusion and include

conclusions for CROWN-IBP and CROWN-LBP in the fol-

lowing theorem.

Theorem 2 Assume the closed-form bounds of the last

layer computed by IBP, CROWN-IBP, LBP, CROWN-LBP,

and CROWN are l
(m)
I , u

(m)
I ; l

(m)
CI , u

(m)
CI ; l

(m)
L , u

(m)
L ; l

(m)
CL ,

u
(m)
CL ; l

(m)
C , u

(m)
C , respectively. And CROWN-IBP, LBP,

CROWN-LBP, CROWN adopt the tight strategy to choose

bounding lines as shown in Figure 1(b). Then we have

l
(m)
I ≤ {l

(m)
L , l

(m)
CI } ≤ l

(m)
CL ≤ l

(m)
C ,

u
(m)
I ≥ {u

(m)
L ,u

(m)
CI } ≥ u

(m)
CL ≥ u

(m)
C ,

(21)

where the sets in the inequalities mean that the inequalities

hold true for any element in the sets.
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Figure 3. Tightness comparison of IBP, CROWN-IBP, LBP,

CROWN-LBP, CROWN on a normally trained MNIST classifier.

“Bound Range” is mean of u(m) − l
(m). The mean is taken over

the 10 output logits and averaged over 100 test images in MNIST.

“Epsilon” is the radius of the l∞ ball. “Adap” and “Tight” are the

adaptive and tight strategies as shown in Figure 1.

Table 1. Mean lower bound of the margin defined in (4) and

verified errors obtained by IBP, CROWN-IBP(C.-IBP), LBP,

CROWN-LBP(C.-LBP) on an IBP trained CIFAR-10 classifier.

The network is trained with ǫ = 8.8/255 and tested with ǫ =
8/255 (l∞ norm). Results are taken over 100 test images.

Adaptive IBP C.-IBP LBP C.-LBP

Verified Err(%) 70.10 85.66 100 99.99

Lower Bound 2.1252 -12.016 -2.4586E5 -1.5163E5

Tight IBP C.-IBP LBP C.-LBP

Verified Err(%) 70.10 70.01 70.05 69.98

Lower Bound 2.1252 2.1520 2.1278 2.1521

See proof of Theorem 2 in Appendix A.6. Now we can an-

swer the question proposed at the beginning of this section.

The reason that CROWN gives looser bounds than IBP [32]

is because CROWN uses the adaptive strategy as shown in

Figure 1(c) and 1(d) to choose bounding lines by default.

The lower bounding line chosen in the adaptive strategy for

an unstable neuron is not always tighter than the one chosen

by the constant strategy adopted by IBP. Zhang et al. [33]

emperically show the adaptive strategy gives tighter bounds

for normally trained networks. An intuitive explanation is

that this strategy minimizes the area between the lower and

upper bounding lines in the interval, but there is no guar-

antee for this intuition. On the other hand, for IBP trained

networks, the loss is optimized at the point where bounding

lines are chosen as constants. Therefore we should choose

the same constant bounding lines or tighter bounding lines

for LBP or CROWN when verifying IBP trained networks,

which is exactly what we are doing in the tight strategy.

We conduct experiments to verify our theory. We first

compare IBP, LBP and CROWN on a normally trained

MNIST classifier (See its detailed structures in Appendix

B.1). Result is shown in Figure 3. The average verifica-

tion time for a single image of IBP, CROWN-IBP, LBP,

CROWN-LBP, CROWN are 0.006s, 0.011s, 0.027s, 0.032s,

0.25s, respectively, tested on one NVIDIA GeForce GTX

TITAN X GPU. We can see LBP is tighter than IBP while

being faster than CROWN. And the adaptive strategy usu-

ally obtains tighter bounds than the tight strategy. See more

comparisons of these methods in Appendix B.2.

Next, we compare them on an IBP trained network. The

network we use is called DM-large (See its detailed struc-

ture in Appendix B.1), which is the same model in the

work[32, 9]. Results are shown in Table 1. We don’t test

CROWN on this network because it exceeds GPU mem-

ory (12 GB) and takes about half an hour to verify a sin-

gle image on one Intel Xeon E5-2650 v4 CPU. We can see

CROWN-IBP, LBP and CROWN-LBP give worse verified

errors than IBP when adopting adaptive strategy to choose

bounding lines, but give better results when adopting the

tight strategy as guaranteed by Theorem 2. However, we

can see the improvement of LBP and CROWN-LBP over

IBP and CROWN-IBP is small compared with the normally

trained network. We investigate this phenomenon in the

next section.

5. Parameterized Ramp Activation

This section starts by investigating the phenomenon dis-

covered in Section 4: Why the improvement of LBP and

CROWN-LBP over IBP and CROWN-IBP is so small on

the IBP trained network compared with the normally trained

network. Study of this phenomenon inspires us to design a

new activation function to achieve lower verified errors.

Investigate the limited improvement of LBP. We argue

that the limited improvement of LBP and CROWN-LBP is

because most neurons are dead in IBP trained networks. Re-

call that we define three status of a ReLU neuron according

to the range of its input in Figure 1: Dead, Alive, Unsta-

ble. We demonstrate neuron status in each layer of an IBP

trained network in Figure 4. We can see most neurons are

dead. However, we find most neurons (more than 95%) are

unstable in a normally trained network. For unstable neu-

rons, bounding lines in the tight strategy adopted by LBP

and CROWN are tighter than the constant bounding lines

chosen by IBP. This explains why LBP and CROWN are

several orders tighter than IBP for a normally trained net-

work. However, for dead neurons, the bounding lines cho-

sen by LBP and CROWN are the same as those chosen by

IBP, which explains the limited improvement of LBP and

CROWN-LBP on IBP trained networks. We conduct exper-

iments in Appendix B.3 to further verify this explanation.

It seems reasonable that most neurons are dead in IBP

trained networks, since dead neurons can block perturba-

tions from the input, which makes the network more ro-

bust. However, we argue that there are two major drawbacks

caused by this phenomenon: First, gradients from both the
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Figure 4. Neuron status of an IBP trained DM-large network at

ǫ = 2.2/255 (l∞ norm) on CIFAR-10. Bounds are computed

using IBP at ǫ = 2/255. The horizontal axis is the layer index,

and the vertical axis is the percentage of every neuron status in the

layer. The percentage is averaged over 100 CIFAR-10 test images.

normal cross-entropy loss and IBP bound loss in (5) can not

back-propagate through dead neurons. This may prevent

the network from learning at some point of the training pro-

cess. Second, it restricts the representation capability of the

network, since most activations are 0 in intermediate layers.

Parameterized Ramp function. To mitigate these two

problems, one simple idea is to use LeakyReLU instead of

ReLU during training. We will consider this approach as the

baseline and compare with it. We propose to use a Param-

eterized Ramp (ParamRamp) function to achieve better

result. The Parameterized Ramp function can be seen as a

LeakyReLU function with the right part being bent flat at

some point r, as shown in Figure 5. The parameter r is tun-

able for every neuron. We include it to the parameters of the

network and optimize over it during training. The intuition

behind this activation function is that it provides another

robust (function value changes very slowly with respect to

the input) region on its right part. This right part has func-

tion values greater than 0 and tunable, in comparison to the

left robust region with function values close to 0. Therefore

during the IBP training process, a neuron has two options to

become robust: to become either left dead or right dead as

shown in Figure 5. This could increase the representation

capability of the network while allow it to become robust.

We compare effects of ReLU, LeakyReLU and ParamRamp

functions in terms of training verifiably robust networks in

the next section.

6. Experiments

In this section, we conduct experiments to train ver-

ifiably robust networks using our proposed activation

function, ParamRamp, and compare it with ReLU and

LeakyReLU. We use the loss defined in (5) and consider

l∞ robustness in all experiments. The experiments are

conducted on 3 datasets: MNIST, CIFAR-10, and Tiny-

ImageNet. For MNIST and CIFAR-10 datasets, we use the

same DM-large network, and follow the same IBP training

and CROWN-IBP training procedures in the works [9, 32].

Figure 5. Parameterized Ramp (ParamRamp) function. The bend-

ing point r is tunable. We can define six status of a neuron accord-

ing to the input range [l, u] as shown in the left side. See Appendix

A.7 for how to choose bounding lines for ParamRamp.

For the Tiny-ImageNet dataset, we follow the training pro-

cedure in the work [30]. The networks we train on Tiny-

ImageNet are a 7-layer CNN with Batch Normalization lay-

ers (CNN-7+BN) and a WideResNet. We refer readers to

the original works or Appendix B.4 for detailed experimen-

tal set-ups and network structures. During the training of

ParamRamp networks, it is important to initialize the tun-

able parameters r appropriately. We also find ParamRamp

networks have overfitting problems in some cases. See how

we initialize r and solve the overfitting problem in Ap-

pendix B.4. After training, we use IBP and CROWN-LBP

with the tight strategy to compute verified errors. IBP veri-

fied errors allow us to compare results with previous works,

and CROWN-LBP gives us the best verified errors as guar-

anteed in Theorem 2. CROWN is not considered because it

exceeds GPU memory (12 GB) to verify a single image on

the networks we use and is extremely slow running on CPU.

We also use 200-step PGD attacks [15] with 10 random

starts to emperically evaluate robustness of the networks.

Results on CIFAR-10 and MNIST datasets are presented

in Table 2 and Table 3, respectively. We can see networks

with ParamRamp activation achieve better verified errors,

clean errors, and PGD attack errors than ReLU networks

in almost all settings. And our proposed bound computa-

tion method, CROWN-LBP, can always provide lower ver-

ified errors than IBP. See more experiments for networks of

different structures in Appendix B.5. For Tiny-ImageNet

dataset, the CNN-7+BN and WideResNet networks with

ParamRamp activation achieve 84.99% and 82.94% IBP

verified errors at ǫ = 1/255, respectively. To the best of our

knowledge, 82.94% is the best verified error at ǫ = 1/255
ever achieved on Tiny-ImageNet. See a comparison with

ReLU networks from the work [30] in Appendix B.5.

ParamRamp activation brings additional parameters to

the network. We are concerned about its computational

overhead compared with ReLU networks. On MNIST,

we find the average training time per epoch of a Param-

Ramp network is 1.09 times of that of a ReLU network
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Table 2. Errors of IBP trained and CROWN-IBP trained networks with different activations on CIFAR-10. We report errors on clean

images(Clean: Percentage of images wrongly classified), IBP verified errors(IBP), CROWN-LBP verified errors(C.-LBP), and PGD attack

errors(PGD: Percentage of images successfully attacked). Experiments are conducted on 3 variants of ParamRamp: Ramp(0), ParamRamp

with η = 0; Ramp(0.01), η = 0.01; Ramp(0.01→0), η starts from 0.01 and gradually decreases to 0 during training. 3 variants of ReLU

are similarly designed, e.g., ReLU(0.01) means LeakyReLU with leakage slope 0.01. Networks are trained at ǫ = 2.2/255, 8.8/255 and

evaluated at ǫ = 2/255, 8/255 respectively. Results of ReLU(0) are directly copied from the original works [9, 32]. We compute C.-LBP

verified errors based on our re-run networks for these experiments. Therefore, C.-LBP verified errors are not comparable to IBP verified

errors on these networks. We also report results run on large ReLU networks in the work [30] at the right side.

Training

Method
Activation

Errors (%) for ǫ = 2/255 Errors (%) for ǫ = 8/255 Errors (%) for ǫ = 8/255
Clean IBP C.-LBP PGD Clean IBP C.-LBP PGD Model Clean IBP PGD

IBP

ReLU(0) 39.22 55.19 54.38 50.40 58.43 70.81 69.98 68.73

CNN-7+BN

Densenet

WideResNet

ResNeXt

57.95

57.21

58.07

56.32

69.56

69.59

70.04

70.41

67.10

67.75

67.23

67.55

ReLU(0.01) 32.3 52.02 47.26 44.22 55.16 69.05 68.45 66.05

ReLU(0.01→0) 34.6 53.77 51.62 46.71 55.62 68.32 68.22 65.29

Ramp(0) 36.47 53.09 52.28 46.52 56.32 68.89 68.82 63.89

Ramp(0.01) 33.45 48.39 47.19 43.87 54.16 68.26 67.78 65.06

Ramp(0.01→0) 34.17 47.84 47.46 42.74 55.28 67.26 67.09 60.39

CROWN

-IBP

ReLU(0) 28.48 46.03 45.04 40.28 54.02 66.94 66.69 65.42

CNN-7+BN

Densenet

WideResNet

ResNeXt

53.71

56.03

53.89

53.85

66.62

67.57

67.77

68.25

64.31

65.09

64.42

64.16

ReLU(0.01) 28.49 46.68 44.09 39.29 55.18 68.54 68.13 66.41

ReLU(0.01→0) 28.07 46.82 44.40 39.29 63.88 72.28 72.13 70.34

Ramp(0) 28.48 45.67 44.03 39.43 52.52 65.24 65.12 62.51

Ramp(0.01) 28.63 46.17 44.28 39.61 52.15 66.04 65.75 63.85

Ramp(0.01→0) 28.18 45.74 43.37 39.17 51.94 65.19 65.08 62.05

Table 3. Comparison of ParamRamp and ReLU on MNIST dataset.

Notations are the same as those in Table 2. The networks are both

trained and tested at ǫ = 0.4. See more experiments tested with

different activation functions and at different ǫ in Appendix B.5.

Training

Method
Activation

Errors (%) for ǫ = 0.4
Clean IBP C.-LBP PGD

IBP
ReLU(0) 2.74 14.80 16.13 11.14

Ramp(0.01→0) 2.16 10.90 10.88 6.59

CROWN

-IBP

ReLU(0) 2.17 12.06 11.90 9.47

Ramp(0.01→0) 2.36 10.68 10.61 6.61

in IBP training, and is 1.51 times in CROWN-IBP train-

ing. We observe an overhead of similar level on CIFAR-

10 and Tiny-ImageNet datasets. See a full comparison in

Appendix B.5. Comparing ParamRamp with ReLU on the

same network may not be convincing enough to demon-

strate the superiority of ParamRamp, as it has additional

parameters. We compare it with larger size ReLU networks

trained in the work [30]. We report their results on CNN-

7+BN, Densenet [10], WideResNet [31] and ResNeXt [29]

in the right part of Table 2. Despite being larger than the

DM-large network with ParamRamp activation, these ReLU

networks still can not obtain lower IBP verified errors than

our model. We think this is because ParamRamp activation

brings more diversity of neuron status, which increases the

representation capability of the network. Recall that most

neurons are dead in IBP trained ReLU networks as shown

in Figure 4. We present neuron status of an IBP trained

ParamRamp network in Figure 6. We can see although lots

of neurons are still left dead, there is a considerable amount

of neurons are right dead. Note that the activation value of

right dead neurons are not 0 and tunable. This allows the

network to become robust while preserving representation

capability. See more neuron status comparisons of ReLU

and ParamRamp networks in Appendix B.5.

Figure 6. Neuron status of an IBP trained network on CIFAR-10

with ParamRamp activation. We only present left dead status and

right dead status since most neurons are in these two status. The

network is trained at ǫ = 2.2/255 (l∞ norm) and bounds are com-

puted using IBP at ǫ = 2/255.

7. Conclusion

We propose a new verification method, LBP, which has

better scalability than CROWN while being tighter than

IBP. We further prove CROWN and LBP are always tighter

than IBP when choosing appropriate bounding lines, and

can be used to verify IBP trained networks to obtain lower

verified errors. We also propose a new activation function,

ParamRamp, to mitigate the problem that most neurons be-

come dead in ReLU networks during IBP training. Exten-

sive experiments demonstrate networks with ParamRamp

activation outperforms ReLU networks and achieve state-

of-the-art l∞ verified robustness on MNIST, CIFAR-10 and

Tiny-ImageNet datasets.
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