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Hidden Electricity Theft by Exploiting
Multiple-Pricing Scheme in Smart Grids
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Abstract— With the development of demand response
technologies, the pricing scheme in smart grids is moving from
flat pricing to multiple pricing (MP), which facilitates the energy
saving at the consumer side. However, the flexible pricing policy
may be exploited for the stealthy reduction of utility bills. In this
paper, we present a hidden electricity theft (HET) attack by
exploiting the emerging MP scheme. The basic idea is that
attackers can tamper with smart meters to cheat the utility that
some electricity is consumed under a lower price. To construct
the HET attack, we propose an optimization problem aiming at
maximizing the attack profits while evading current detection
methods, and design two algorithms to conduct the attack on
smart meters. Moreover, we disclose and exploit several new
vulnerabilities of smart meters to demonstrate the feasibility
of HET attacks. To protect smart grids against HET attacks,
we propose several defense and detection countermeasures,
including selective protection on smart meters, limiting the attack
cycle, and updating the billing mechanism. Extensive experiments
on a real data set demonstrate that the attack could cause
high economic losses, and the proposed countermeasures could
effectively mitigate the attack’s impact at a low cost.

Index Terms— Smart grids, security, hidden electricity theft,
multiple pricing, countermeasures.

I. INTRODUCTION

INCREASING integration of intermittent renewable energy
resources is expected to deteriorate the operational security

and reliability in the emerging smart grid. Various demand
response (DR) techniques have been applied to emphasize
these challenges. As one of the most promising technologies,
multiple-pricing (MP) scheme (e.g., time-of-use, step tariff,
and critical-peak pricing) can shift peak load and encourage
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energy saving via price incentive [1]. The MP scheme adopts
multiple rates under spatial and temporal dependent electricity
attributes, such as power quality, level of reliability, volume of
usage, and maximum demand [2]. A pilot project in the state
of Washington, which ran from March 2006 to March 2007,
indicates that scheduling appliances based on the MP scheme
can reduce electricity bills by 10% for consumers [3].

Although the evolution from the flat-pricing (FP) scheme
to MP scheme will bring significant benefits, its security
risks on electricity theft have been mostly ignored. Under
the traditional FP scheme, any manipulation on the electricity
consumption data will be directly reflected on the final bills,
which makes the electricity theft behaviors easy to detect.
However, the situation under the MP scheme becomes much
more complicated. Attackers could cheat utility companies that
the electricity is consumed under periods with lower prices,
and take over the benefit provided for real price-sensitive
consumers. This kind of electricity theft is quite different from
traditional electricity theft behaviors and is harder to detect
by existing electricity theft detection (ETD) methods. In this
paper, we will show that with exquisite design, attackers could
reduce their bills under the MP scheme while evading most
of the existing ETD methods.

Besides ETD methods, an alternative approach to defense
electricity theft is to protect the smart meters, whose security
problem has attracted lots of concern [4]. As summarized
in [5], smart meters’ typical security vulnerabilities include
measurement interruption, password extraction, meter storage
tampering, communication interception, and communication
tampering. Moreover, the data privacy problem of smart meters
should also be noticed [6]–[8]. With the fine-grained electricity
consumption data from smart meters, users’ power usage
pattern could be studied well [9], [10]. Until now, there are
already lots of research on protecting smart meters’ security
and privacy. For example, to limit large-scale attacks on smart
meters, McLaughlin et al. leveraged diversity techniques on
smart meter’s firmware [11]. To secure the communication
between smart meters and utility companies, Tsai and Lo
proposed a new anonymous key distribution scheme [12].
To protect data privacy, Giaconi et al. utilized renewable
energy sources and rechargeable batteries to partially hide the
consumer’s energy consumption behavior [13]. However, few
methods have been deployed in the real world due to the high
cost of updating a system with millions of widely distributed
meters. Thus, in the real case, smart meters are still susceptible
to the attack and could be leveraged by electricity thieves.
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In this paper, we present a hidden electricity theft (HET)
attack and discuss its defense strategies. First, we introduce a
generalized billing model to present existing pricing schemes
in electricity markets. Second, based on this model, we the-
oretically prove that previous ETD methods may fail under
emerging MP schemes. Third, we propose an HET model to
maximize attackers’ profits, and provide two algorithms for
conducting the attack. Fourth, we propose several countermea-
sures to defense or detect the HET attack at a low cost. Finally,
we study the HET attack and its countermeasures through
simulations on a real-world data set. Simulation results show
that the HET attack may cause significant economic losses
to utility companies, and the proposed countermeasures could
effectively mitigate its impact.

The remainder of this paper is organized as follows:
Section II reviews related work. Section III gives a minimal
working example for the proposed attack. Section IV ana-
lyzes different pricing schemes under a generalized billing
model and shows that the MP scheme is still vulnerable
to electricity theft attacks. Section V constructs the HET
attack model, proposes algorithms for conducting HET attacks,
and demonstrates the attack’s feasibility on a smart meter
testbed. Section VI designs countermeasures for defensing and
detecting HET attacks. Section VII analyzes the impact of
HET attacks and the performance of countermeasures through
simulation. Section VIII concludes the paper.

II. RELATED WORKS

As a major reason for non-technical losses (NTL) during
electricity transmission and distribution [14], electricity theft
problem has drawn lots of attention. McLaughlin et al. ana-
lyzed the strategies for electricity theft in advanced metering
infrastructure (AMI) and found that a fully digitized metering
system is inherently more dangerous than analog electricity
meters [5]. Smith estimated the extent of electricity theft in
a sample of 102 countries and showed that electricity theft is
increasing in most regions of the world [15]. Depuru et al.
overviewed the methods of stealing electricity, including tap-
ping electricity directly from the distribution feeder, tampering
smart meters, exchanging the position of breaking wires,
isolating the neutral and disturbing the electronic reference
point, etc. [16].

Concerning the electricity theft problem, various coun-
termeasures have been proposed. One major approach is
to prevent the attack by enhancing the metering system’s
information security. For example, Xiao et al. presented a
mutual inspection strategy with additional sensors to enable
non-repudiation on meter readings for smart grids [17].
McLaughlin et al. presented an AMI intrusion detection sys-
tem (AMIDS) that merges different information to gather
a sufficient amount of evidence about an on-going attack
before marking an activity as a malicious electricity theft [18].
Fanibhare et al. ameliorated the AMIDS by merging the
meters’ log files from physical and cyber events and implement
the elliptical curve digital signature algorithm (ECDSA) to
secure AMIDS [19]. This approach can effectively block the
electricity theft behaviors. However, the deployment cost of
all these additional devices on all metered nodes is too high.

Another major approach is to detect electricity theft from
collected data. Various works have been done on the ETD
problem. Anas et al. summarized many types of electricity
thefts and proposed several mathematical methods to detect
electricity theft [20]. Czechowski and Kosek gave a more
detailed review of electricity theft techniques and proposed
some security mechanisms and means to detect them [21].
Among all these ETD methods, most of them can be classi-
fied into two broad categories, i.e., data-driven methods and
consistency-based methods.

A. Data-Driven Methods

Data-driven methods leverage various data mining and
machine learning technologies to train a classifier model
which captures the electricity consumption pattern based on
consumption data. Then the classifier model will be used to
detect fraudulent consumers. For example, Nizar et al. detected
irregularities in consumption based on an extreme learning
machine (ELM) method [22]. Nagi et al. trained a support
vector machine (SVM) classifier using historical consumption
data to detect abrupt changes in load profile [22]. By com-
bining decision tree (DT) and SVM classifiers, Jindal et al.
proposed a comprehensive top-down scheme, which could
detect and locate real-time electricity theft at every level in
power transmission and distribution (T&D) [23].

B. Consistency-Based Methods

Consistency-based methods leverage physical laws, redun-
dant devices, or additional measurements to detect data incon-
sistency in the power system. Typical physical laws include
Kirchhoff’s Law, Ohm’s Law and the law of conservation of
energy, etc. For example, Kadurek et al. detected electricity
tampering based on power balance (the law of conservation of
energy) as well as the relationship between power measure-
ments, voltage measurements, and current measurements [24].
Xia et al. located the malicious users based on power balance,
and adopted the binary search method and group testing
method to shorten the detection time [25]. Moreover, they
assessed the suspicions that users steal electricity at first,
and then used the assessment to optimize the inspection
order [26].

Unfortunately, there exist both merits and defects in cur-
rent ETD methods. Data-driven methods can conduct the
detection very quickly after model training. However, a large
amount of training data and long training period are required.
Moreover, when the condition changes, the trained model is
often not suitable and needs retraining. For example, when
some residents move in/out or some electrical appliances
change, the electricity usage pattern changes and could not be
presented by the original trained model. In addition, supervised
learning methods need large amounts of theft samples, which
rarely exist in the real case. By contrast, consistency-based
methods can conduct the detection with high accuracy when
enough data are provided. However, there are also some
drawbacks. First, this method is sensitive to data completeness.
Once some critical data are missing, the detection may fail.
Second, the detection time would be long if there are a
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TABLE I

MULTIPLE-PRICING SCHEME IN SHANGHAI, CHINA

considerable number of meters in a distribution network with a
complicated network topology. Finally, the cost of deploying
redundant devices and transmitting additional measurements
should be carefully considered. To reach better detection
performance, some researchers have tried to combine data-
driven methods and consistency-based methods. For example,
in [27], the power balance law is used at first to narrow
down the theft detection range, then a multi-class SVM is
used to detect the abnormal electricity usage pattern. In [28],
the power imbalance is calculated to generate the data set for
further training and analysis.

It is worth noticing that there is a conceal assumption for
most of the current ETD methods. That is, if the amount of
electricity usage is unchanged, the revenue of utility compa-
nies will not be affected. This is true under the traditional
FP scheme since the electricity bill is linear to the amount of
electricity usage. However, the electricity price could vary at
different periods or different locations under the MP scheme.
Thus, by pretending that some electricity is consumed at
a lower price, attackers could gain benefits while keeping
the total amount of electricity usage unchanged. Based on
this idea, we will develop a novel electricity theft attack
called the HET attack in the following sections, which could
gain benefits while escaping from most of the current ETD
methods.

III. MINIMAL WORKING EXAMPLE

A minimal working example is applied here to show how
HET attackers could reduce electricity bills while avoiding
detected by ETD methods. State Grid Corporation of China
had implemented the latest MP scheme for residential cus-
tomers in Shanghai, China since 2012. As shown in Table I,
there is a three-stage pricing based on annual total electricity
consumption. Within each stage, the rates are divided into two
parts based on time of use, i.e., peak hours from 6:00 am to
10:00 pm with higher rates and off-peak hours with lower
rates. The electricity unit is kWh, and the billing unit is
Chinese Yuan (CNY). As shown in Table II, two attack cases
for two users (user A and user B) are analyzed under this MP
scheme. For the sake of simplicity, we assume that the utility
company collect the electricity usage data and calculate the
bills once per year. Then attackers should tamper with smart
meters once before data are collected.1

1In reality, utility companies in Shanghai read residential consumers’
electricity usage records once per month, and then use these data to detect
electricity theft and calculate the bills.

Before Attack: Assume that user A and user B consumed
2000 kWh and 7600 kWh in this year, respectively, and 50%
energy consumption had been used during peak hours. The
details of electricity consumption and cost could be calculated
as Before Attack in Table II. The bills of user A and B are
924 CNY and 4342.8 CNY, respectively. The total energy
consumption is 9600 kWh, and the revenue of the utility
company is 5266.8 CNY.

Attack I: In this case, user A and user B are two collusive
attackers, and their goal is to reduce their total bill as much
as possible. Meanwhile, they should keep the total electricity
consumption unchanged so that this attack would not be
detected easily by utility companies’ energy consistency-based
detection. Then, they can modify electricity consumption data
as Attack I in Table II. Table II shows two noticeable facts:
1) The overall electricity consumption has not been changed
(still 9600 kWh in total), thus the utility company would
believe that the coins of every watt have been paid; 2) By
shifting some electricity consumption from user B to user
A artificially, the total bill for both users is reduced from
5266.8 CNY to 4586.4 CNY (reduced by 12.92 %).

Attack II: In this case, user B is the only malicious attacker,
and his goal is to reduce his own bill while keeping the total
electricity consumption and user A’s bill unchanged, so that
his attack would not be noticed by both the utility company
and user A. Meanwhile, the attacker also requires that the
malicious manipulation on user A’s data would not be detected
easily by data-driven ETD methods, which means that the
range of modification on user A’s consumption data should
be limited. In this example, user A’s modified consumption
data should be 50% to 150% of the original consumption data.
Then, the attacker can modify the electricity consumption data
as Attack II in Table II. Table II shows four noticeable facts:
1) The overall energy consumption has not been changed (still
9600 kWh in total), thus the utility company would believe
that the coins of every watt have been paid. However, its
real revenue is reduced to 5070 CNY (reduced by 3.74%);
2) The bill for user A has been slightly reduced, which would
be ignored by most users since the bill is less than the real
one; 3) To reduce the risk of being detected by data-driven
ETD of user A, the attacker only decreased 250 kWh peak
consumption and increased 500 kWh off-peak consumption of
user A; 4) The bill for the attacker (i.e., user B) has decreased
dramatically from 4342.8 CNY to 4146.75 CNY (reduced by
4.51%).

These two cases demonstrate that attackers can gain eco-
nomic benefits from utility companies by manipulating meters’
electricity consumption data. Meanwhile, attackers’ behaviors
can evade the detection of current data-driven and consistency-
based methods. Hence, although utility companies may notice
the revenue’s reduction, they may regard it as a consequence
of adopting the MP scheme, since more consumers are
expected to respond to the flexible electricity prices. From
the view of utility companies, attackers in this example are
just normal DR participators. Even if utility companies have
noticed the revenue’s abnormal reduction, they cannot separate
attackers from real DR participators by off-the-shelf ETD
methods.
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TABLE II

ELECTRICITY CONSUMPTION AND BILLS IN THE HET ATTACK EXAMPLE

IV. SECURITY ANALYSIS OF DIFFERENT

PRICING SCHEMES

In this section, we first present a generalized electricity
billing model for different pricing schemes. Then, we intro-
duce the attack assumptions under an electricity metering
system. At last, we analyze two major ETD methods under
different pricing schemes and show that attackers could make
profits without being detected under the MP scheme.

A. Generalized Electricity Billing Model

To encourage more consumers to participate in the demand-
side management program via financial incentives, utility
companies are changing their pricing strategies from the FP
scheme to the MP scheme, in which service or product
suppliers adjust prices based on the market demands. There
are several different MP mechanisms available, such as time-
of-use (ToU) pricing, step tariff (a.k.a. the tiered pricing), real-
time pricing (RTP), critical-peak pricing (CCP). Specifically,
under the RTP scheme, the retail price changes from time to
time according to the relationship between power supplies and
demands. Under the step tariff scheme, the retail price varies
according to the level of consumption during the period speci-
fied in the tariff [29]. ToU divides time into different segments,
for example, peak hours and off-peak hours, and then charge at
different tariffs for each segment. CPP model is an extension
of ToU by adding a floating time window called critical peak
hours for special cases when the imbalance between supplies
and demands may affect normal grid operation [30]. Utility
companies select one scheme or combine several schemes
to generate their tariff systems. For example, the MP of
Horizon Power (Australia) is step tariff [31]. The MP of
Shanghai (China) in Sec. III is a combination of ToU and
step tariff. The MP of Sacramento Municipal Utility District
(U.S.) is a combination of ToU, step tariff and CPP [32].

To analyze both FP and MP schemes in a unified frame-
work, we present a generalized electricity billing model here.
Assume that there are m (m ≥ 1) prices in a billing system
in the form of P = [p1 p2 · · · pm]�. Under the FP scheme,
the electricity price is static and the same for all users, i.e.
m = 1. Under the MP scheme, the electricity price changes in
different cases, i.e., m > 1. For simplicity, it is assumed that
p1 > p2 > · · · > pm when m > 1. The cumulative electricity
consumption vector of user i for all pricing segments at time t

can be written as Ui (t) = [u1
i (t) u2

i (t) · · · um
i (t)]� where uk

i (t)
represents the cumulative electricity consumption of user i for
price pk from time 0 up to time t . Then, in a billing cycle
which starts from time t and ends at time t+T , the electricity
bills of user i can be defined as follows:

ck
i = pk ·wk

i = pk · (uk
i (t + T )− uk

i (t)
)

where wk
i = uk

i (t+T )−uk
i (t) and ck

i are the electricity usage
and bill of user i corresponding to price pk in this billing cycle,
respectively.2 To make the expression compact, we define the
following notations:

Wi = [w1
i w2

i · · · wm
i ]
�

W = [W1 W2 · · ·Wn]
where Wi is a vector denoting user i ’s electricity usage for
different prices in this billing cycle, and Ŵ is a stacked
matrix denoting the electricity usage for all n users. Thus,
the electricity cost for user i in this billing cycle is

cM
i = P

�
Wi =

m∑
j=1

(p j · w j
i ) (1)

where · represents the product operation. The total electricity
cost for all the n users in this billing cycle is

C M = P
�

W1 =
n∑

i=1

m∑
j=1

(p j · w j
i ) (2)

where 1 is a n-dimensional column vector whose elements are
all one.

B. Attack Assumption

As shown in Fig. 1, utility companies supply electric power
to end consumers via the power distribution grid, which
usually has a radial topology [33]. For accurate calculation of
electricity bills, smart meters are deployed for every consumer
to measure and record their energy consumption. Besides, one
gateway meter is installed at the supply side to measure the
overall delivered electricity. Suppose that a utility company
serves n0 consumers as in Fig. 1. To build the attack model,
we propose the following assumptions.

First of all, it is assumed that among all n0 consumers,
n (n ≤ n0) consumers’ meters have been compromised

2For traditional residential users, wk
i and ck

i are always non-negative.
However, if there are renewable resources such as PV panels and batteries,
wk

i and ck
i may be negative.
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Fig. 1. A metering system for n0 consumers where n of them are
compromised. Among n compromised consumers, there are a attackers and
n − a honest users.

(i.e., the consumers in the black dashed box in Fig. 1).
Besides, among n consumers, a consumers are the malicious
users (attackers) who will launch the attacks, and the other
n − a consumers are honest users who are victims. In this
paper, n compromised users are denoted by set � . Within � ,
a malicious users (attackers) are denoted by set �a , and n−a
honest users are denoted by set �na . Note that attackers could
hardly compromise all the consumers, so the rest n0 − n con-
sumers in Fig. 1 are safe. However, in the subsequent section,
we will show that the terms denoting the consumption data
of these safe consumers can be eliminated in the ETD model.
Thus, attackers could launch the HET attack successfully with
n compromised meters only.

Secondly, it is assumed that the measurement data of
compromised smart meters can be manipulated. This seems
to be a strong assumption, but it is totally realistic. As will be
introduced in Sec. V-C, we have evaluated several off-the-shelf
smart meters from well-known vendors and found that all of
them are vulnerable to data manipulation attack. Reports from
previous researches also confirmed our findings [34]–[36].
Those vulnerabilities are caused by various reasons, such
as trivial bugs in codes, legacy protocols and devices, and
engineering trade-offs due to operational constraints.

At last, it is assumed that attackers’ ultimate goal is to obtain
economic gain by paying less money for the same amount of
used energy, but try to avoid detection at the same time. This
can also be regarded as the definition of the HET attack.

C. Electricity Theft Detection Based on
Consistency-Based Methods

Based on the consistency-based detection methods described
in Sec. II, utility companies could detect the electricity theft
attack with an extra isolated gateway meter attached at the
supply side to measure the total supplied electricity. Moreover,
honest users may also check their electricity bills to catch any
abnormal changes, especially when their bills increase. Based
on these detection methods, the following detection constraints
need to be satisfied:

|w0 −
m∑

j=1

n∑
i=1

ŵ
j
i −

m∑
j=1

n0∑
i=n+1

w
j
i | ≤ θ ·w0 (3a)

−σ
↓
i · cM

i ≤ ĉM
i − cM

i ≤ σ
↑
i · cM

i , ∀i ∈ �na (3b)

where w0 denotes the total supplied electricity of n0 users,
and θ represents the error factor reflecting the measurement
error and power line losses. ŵ

j
i (1 ≤ i ≤ n) is the reported

electricity consumption of compromised user i corresponding
to price segment p j , which might be manipulated by attackers.
w

j
i (n+1 ≤ i ≤ n0) is the electricity consumption of safe user

i , which could not be accessed and manipulated by attackers.
ĉM

i is the calculated electricity cost based on ŵ
j
i , i.e. ĉM

i =∑m
j=1(p j ·ŵ j

i ). σ
↓
i and σ

↑
i are sensitive factors of honest user

i , which are inversely proportional to user i ’s sensitivity to
the bill. Since users with higher bills may be more sensitive,
we can infer that σ

↓
i > σ

↑
i > 0, and both σ

↓
i and σ

↑
i are

negatively correlated to cM
i with high probability.

Regarding the above consistency-based ETD procedures,
constraint (3a) indicates that the total amount of technical
losses (i.e., the difference between overall electricity supply
and the total amount of electricity consumption reported by
smart meters) should be small and roughly equal to the sum
of power line losses and measurement error. Constraint (3b)
indicates that the variation of each honest user’s bill should
be smaller than a certain threshold. Otherwise, it may trigger
alarms. Actually, in a real system without attack, technical
losses and the variation of each honest user’s bill are very
limited. Thus θ , σ

↓
i and σ

↑
i should be small. If we set θ to zero

(i.e., no technical losses in the ideal situation), constraints (3a)
can be rewritten as

w0 −
m∑

j=1

n0∑
i=n+1

w
j
i =

m∑
j=1

n∑
i=1

ŵ
j
i (4)

In Eq. (4), both terms on the left-hand side are unavailable
for attackers. However, according to the law of conservation
of energy, we have

wtot =
m∑

j=1

n∑
i=1

w
j
i = w0 −

m∑
j=1

n0∑
i=n+1

w
j
i (5)

where wtot denotes the total supplied electricity of n com-
promised users. With this substitution, all unknown terms in
Eq. (4) are eliminated, and we can focus on n compromised
meters for further analysis. The total calculated electricity cost
for all compromised users after attack is defined as

Ĉ M =
n∑

i=1

ĉM
i =

n∑
i=1

m∑
j=1

(p j · ŵ j
i ) (6)

Note that smaller θ , σ
↓
i and σ

↑
i in constraints (3) indicate a

stricter consistency-based detector, where less technical losses
and bills’ variation are allowed. Considering the extreme
condition which maximizes the detection capability, we set
θ , σ

↓
i and σ

↑
i to zero. Thus, constraints (3a) and (3b) can be

tightened as

wtot =
m∑

j=1

n∑
i=1

ŵ
j
i (7a)

m∑
j=1

(p j · w j
i ) =

m∑
j=1

(p j · ŵ j
i ), ∀i ∈ �na (7b)

Eqs. (7) are a set of algebraic equations denoting the
detection rules of the consistency-based ETD model with
maximum detection capability. If attackers want to evade the
detection with high probability, the manipulated electricity
consumption data should be a solution of Eqs. (7). Otherwise,
it may be detected by this ETD method.
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After analyzing the ETD model in Eqs. (7), we have the
following two propositions.

Proposition 1: Given the electricity theft detection model in
Eqs. (7), there exists an unique solution if and only if a = 1
and m = 1.

Proof: In Eqs. (7), the total number of equality constraints
is (n − a + 1). Since any electricity usage ŵ

j
i for each

compromised user and each price may be manipulated, there
are n · m variables in total under these constraints. Also,
there exists at least one solution for Eqs. (7), i.e. the data
without any manipulation in the real case. Thus, the necessary
and sufficient condition of unique solution for Eqs. (7) is
(n − a + 1) = n · m. Since m ≥ 1, this condition can be
met if and only if a = 1 and m = 1. �

From Proposition 1, we know that all the reported electricity
usages cannot be manipulated if and only if there is only one
attacker (a = 1) under the FP scheme (m = 1). Otherwise,
if there are multiple collusive attackers (a > 1) or the case is
under MP scheme (m > 1), there may exist multiple solutions
for Eqs. (7), which indicates that attackers may manipulate
some electricity consumption data without being detected by
the detection methods here.

Proposition 2: Given the electricity theft detection model in
Eqs. (7), the total calculated electricity cost for n compromised
users could not be changed by attackers if m = 1.

Proof: After substituting m = 1 and Eq. (7a) into Eq. (6),
we can obtain that

Ĉ M =
n∑

i=1

(p1 · ŵ1
i ) = p1

n∑
i=1

ŵ1
i = p1 wtot

Since wtot cannot be manipulated by attackers, Ĉ M could
not be changed by attackers. �

From constraint (7b), we know that each honest user’s bill
is fixed. Thus, combining Proposition 2, we can conclude
that under the FP scheme (m = 1), attackers could not gain
any profits by tampering with the electricity consumption data
without being detected. However, attackers may seek profits
under the MP scheme (m > 1), which can be demonstrated
by two simple examples as below.

Example 1 (One User Under the ToU Pricing Scheme): In
this example, there is one compromised user with two different
prices (i.e., a = 1, m = 2, p1 > p2,�a = �,�na = �),
where p1 and p2 are the peak hour price and off-peak hour
price, respectively. As shown in Fig. 2, constraint (7a) is
denoted by the black solid line, and constraint (7b) is ignorable
since �na = �. Point D, E, and F are three examples of
feasible solutions. Three dashed lines denote three possible
electricity costs C1, C2 and C3, which can be met when the
solution is at point D, E, and F, respectively. Combining the
assumption p1 > p2, we can easily know that C3 > C2 > C1.
Suppose that point E denotes the real consumption data before
attack. To reduce the final bill from C2 to C1, the attacker
should move the reported consumption data from point E to
point D. In other words, the attacker should claim that he or
she has shifted some load from peak hours (i.e., hours with the
higher price p1) to off-peak hours (i.e., hours with the lower
price p2).

Fig. 2. Example 1 (one user under a ToU pricing scheme).

Fig. 3. Example 2 (two users under a tiered pricing scheme).

Example 2 (Two Users Under the Tiered Pricing Scheme):
In this example, there are two compromised users with two
different prices (i.e., a = 2, m = 2, p1 > p2,�a =
�,�na = �). When the total electricity consumption is less
than pcrit ical , the electricity price is p2 as in stage I. When the
total electricity consumption exceeds wcrit ical , the electricity
price for the excess is p1 as in stage II. As shown in Fig. 3,
the attack is performed by shifting some electricity consump-
tion �w from user B to user A. Then the total bill for two
users is reduced by (p1− p2)�w. Meanwhile, Constraint (7a)
is met since the total electricity consumption is still wA+wB ,
and constraint (7b) is ignorable here since �na = �. Thus, for
reducing the final bill, big consumers should claim that they
have cut down their electricity consumption to a lower stage.

From the above analysis, we can conclude that under the MP
scheme, attackers could seek profits by manipulating metering
data while bypassing the consistency-based electricity theft
detection methods. Indeed, the original intention of the MP
scheme is to stimulate users to shift their demand by economic
benefits. Thus, attackers can pretend to shift their demand to
steal the reward prepared for real DR participators. This is the
essence of the proposed HET attack.

Remark 1 (A Win-Win Strategy for Multiple Attackers): In
Example 2, if user B manipulates its electricity consumption
from wB to wB − �w alone, the attack behavior would be
detected by consistency-based detection methods according
to constraint (7a). Moreover, user A cannot reduce its bill
by shifting some electricity consumption to others since its
electricity price is the lowest. Thus, user A and user B must
cooperate to reduce the final bill without being detected.
More generally, if there are multiple attackers, they should
collaborate as far as possible to maximize the total attack
benefits. Thus, the cooperation strategy is a win-win strategy
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for all attackers, and we will adopt it in the HET attack
model.

To avoid unfairness, attackers should share their profits
appropriately. One reasonable approach is to distribute the
profits proportionally to the attack cost, which could be
quantized by multiple factors, including the attack techniques,
the attack times, the risk of being detected, etc.

D. Electricity Theft Detection Based on
Data-Driven Methods

As discussed in Sec. II, data-driven methods are another
type of widely used ETD methods. First, a classifier is
trained by normal consumption data samples. Then, when the
consumption pattern deviates far from the original pattern,
the classifier could detect the anomalies and raise alarms.
However, the electricity consumption of a single consumer is
usually highly uncertain and hard to predict [37]. To decrease
the false alarm rate, the classifier would not regard consump-
tion patterns as attacks if they are closely similar to the original
pattern. Thus, attackers could evade the data-driven detection
methods by restricting data modification within a reasonable
range. The manipulated consumption data of user i in any
billing cycle will be limited as

δloww
j
i ≤ ŵ

j
i ≤ δhighw

j
i , ∀w j

i ≥ 0 (8a)

δhighw
j
i ≤ ŵ

j
i ≤ δloww

j
i , ∀w j

i < 0 (8b)

where the attack range [δlow, δhigh ] is defined to restrict the
meter’s data manipulation in the attack, and 0 < δlow ≤
1 ≤ δhigh . Constraint (8a) is applied on traditional users
without renewable resources, while constraints (8a) and (8b)
are both applied on users with renewable resources. Regarding
the attack example in Fig. 2, these constraints are denoted
by the grey rectangular region near point E. As the attack
range narrows down, the attack is harder to detect. Meanwhile,
the attack profits may also decrease. The impact of different
attack ranges on the attack performance will be evaluated
in Sec. VII-A3.

V. HIDDEN ELECTRICITY THEFT ATTACK

In this section, we first propose the HET attack model
under the MP scheme based on the analysis in Sec. IV.
Then, we propose two algorithms for conducting viable attacks
on smart meters. At last, we demonstrate the HET attack’s
feasibility by analyzing smart meters’ security issues on a real
testbed.

A. Hidden Electricity Theft Attack Model

As discussed in Sec. IV-B, the ultimate goal for the HET
attack is to pay less money for the same amount of consumed
electricity without being detected under the MP scheme.
Regarding an HET attack starting from time t and ending at
time t +�t , the attack construction problem can be regarded

as an optimization problem as follows:
min
ŵ

j
i

Ĉ M (9a)

s.t. wtot =
m∑

j=1

n∑
i=1

w
j
i (9b)

(6), (7), (8) (9c)

where w
j
i and ŵ

j
i denote the reported electricity usage for user

i and price p j from time t to time t + �t before and after
attack, respectively. The total electricity consumption for all
n users is calculated by Eq. (9b), which should be consistent
with the measurements on the supply side. Eq. (6) defines
the objective function Ĉ M , i.e., the total calculated electricity
cost for all compromised users after attack. By introducing
constraints (7) and (8), attackers can bypass the ETD methods
discussed in Sec. IV. Eq. (7b) guarantees that the bills of non-
attackers (i.e., honest users) are unchanged. Thus, seeking the
minimal total electricity cost for n compromised users here
is equivalent to seeking the minimal electricity cost for a
attackers.

Problem (9) represents the general model for constructing
the HET attack. It is worth mentioning that there are some
implicit constraints in this model. That is, the manipulated
consumption data ŵ

j
i should follow the pricing scheme. For

example, regarding the MP scheme in Table I, the annual
accumulated electricity consumption data for stage I should
not exceed 3120 kWh.

These implicit constraints are applied when solving prob-
lem (9). Specifically, ŵ

peak
i and ŵ

o f f peak
i are introduced as the

decision variables, which denote the total electricity consump-
tion for user i within an attack cycle at peak hours and off-peak
hours, respectively. Then, any ŵ

j
i in (9) can be expressed by

ŵ
peak
i and ŵ

o f f peak
i according to the pricing scheme in Table I.

With this substitution, all implicit constraints for this pricing
scheme are satisfied.

Note that under the MP scheme in Table II, utility com-
panies could obtain the total amount of supplied electricity
during peak hours and off-peak hours easily. These data may
be used for electricity detection. In this case, two additional
constraints are added to problem (9) as below 3

n∑
i=1

ŵ
peak
i =

n∑
i=1

w
peak
i (10a)

n∑
i=1

ŵ
o f f peak
i =

n∑
i=1

w
o f f peak
i (10b)

where w
peak
i and w

o f f peak
i denote the total amount of real

supplied electricity during peak hours and off-peak hours,
respectively. In this paper, when we study the attack under
the MP scheme in Table II, we will add constraints (10) to
the attack model by default. For example, in the example in
Sec. III, the total amount of supplied electricity during peak
hours and off-peak hours are unchanged after the attack.

With these implicit constraints and specific constraints,
problem (9) is still a linear programming (LP) problem, which

3Constraints (10) are specific constraints and will be applied only for the
ToU pricing mechanism.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on March 24,2021 at 15:57:27 UTC from IEEE Xplore.  Restrictions apply. 



2460 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 15, 2020

Fig. 4. A schematic diagram of the relationship among the billing cycle,
the detection cycle and the attack cycle.

can be solved efficiently by solvers like Gurobi and CPLEX.
Note that W , which denotes the original consumption data, is a
solution to problem (9) since it can meet all the constraints
in problem (9). The corresponding objective is C M . Thus,
problem (9) is always feasible.

After solving the problem, attackers will manipulate all
compromised meters’ electricity consumption data accord-
ingly. The optimization and data manipulation procedures are
conducted online periodically to follow the demand changes
within each attack cycle.

Remark 2 (Relaxed Constraints for Total Supplied Electric-
ity During Peak Hours and Off-Peak Hours): After adopting
the emerging MP scheme, it is reasonable to assume that not
all utility companies will leverage the total amount of supplied
electricity during peak hours and off-peak hours to enhance
the consistency-based detection. In this scenario, attackers
could seek more benefits by relaxing constraints (10) as

|
n∑

i=1

ŵ
peak
i −

n∑
i=1

w
peak
i | ≤ γ peak ·

n∑
i=1

w
peak
i (11a)

|
n∑

i=1

ŵ
o f f peak
i −

n∑
i=1

w
o f f peak
i | ≤ γ of f peak ·

n∑
i=1

w
o f f peak
i (11b)

where γ peak and γ of f peak denote the error factors for total
supplied electricity during peak hours and off-peak hours,
respectively.

Remark 3 (Relationship Among the Attack Cycle, the Data
Collection Cycle and the Billing Cycle:) As shown in Fig. 4,
there are three different cycles in the HET attack model,
i.e., the billing cycle �Tb, the data collection cycle �Td,
and the attack cycle �t . The billing cycle is the time interval
that utility companies calculate the bills, which is usually one
month. The data collection cycle refers to the time interval that
utility companies collect data from smart meters. Traditionally,
the data collection cycle is usually the same as the billing
cycle due to the limitation of metering systems. Currently,
as smart meters are widely deployed, the data collection cycle
becomes much shorter (e.g., one day, an hour, 30 minutes,
or 15 minutes). The attack cycle is the time interval between
two attacks. If the attack could be finished within each data
collection cycle, the collected data could be manipulated
successfully without any inconsistency. Thus, we can conclude
the relationship among the above cycles as

�Tb = N1�Td (12a)

�Td = N2�t (12b)

where N1 and N2 are two integers and N1 ≥ 1, N2 ≥ 1.
Eq. (12a) is always satisfied since the bills are calculated

based on the collected data. Eq. (12b) is the necessary
condition to guarantee that all the collected data are consistent
after the HET attack.

Note that the data collection cycle could be different from
the recorded data’s period. For example, some smart meters
store the daily consumption data, and the utility company
collects all these daily consumption data once per month.
In this case, we assume that attackers could change all the
relevant daily data before they are collected, which could
eliminate all the inconsistencies in the collected data.

B. Algorithms for Conducting HET Attacks

To conduct the proposed HET attack in a real system,
attackers need to manipulate the recorded data in compromised
smart meters. There are several different methods available.
For example, one method is to tamper with the electricity
consumption data stored in smart meters directly, or jam-and-
inject false data by attacking the communication channels and
protocols. Another method is to change some critical parame-
ters in smart meters to change the measurements indirectly.
Considering these two approaches, we will present relevant
algorithms to launch the HET attack. For simplicity, we define
the following notations:

Ŵi = [ŵ1
i ŵ2

i . . . ŵm
i ]
�
, ∀i = 1, 2, . . . , n

Ŵ = [Ŵ1 Ŵ2 . . . Ŵn]
where Ŵi is the stacked vector denoting the manipulated
electricity usage for user i under all price segments, Ŵ is the
stacked matrix denoting the electricity usage for all n users
under all price segments after attack, respectively.

1) Algorithm for Tampering With Measurements: As shown
in Algorithm 1, the HET attack is launched by tampering with
metering measurements directly. At the end of each attack
cycle (time t + �t), the target electricity consumption Wa is
determined from line 3 to line 14. First, the real consumption
within this attack cycle (W ) is acquired at line 2, and the target
of manipulated electricity consumption Wa is initially set as W
at line 3. Then if there exist multiple prices in current billing
cycle, attackers will try to minimize the total electricity cost by
solving the optimization problem (9) at line 6. If the new cost
m̂ is smaller, which means that attackers indeed could gain
some financial rewards by tampering with consumption data
from W to Ŵ , then Ŵ will be set as the target for tampering
with electricity consumption at line 9. Otherwise, there is no
chance to reduce the overall cost, then the original electricity
usage W will be used, and no real tampering operation will be
performed. The above procedures are repeated until the end
of this attack.

2) Algorithm for Tampering With Parameters: Two of the
most common and essential parameters related to metering are
the ratio settings for Current Transformer (CT) and Potential
Transformer (PT). CT/PT is employed to measure the cur-
rent/voltage and scale the current/voltage signal to match the
signal input rating of the smart meter [16]. The scale factor of
CT/PT can be called the CT/PT ratio. Under different metering
environments, the CT/PT ratio in the smart meter should be
tuned to meet different CT/PT hardware installed by the grid
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Algorithm 1 HET Attack via Tampering With Electricity
Consumption Measurements
Input: P , t , �t
Output: Wa

1: for each attack cycle at end time t +�t do
2: Acquire W (from time t to time t +�t);
3: Wa = W ;
4: pmin ← locateMin(P), pmax ← locateMax(P);
5: if pmin 
= pmax then
6: Ŵ ← Solve optimization problem (9);
7: m ← P

�
W1, m̂ ← P

�
Ŵ 1;

8: if m̂ < m then
9: Wa = Ŵ ;

10: end if
11: end if
12: end for

operators. Thus, attackers may tamper with the CT/PT ratio to
change the current/voltage measurements, which can finally
change the electricity consumption measurements. With this
method, attackers can bypass some complicated consistency-
based detection, such as the relationship between current and
power when the voltage is almost fixed.

Since the voltage level for a residential consumer is almost
fixed and cannot be changed easily without being detected,
we will tamper with the CT ratio here. Suppose that the CT
ratio for user i at time t before and after attack are CTi (t)
and CT ′i (t), respectively. Then the scaling ratio of the current
measurement for user i at time t can be defined as

λi (t) = CT ′i (t)
CTi (t)

(13)

Combining the relationship between CT ratio and the
metered current, we can obtain

Îi (t) = λi (t)Ii (t) = CT ′i (t)
CTi (t)

Ii (t) (14)

where Ii (t) and Îi (t) represent the current measurement of
user i at time t before and after attack, respectively.

Let 
 = [λ1(t) λ2(t) · · · λn(t)]
�

denote the scaling ratio
vector for all n consumers, then the manipulated electricity
consumption within this attack cycle can be written as

Ŵ = diag(
)W (15)

where diag(
) is a diagonal matrix whose elements along the
diagonal are λi (t).

However, different from the attack based on tampering with
electricity consumption measurements directly, this attack is
more difficult to launch. This is mainly because these metering
parameters will impact future electrical energy measurements.
In particular, within an attack cycle from time t to time
t + �t , manipulation on CT ratio at time t will change all
the current measurements, and thus change all the measured
energy consumption from time t to time t + �t . Since the
real electricity consumption cannot be predicted perfectly, it is
inevitable to introduce some error between real consumption
data and the manipulated data after this attack. To evade the
detection, attackers should control the error within a limited
range.

From Eq. (14), we know that there is a correlation between
λi (t) and Îi (t). If there is no attack, then λi (t) = 1,
Îi (t) = Ii (t). Therefore, there is also a correlation between
λi (t)− 1 and the measurement error within each attack cycle.
Therefore, we can restrict the variation range of λi (t) to limit
the error indirectly. Here the variation range of λi (t) is set as

λmin ≤ λi (t) ≤ λmax, ∀i = 1, 2, . . . , n (16)

where λmin (0 < λmin < 1) and λmax (λmax > 1) denote the
lower bound and upper bound for the variation range of λi (t),
respectively.

After tampering with the parameters, the relative error
between the manipulated electricity consumption and the real
electricity consumption within the current attack cycle can be
defined as

e = (1
�

Ŵ 1− 1
�

W1)/(1
�

W1)

= (ŵtot −wtot)/wtot (17)

where wtot = 1
�

W1 and ŵtot = 1
�

Ŵ 1 denote the sum-
mation of all users’ electricity consumption before and after
the parameter manipulation attack, respectively. Borrowing
insights from automatic control, a negative feedback loop is
introduced to reduce the relative error within each attack cycle,
which will be illustrated in the following proposed algorithm.
Accordingly, constraint (16) is adapted temporarily as

λmin ≤ λi (t)(1+ e) ≤ λmax, ∀i = 1, 2, . . . , n (18)

Algorithm 2 HET Attack via Tampering With Meter Parame-
ters
Input: P , t , �t
Output: 

1: for each attack cycle at start time t do
2: Calculate e for last attack cycle using Eq. (17);
3: Estimate real consumption data W in this attack cycle

(from time t to time t +�t);
4: pmin ← locateMin(P), pmax ← locateMax(P);
5: if pmin 
= pmax then
6: (Ŵ ,
) ← Solve optimization problem (9) with

additional constraints (15) and (18);
7: end if
8: 
 = 
 ∗ (1+ e);
9: Output: 
;

10: end for

As described in Algorithm 2, the target attack vector 
 is
determined at the beginning of each attack cycle (time t). First,
the relative error e for the last attack cycle is calculated at
line 2 (zero for the first time to launch attacks). Then, the real
consumption data W within this attack cycle is estimated
based on historical consumption data at line 3. Afterwards,
if there exist multiple prices in current billing cycle, attackers
will try to minimize the total electricity cost by solving the
optimization problem (from line 5 to line 7). By introducing
the term 1+e into constraint (16) as (18), the error can provide
a negative feedback on all the manipulated ratios λi (t). For
example, when the relative error e increases, the term 1 + e
in (18) drives λi (t) to decrease by narrowing down λi (t)’s
variation range, which in turn decrease the error. At line 8,
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Fig. 5. A smart meter testbed consisting of nine smart meters, i.e., M1 (GE
EPM7100), M2 (GE EPM7000), M3 (GE EPM6000), M4 (GE EPM2200),
M5-7 (Siemens PAC420) and M8-9 (GE EPM5500P).

the output 
 is scaled by 1 + e so that the final output 

can meet constraint (16). Above procedures will be performed
repeatedly until the end of this attack.

3) Analytical Analysis of Proposed Algorithms: For both
Algorithm 1 and Algorithm 2, the key procedure is to solve
optimization problem (9). As discussed in Sec. V-A, problem
(9) is an LP problem. Moreover, it is still an LP problem after
adding linear constraints (15) and (18). Thus, both proposed
algorithms could be solved with high efficiency.

Regarding an attack cycle from time t to time t+�t , adver-
saries in Algorithm 1 would collect the total consumption data
W at the end of this attack cycle (i.e., time t +�t), and then
construct the attack and change meters’ measurements directly.
In contrast, adversaries in Algorithm 2 need to predict the
consumption data Ŵ within this attack cycle at the beginning
of this attack cycle (i.e., time t), and then construct the attack
and change meters’ CT parameters to impact measurements
indirectly. Due to the existence of prediction error between Ŵ
and W , Algorithm 2’s solution is biased from the optimum in
the real case. Moreover, although constraint (18) could help
reducing the error between ŵtot and wtot , it will limit the range
of manipulated electricity consumption. Thus, Algorithm 2’s
attack profits are usually less than that of Algorithm 1.

C. Feasibility Analysis on Smart Meter Testbed

As shown in Fig. 5, we have analyzed the security issues of
smart meters on a real testbed to demonstrate the feasibility
of conducting HET Attacks. Since the Modbus protocol is
supported by all the smart meters in our testbed, we choose
it to communicate for convenience. First, we introduce how
to conduct attacks based on tampering with meters’ measure-
ments and parameters, respectively. Then, we briefly introduce
two unpublished vulnerabilities to demonstrate that some
smart meters can be fully compromised.

1) Meter Attack via Tampering With Measurements: To
launch the attack in Sec. V-B1, we should tamper with
smart meters’ consumption data. After investigation, we have
found that the energy consumption data could be manipulated
in some meters. For example, Table III lists four Modbus

TABLE III

ELECTRICITY CONSUMPTION REGISTERS IN GE EPM5500P

TABLE IV

REGISTERS RELATED TO CT AND PT IN SIEMENS PAC4200

registers of the energy consumption in the smart meter called
GE EPM5500P. The first column represents register’s name,
in which the import energy is the accumulated electrical energy
flowing from the power grid to the consumer, the export
energy is the accumulated electrical energy flowing from
the consumer to the power grid, and the net energy is the
difference between them. The second column represents the
register’s access address in the Modbus protocol. The third
column represents the value range of these registers. The last
column represents the accessibility, and R/W means readable
and writable with permission.

The EPM5500P meter uses four digits password to verify
operator’ legal identity. Thus, it is easy to guess the password
through brute force attack, which has been verified in the real
case. After passing the simple password validation mechanism,
attackers can tamper with these data in Table III arbitrarily.

However, many smart meters may set the accessibil-
ity of these critical registers to read-only (RO). Therefore,
the direct tampering of electricity consumption may not work
on all smart meters easily. On our testbed, this kind of
attack can be conducted on GE EPM5500P and Siemens
PAC4200.

2) Meter Attack via Tampering With Parameters: To launch
the attack in Sec. V-B2, we should tamper with parameters of
smart meters’ CT/PT ratios. Specific configurable parameters,
such as the CT numerator and the CT denominator, are
designed for the CT ratio in smart meters. Likewise, similar
configurable parameters are designed for the PT ratio. For
example, as shown in Table IV, the Modbus registers related
to the CT and PT in the Siemens PAC4200 meter are R/W.

Attackers can tamper with the current measurements by
changing the values of the CT numerator and the CT denomi-
nator (corresponding to the primary current and the secondary
current in Table IV), which will change the electricity con-
sumption data indirectly. This meter also uses a four-digit
password to ensure the security of writing action, which could
be cracked easily.

3) Two Unpublished Vulnerabilities: After investigation on
the mechanism of smart meters in our testbed, we have found
two vulnerabilities (design deficiencies or bugs) that can be
leveraged by attackers to compromise smart meters: a) the
programmable settings (PS) update mode in GE smart meters,
where the attacker can fully control this meter when a legal
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Fig. 6. Protect against the HET attack by patching smart meters’ firmware.

user has been authenticated within one minute; b) the firmware
update process of Siemens PAC4200 meter, where the attacker
can publish a malicious firmware to users and bypass the
firmware integrity check on this meter. We have reported them
to smart meters’ manufacturers.

VI. COUNTERMEASURES

As discussed in Sec. II, defense and detection are two major
approaches against the electricity theft attack. In this section,
we propose some novel defense and detection countermeasures
to mitigate the impact of the HET attack at a low cost. First,
we protect a group of smart meters from the HET attack via
firmware patches under limited protection resources. Then,
we propose two strategies to improve current ETD methods
for better detection performance.

A. Selective Protection on Smart Meters

As discussed in Sec. V-B, HET attacks could be conducted
by tampering with electricity measurements or configurable
parameters. Accordingly, we apply two patches on smart
meter’s register groups to protect against the HET attack.

1) Patch on Access Control: As shown in Fig. 6a, regard-
ing the attack by tampering with electricity measurements
directly, the first patch is to enhance the access control by
designing the registers storing the electricity consumption data
as read-only registers. With this patch, the metering data could
not be easily modified even if attackers can access smart
meters through remote network communication.

2) Patch on Writing Operation Record: Different from
electricity measurements, smart meters’ parameters need to
be tuned according to different deployment scenarios, which
cannot be designed as read-only registers. Thus, regarding the
parameter manipulation attack, the second patch is to add
a group of independent and read-only monitoring registers.
As shown in Fig. 6b, each writing operation on a critical para-
meter will increase the value of relevant monitoring registers
by one. Moreover, the timestamp for the last writing operation
is also recorded. Therefore, the utility company can record its
modification operations and detect the illegal operations via
these monitoring registers.

With these patches, attackers cannot launch HET attacks
easily through tampering with smart meters’ electricity mea-
surements or configurable parameters. The only approach left
for attackers is to fully control the smart meter and recom-
pile its firmware. However, since smart meters are widely

distributed with various brands, configurations, and firmware
versions, patches for all smart meters are not practical. Assume
that utility companies already know the set � , i.e. all the
n deficient smart meters that may be compromised by the
attackers in Fig. 1. Then, the optimal defense strategy under
limited resources is to select out a group of smart meters to
protect, which could minimize the loss caused by any potential
HET attacks. The selection strategy could be modeled as
follows:

min
�p

max
ŵ

j
i

C M − Ĉ M (19a)

s.t. �p ⊂ �, |�p|0 ≤ n p (19b)

ŵ
j
i = w

j
i , ∀i ∈ �p, j = 1, 2, . . . , m (19c)

(9b), (9c) (19d)

where �p is the set of protected smart meters, and |�p|0 is its
cardinality. n p is the maximum number of smart meters pro-
tected by utility companies. The objective function minimizes
the economic loss C M − Ĉ M caused by any possible HET
attacks. Constraint (19b) indicates that utility companies could
protect at most n p smart meters from being compromised.
Constraint (19c) indicates that attackers could not manipulate
these protected smart meters. Constraints (19d) denote the
known constraints when constructing the HET attack.

Problem (19) is a combinatorial optimization problem, and
it will degenerate to problem (9) if �p is fixed. When the
number of combinations

( n
n p

)
is small, the optimal set could

be found efficiently by the exhaustive search method. When( n
n p

)
is large, a suboptimal set could be found by heuristic

algorithms like the greedy algorithm, the genetic algorithm,
etc. Due to the limitation of space, we will focus on the effec-
tiveness of the selective protection strategy, and the efficient
solutions to problem (19) when

( n
n p

)
is significantly large will

be left as our future work.

B. Enhancement on Electricity Theft Detection

Based on the characters of the HET attack, we propose two
strategies to enhance current ETD methods. One strategy is
to reduce the attack cycle by random consistency checking;
another strategy is to draw innocent users’ attention to their
consumption behaviors by introducing the charging-rebating
model into the current billing system.

1) Detection Based on Random Consistency Checking: As
discussed in Remark 3, the attack cycle should be strictly
equal to or shorter than the data collection cycle to bypass
the detection of current ETD methods. One direct option for
improving the performance of ETD methods is to shorten the
data collection cycle directly. However, the data collection
cycle is limited by the cost of communication, storage, and
computation. Inspired by the random checking algorithm in
cloud computing, we suggest utility companies adopt the
random consistency checking strategy on the electricity data,
which is briefly described here. Besides the periodical data
collection time, utility companies should randomly select some
time, and then collect the data and check the consistency at
these additional time within each hour. This strategy needs few
additional resources and can cover most of the attack time.
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2) Detection Under Charging-Rebating Model: One fun-
damental assumption for HET attacks is that innocent users
(i.e., honest users with compromised smart meters) only care
about their electricity bills but ignore the details of electricity
consumption. Thus, we can encourage users to focus on their
consumption behaviors by changing the billing mechanism
from the charging-only model to the charging-rebating model,
which can be described as

Pay(i) =
m∑

j=1

w
j
i · phigh (20)

Back(i) =
m∑

j=1

w
j
i ·

(
phigh − p j

)
(21)

where user i should firstly pay their bills Pay(i) under the
highest price phigh , and the utility company will return the
balance Back(i) as the rebate. This mechanism can be easily
implemented on existing billing systems through software
upgrading.

Under this new mechanism, users would care about both the
payment and the rebate on their bills. Assume that innocent
user i would ignore the bill’s change if the following constraint
is satisfied

−μ
↓
i ≤

̂Pay(i)− Pay(i)

Pay(i)
≤ μ

↑
i , ∀i ∈ �na (22)

where μ
↓
i and μ

↑
i denote user i ’s sensitive factors to the

payment Pay(i). Similar to the definition of σ
↓
i and σ

↑
i in

Eq. (3b), μ
↓
i and μ

↑
i have negative correlation with user i ’s

payment and μ
↓
i > μ

↑
i > 0. ̂Pay(i) denotes user i ’s payment

after attack, which could be calculated as

̂Pay(i) =
m∑

j=1

ŵ
j
i · phigh (23)

By substituting (20) and (23) into (22), we can get

−μ
↓
i ≤

∑m
j=1 (ŵ

j
i −w

j
i )

∑m
j=1 w

j
i

≤ μ
↑
i , ∀i ∈ �na (24)

The above analysis indicates that attackers need to satisfy
constraint (24) to evade innocent users’ detection. Hence,
after the charging-rebating model is adopted, innocent user i ’s
electricity consumption data could not be easily manipulated
without being exposed.

VII. SIMULATION AND ANALYSIS

In this section, we study the HET attack algorithms in
Sec. V-B and the proposed countermeasures in Sec. VI through
simulation on a real-world energy usage data set. First, we ana-
lyze the performance of the attack via tampering with mea-
surements, and study the impact of different attack parameters.
Then, we study the performance of the attack via tampering
with parameters. Lastly, we demonstrate the effectiveness of
the proposed countermeasures through simulation.

The data set is obtained from the electricity consump-
tion benchmarks project of Australia [38], which contains
the energy consumption of 25 Victorian householders from
2012/4/1 to 2014/3/31. In the simulation, the annual data
of 17 general householders from 2013/1/1 to 2013/12/31 are

adopted for further analysis. The electricity bills are calcu-
lated under Shanghai’s MP scheme in Table I. As shown
in Table V, the original electricity consumption data range
from 1198.25 kWh to 8009.25 kWh, and the total consumption
is 68471.25 kWh. Meanwhile, the bills vary from 646.24 CNY
to 5606.87 CNY, and the total income of the utility company
is 41074.21 CNY.

According to the real settings in Shanghai, both the billing
cycle and detection cycle are set as one month in the simula-
tion. Moreover, the attack cycle is also set as one month by
default, and it will be changed when we study the impact of
different attack cycles.

A. Attack via Tampering With Measurements

The HET attack via tampering with measurements is evalu-
ated in this subsection. First, two critical attack scenarios are
investigated: 1) collusive attack, where all users are attackers
and share the attack profits; 2) non-collusive attack, where only
one user is the attacker, and the other users are honest users
with compromised meters. Then, the impact of the attack range
on attack performance is studied. At last, the attack scenario
in Remark 2 is analyzed.

1) Collusive HET Attack: In the collusive attack scenario,
all users are attackers and share the profits. We simulate
three groups of collusive HET attack (attack 1, attack 2 and
attack 3) with different attack range (i.e., [δlow, δhigh ] defined
in Sec. IV-D), and the changes of energy and bills after attack
are shown in Table V. Take attack 1 for example. When the
attack range is set as [0,+∞), attackers can reduce the total
electricity bills as high as 2691 CNY. We further analyze the
bills of each user and find that HET attack will dramatically
reduce the unit electricity prices of big consumers but slightly
increase the small consumers. For example, user 7 could
save 3108.56 CNY by removing 3710.87 kWh to others,
whose unit electricity price is reduced from 0.700 CNY/kWh
to 0.581 CNY/kWh. However, user 16 needs to pay extra
1221.93 CNY for additional 2244.36 kWh electricity, whose
unit electricity price is increased from 0.539 CNY/kWh to
0.543 CNY/kWh.

As shown in Table V, the loss caused by attack 1 could
be as high as 6.5%. It is higher than the profit rate of most
utility companies around the world in 2018, such as State Grid
Corporation of China (2.7%), Electricite de France (4.6%),
ENEL in Italy (5.1%), Tokyo Electric Power (5.4%, Japan),
Korea Electric Power (2.2%), and Scottish & Southern Energy
(2.6%, Britain). 4 Meanwhile, it is much higher than non-
profit Regional Transmission Organizations whose profit rate
is less than 1%, such as PJM, NYISO, and MISO in the US.
Thus, the HET attack would threaten the profitability of these
companies and cause severe problems to the whole power grid.

2) Non-collusive HET Attack: In the non-collusive attack
scenario, there is only one attacker. The HET attack sim-
ulation procedures are conducted for each user, and the
final attack profits are shown in Table VI. As discussed in
Sec. V-A, the bills of non-attackers (honest users) would be
unchanged. Thus, we only list each attacker’s profit, which

4These data come from http://fortune.com/fortune500/.
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TABLE V

ENERGY AND BILLS BEFORE AND AFTER COLLUSIVE HET ATTACK (ELECTRICAL ENERGY UNIT: KWH, BILLING UNIT: CNY)

TABLE VI

PROFITS OF THE NON-COLLUSIVE HET ATTACK (UNIT: CNY)

is almost equal to the loss of the utility company. As shown
in Table VI, attackers’ profits range from 114.51 CNY (user
16) to 233.63 CNY (user 15). Specifically, user 16 gain
the least profit from HET attack, who consumes the least
electricity among all users. User 2, 7, and 15 could gain the
most profit, who are the top three energy consumers. Thus,
the non-collusive attack would cause much less loss to the
utility company than the collusive attack.

3) Analysis of Attack Range: As indicated in Table V,
narrowing the attack range would decrease the profits of HET
attacks. Specifically, when the attack range is reduced from
[0,+∞) to [0.4, 3] and [0.8, 1.2], the total saved bill decreases
from 2690.95 CNY (saved by 6.55%) to 2605.84 CNY (saved
by 6.34%) and 949.52 CNY (saved by 2.3%). However,
smaller attack range is preferred to bypass the data-driven
theft detection, since the manipulated data would not trigger
the abnormal detection alarms when the manipulated data are
similar to the real data. To describe the similarity between the
manipulated data and the original data for user i , we use the
cosine similarity between Ŵi and Wi , which can be calculated
as (W

�
i Ŵi )/(||Wi || · ||Ŵi ||). As shown in Fig. 7, when the

attack range narrows from [0,+∞) to [0.8, 1.2], the average
cosine similarity increases from 0.882 to 0.997. Moreover,
the minimum cosine similarities under three attack ranges are
0.778, 0.863, and 0.994, respectively. Therefore, the attacker
should optimize the attack range to make a trade-off between
the attack profits and the risk of being detected.

4) Analysis of Relaxed Constraints for Total Supplied Elec-
tricity During Peak Hours and Off-Peak Hours: As discussed

Fig. 7. Cosine similarities between manipulated data and original data under
different attack ranges.

in Remark 2, if utility companies do not leverage the total
amount of supplied electricity during peak hours and off-
peak hours for detection, attackers may seek more benefits.
For comparison, we select attack 2 in Sec. VII-A1 (i.e.,
the collusive HET attack with an attack range of [0.4, 3]) as
the benchmark. In these new attacks, all the settings are the
same as attack 2 except that constraints (10) are replaced by
(11). Besides, γ of f peak is set the same as γ peak for simplicity.

Fig. 8 shows the error bars of all 17 users’ cosine similarity,
and the percentage of the total saved bill under different
γ peak . From the figure, all users’ cosine similarities always
keep at a high level as γ peak increases, which ensures that
the manipulated data are still similar to the original data.
This is because the variation of data is limited by the attack
range [0.4, 3]. Thus, these new attacks are still safe from
being detected by data-driven based methods. Meanwhile,
the total saved bill increases almost linearly as γ peak increases.
As γ peak increases from 0 to 0.05, the percentage of the
total saved bill increases from 6.34% to 7.88%. The result
in Fig. 8 suggests that, to reduce economic losses caused by
HET attacks, utility companies should always leverage the
total supplied electricity data during peak hours and off-peak
hours for electricity theft detection.

B. Attack via Tampering With Parameters

In this subsection, we assume that all users are colluded to
launch the HET attack by manipulating the meter parameters
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Fig. 8. All users’ cosine similarity and the percentage of the total saved bill
vs. γ peak for the case discussed in Remark 2.

Fig. 9. Attack’s maximum absolute error and the percentage of the total
saved bill with different ranges of λi .

using Algorithm 2. Simulations are conducted on different
variation ranges of λi (i,e., [λmin , λmax ] as defined in (16)).
As discussed in Sec. V-B2, the error between the manipulated
data and real consumption data is inevitable due to the
estimation error. In fact, there is a positive and tight correlation
between the error and the risk of being detected. Therefore,
we calculate the absolute error

∣∣ŵtot −wtot
∣∣ within each hour

in a whole year, and find the maximum one with different
[λmin , λmax ]. Meanwhile, the percentage of the total saved bill
is calculated.

As shown in Fig. 9, there is a close correlation between
the absolute error and [λmin , λmax ]. Furthermore, it can be
concluded that the total saved bill after attack directly depends
on [λmin , λmax ]. When [λmin , λmax ] is narrow, the attacker’s
ability to manipulate the electricity consumption is limited,
which leads to a low reduction ratio of the total electricity
bill; when [λmin , λmax ] is wide enough, the percentage of total
saved bill can approach the result of HET attack based on
tampering with the electricity consumption directly. Therefore,
it is necessary to find a trade-off between the attack profits
and the risk of being detected. For instance, from the view
of attackers, it is a good choice to set the variation range
[λmin , λmax ] as [0.4, 3].

C. Selective Protection on Smart Meters

In this subsection, we choose the collusive attack scenario
in Sec. VII-A1 as the benchmark and test the selective smart
meter protection strategy in Sec. VI-A. Since

( n
n p

)
is not very

large, we will find out the optimal protection set �p in problem
(19) by the exhaustive search method.

The minimal economic losses under different numbers of
protected smart meters are shown in Fig. 10. From the figure,
the economic losses decrease quickly when the number of pro-
tected smart meters increases. Among all the 17 smart meters,
if four meters are protected away from attacks, the economic

Fig. 10. Minimal economic loss v.s. number of protected smart meters in
the collusive attack scenario.

TABLE VII

BILLS AND RELEVANT ECONOMIC LOSS RATES UNDER DIFFERENT

ATTACK CYCLES (ORIGINAL TOTAL BILL: 41074.21 CNY)

losses caused by three attacks (i.e., attack 1, attack 2 and
attack 3) could be reduced from 2690.95 CNY, 2605.84 CNY
and 949.52 CNY to 237.05 CNY, 213.82 CNY and 59.38 CNY,
respectively. In other words, more than 90% of the economic
losses could be cut down via protecting about 23.5% of all
the deficient meters. Hence, by protecting a group of critical
smart meters, utility companies could effectively mitigate the
impact of HET attacks at a low cost.

D. Enhancement on Electricity Theft Detection

Two strategies proposed in Sec. VI-B is evaluated in this
subsection.

1) Detection Based on Random Consistency Checking:
We take attack 1 in Sec. VII-A1 as the benchmark, and
conduct three new simulations under different attack cycles,
including one day, one hour, and 15 minutes. As shown
in Table VII, the attack profits may decrease when the attack
cycle becomes shorter. For example, the economic loss rate
after attack slightly decreases from 6.551% to 6.464% when
the attack cycle shortens from one month to 15 minutes. Note
that the total amount of supplied electricity during peak hours
and off-peak hours has been leveraged for detection, so the
principal cause for the bills’ variation is that when some
user’s consumption exceeds the price steps as the attack cycle
becomes longer, the optimized attack strategy could be slightly
different.

As indicated in Table VII, it is not cost-efficient to shorten
the attack cycle by shortening the data collection cycle directly,
since it could only cut down a few economic losses. However,
shorter attacker cycle means more frequent attack operation,
which costs more and increases the risk of being detected by
the intrusion detection system. Thus, the random consistency
checking strategy is valuable for attack detection since it could
shorten the attack cycle at a low cost. For example, utility
companies could collect the data and check the consistency
randomly once per hour. Accordingly, the only approach for
evading the random detection strategy is to shorten the attack
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Fig. 11. Economic loss caused by the non-collusive HET attack vs. different
range of μ

↓
i ([2μmin , 2μmax ]) and μ

↑
i ([μmin , μmax ]). The first benchmark

denotes the same scenario as in Sec. VII-A2. The other bars denote the
scenarios with the charging-rebating model, where constraint (24) is applied.

cycle or reduce the attack times, which would increase the
attack cost or decrease the attack profits.

2) Detection Under Charging-Rebating Model: To demon-
strate the effectiveness of the charging-rebating model,
we select the non-collusive HET attack in Sec. VII-A2 as
the benchmark and conduct the attack for each user again
with additional constraint (24). For simplicity, we assume that
μ
↓
i and μ

↑
i are negatively linear to Pay(i), and the range

of μ
↓
i and μ

↑
i are set as [2μmin, 2μmax ] and [μmin , μmax ],

respectively.
Fig. 11 shows the error bars for the economic losses

caused by all the non-collusive HET attackers under different
[μmin , μmax ]. From the figure, the economic losses decrease
a lot when users are more sensitive to the payment in the
charging-rebating model (i.e., μmax is smaller). Thus, with
the charging-rebating model, the economic losses caused by
HET attacks could be effectively cut down if innocent users
care more about their payment and rebate on their bills.

VIII. CONCLUSION AND FUTURE WORK

This paper revealed a new security threat, called the hidden
electricity theft, under emerging multiple-pricing schemes in
smart grids. First, we analyzed the security on both flat-
pricing and multiple-pricing schemes and find out that current
electricity theft detection methods may fail under the multiple-
pricing scheme. Based on this idea, we proposed the HET
attack model to maximize the economic profits while evading
most of the current electricity theft detection methods. We
also designed two algorithms to conduct the HET attack on
real smart meters and demonstrated the feasibility on the smart
meter testbed. Then, we provided some novel countermeasures
to protect the multiple-pricing scheme from HET attacks.
Lastly, we studied the HET attack and its countermeasures
through extensive simulations on a real data set. Simulation
results demonstrated that the attack could cause significant
economic losses, and the proposed countermeasures could
effectively mitigate the impact of this attack.

In the future, we plan to extend our work in three directions.
First, we will consider some up-to-date operation and business
schemes in the power system, such as distributed generation
(i.e., consumers transit the power they generated or stored
to the grid) and capacity selling (i.e., consumers commit to
reducing loads at times). With these new schemes, the meter-
ing and billing system would be much more complicated
and vulnerable to the HET attack. Second, we will inves-
tigate similar attacks in other physical systems with similar

multiple-pricing schemes, such as the water system, the trans-
portation system, the parking system, etc. For these systems,
the threats of HET-similar attacks might exist, when the fol-
lowing conditions are satisfied: 1) the structure is few-supplier
versus multi-consumer; 2) the billed objects in the system
could only be measured but hard to be traced, so that the
bill’s calculation depends on the meter readings on the demand
side; 3) consumers’ consumption patterns are hard to predict.
Third, we will improve current countermeasures to prevent the
HET attack with better performance. For example, we need to
find an efficient way to determine the set of protected smart
meters for the combinatorial optimization problem (19) when
the number of combinations is significantly large.
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