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ABSTRACT
The IoT (Internet of Things) technology has been widely adopted
in recent years and has profoundly changed the people’s daily lives.
However, in the meantime, such a fast-growing technology has also
introduced new privacy issues, which need to be better understood
and measured. In this work, we look into how private information
can be leaked from network traffic generated in the smart home
network. Although researchers have proposed techniques to infer
IoT device types or user behaviors under clean experiment setup,
the effectiveness of such approaches become questionable in the
complex but realistic network environment, where common tech-
niques like Network Address and Port Translation (NAPT) and
Virtual Private Network (VPN) are enabled. To this aim, we propose
a traffic analysis framework based on sequence-learning techniques
like LSTM and leveraged the temporal relations between packets for
the attack of device identification. We evaluated it under different
environment settings (e.g., pure-IoT and noisy environment with
multiple non-IoT devices). The results showed our framework was
able to differentiate device types with a high accuracy. This result
suggests IoT network communications pose prominent challenges
to users’ privacy, even when they are protected by encryption and
morphed by the network gateway. As such, new privacy protection
methods on IoT traffic need to be developed towards mitigating
this new issue.

CCS CONCEPTS
• Security and Privacy → Traffic Analysis.
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1 INTRODUCTION
The Internet of Things (IoT) has been gaining increased popularity
in recent years, and continues to expand in areas such as smart
homes, smart cities, industrial systems, connected health products,
and so on. According to a report from Forbes, the global IoT market
will grow from 157 billion US dollars in 2016 to 457 billion US dollars
by 2020, attaining a Compound Annual Growth Rate (CAGR) of
28.5% [1].

The Smart Home is a prominent use case of IoT, where multiple
IoT devices work together to facilitate all kinds of user activities by
sensing surroundings, interpreting human commands and provid-
ing feedback. However, the Smart Home can introduce new threats
to residents’ privacy. Since network packets between IoT devices
and remote servers can be intercepted, a motivated attacker can
leverage such data to infer private information about the residents,
like what IoT devices are installed and whether they are active.
Leaking such information would cause grave consequences to the
residents: e.g., a theft can break into the home when no one is inside
by learning the status of the installed smart switch.

This paper aims to assess the privacy threat to smart home
residents by evaluating different traffic-analysis approaches on
datasets carrying real IoT traffic. Though a few recent works also
investigated the privacy issues related to IoT network communica-
tions [9, 11, 37], those works all assume a local adversary (only the
traffic between IoT device and gateway can be sniffed) or relatively
simple network environment (e.g., traffic from devices can be easily
separated). Whether traffic analysis is effective under a remote ad-
versary or a more complex network is not yet assessed. In particular,
we assume that the gateway may enable configurations that are
common but hamper traffic analysis, like Virtual Private Network
(VPN) and Network Address and Port Translation (NAPT). Under
those settings, traffic flows belonging to different IoT devices could
be merged to a single flow and the valuable information from fields
like destination ports could be erased. Still, our study shows by
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exploiting the temporal relations between packets of an individual
device, the device can be reliably identified.

More specifically, we found such temporal relations can be mod-
eled by sequence model LSTM-RNN when grouping consecutive
packets into a traffic window. We carefully designed the structure
of both models and evaluated on two datasets filled with traffic
generated from off-the-shelf IoT devices and non-IoT devices. The
evaluation results show our models can achieve better accuracy
comparing to the models widely used by existing works, like Ran-
dom Forest. To highlight a few, our bidirectional LSTM model can
achieve an accuracy of 99.2% and 97.7% on IoT devices in NAPT and
VPN configuration. Even when a large-amount of non-IoT traffic
is generated at the same time, it can still achieve 95.3% and 80.9%
accuracy in these two configurations.
Contributions.We summarize the technical contributions made
by this work as below.

(1) We present a traffic-analysis system, HomeMole, to automat-
ically infer the IoT devices behind a smart home network
even when traffic fusion like NAPT and VPN are enabled.
We designed a basic LSTM model and a bidirectional LSTM
model that are able to identify IoT devices based on the
sniffed packets.

(2) We evaluated our system under two types of network con-
figuration (NAPT and VPN) and two scenarios (pure-IoT and
noisy environment). The results indicate that our framework
could achieve high accuracy under those settings. Our mod-
els outperform the baseline model, Random Forest, due to
the ability to model the temporal relations between packets.

To facilitate further research in this domain, we release the
datasets and the models on our Github repository1. We believe
by releasing datasets and models, we could help other researchers
to investigate new traffic-analysis methods and IoT community to
build a better defense.
Paper organization. The paper is organized as follows: Section 2
presents the background about the relevant previous work, smart
home network, our adversary model and neural networks used
in our paper. Section 3 describes the design of our framework.
Section 4 presents the experimental results of our framework in
different scenarios. Section 5 discusses alternative scenarios and
defense. Section 6 discusses the limitations of this work. In the end,
we conclude this study in Section 7.

2 BACKGROUND
2.1 Related Work
Network traffic analysis.Network traffic analysis has been shown
reasonably effective when applied to anomaly detection [25, 43],
software identification [32] and device fingerprints [10, 33]. For
example, Sakthi et al. [33] applied statistical techniques on network
traffic to create unique fingerprints for multiple wireless devices.
Their evaluation results show even with the interference from other
wireless users in the proximity, the approach can still reach a satisfy-
ing accuracy. Aksu et al. [10] introduced a wearable fingerprinting
framework based on Bluetooth traffic. Their evaluation shows that
wearable devices can be accurately fingerprinted using Bluetooth

1https://github.com/DongShuaike/iot-traffic-dataset.git

classic protocols. Taylor et al. [41] proposed an identification frame-
work for smartphone apps called AppScanner, which extracts sta-
tistical features from network flows for classification tasks. Trained
by different learning algorithms, AppScanner can reach the highest
accuracy of 99.8% on 110 apps. Chen et al. [17] proposed an online
traffic classification framework which utilizes kernel methods and
deep neural networks. They evaluated their approach on 5 different
protocols and 5 mobile applications, which achieved an accuracy
of 99.84% and an accuracy of 88.43% correspondingly.
Traffic analysis in IoT domain. Following the rapid development
of the IoT ecosystem, how to characterize and fingerprint of IoT
devices has become a trending topic. In recent years, there have been
some works on IoT traffic analysis [10–12, 29, 30, 35, 37]. Apthorpe
et al. [11] performed case studies on four IoT devices. The results
showed distinctive features were found in the network traffic, which
could enable device identification and behavior inference. Marcus et
al. [30] proposed an IoT device identification system IoT Sentinel.
They extracted 23 features from raw packets, which include IP
options, IP addresses, ports, as well as some network protocols from
the link layer to the application layer. However, some of the features
could not be directly used in our settings due to the adversary
capabilities and complex network configurations (NAPT, VPN). For
example, ARP and LLC are only capturable in a local area network
environment. Also, SSDP and MDNS protocols only account for
a small amount of traffic and could not holistically represent the
network status. Sivanathan et al. [37] collected network traces of
more than 20 IoT devices in a campus environment over 3 weeks
and characterized the profiles of those IoT devices according to their
traffic patterns. It also relies on an extensive feature engineering
to select the salient features and some of them become vain when
a complex network setting is applied, like NAPT and VPN. Abbas
et al. [9] proposed a multi-stage privacy attack in smart home
environment. They usedmachine-learning approaches for revealing
different types of privacy information. However, their research
is performed under a different scenario from our work. In their
work, an attacker is located physically within the wireless range
of the targeted users’ smart devices while our model assumes the
attacker can acquire network traffic between the gateway and the
remote server. Due to the different capabilities of adversaries, the
raw network traffic obtained in their work is different from ours,
therefore leading to different solutions.
Privacy leakage in IoT apps. The issue of privacy leakage in
smart home apps also draws attention from the security commu-
nity in recent years. Celik et al. [16] used taint analysis in tracking
sensitive information in IoT apps. Their evaluation shows the ap-
proach can mark the sensitive data flow at high accuracy. Babun
et al. [13] proposed an NLP-based dynamic analysis tool to inform
users of potential privacy risks when using an IoT app. The evalua-
tion shows that the tool can reach an average accuracy of 94.25%
with a minimal execution overhead. Surbatovich et al. [39] ana-
lyzed the risk of privacy leakage in if-this-then-that(IFTTT),
an IoT automation framework. Using an information flow model,
they found that around 50% of the unique IFTTT recipes violate
confidentiality or integrity. Different from their works, we focus
on uncovering privacy leakage issues in IoT network traffic.
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Figure 1: Network structure of a typical smart home.
2.2 Smart Home Network
We assume the network communication within a smart home in-
volves four parties: IoT device, service provider, gateway and user.
The communication schema is illustrated in Figure 1. Below we
briefly overview it.

• The first type of IoT device senses the surrounding environ-
ment and sends notifications to its associated listeners, either
periodically or immediately when the event takes place. For
example, Samsung ST Motion Sensor detects when a person
approaches in proximity [8] and notifies other IoT devices.
Another type of IoT device is IoT hub, which acts as the
“brain” (centroid controller) for other IoT devices (or IoT kits)
in the close range. IoT hub is necessary to control IoT devices
that use low-power protocols like BLE. Both regular IoT de-
vice and IoT hub can be controlled by user’s commands sent
remotely or locally.

• The IoT device interacts with the service provider operated
by its manufacturer through Internet communications. The
service provider is responsible for handling requests and
relaying resources. To reduce the operational cost, many
device vendors have moved their services to the public cloud
infrastructure and leverage the cloud analytics, like AWS IoT
Core [2], to process a massive amount of IoT data.

• A gateway is a bridge between in-home IoT devices and
the remote service provider. A typical gateway (e.g., router)
supplies two types of interfaces for in-home devices, WLAN
and LAN. The communication with a service provider is
through WAN interface.

• A user takes control of all smart devices in his/her home.
There are usually two ways to interact with IoT devices,
which are throughmobile applications or human interactions
(e.g., walking, talking, and touching).

Device identifier. IoT devices within the smart home network
can be distinguished by device identifiers determined by specific
network protocols. EachWi-Fi device has a unique source IP address
and MAC address. Though IoT kits might not get IP addresses
in a smart home if they are not using WiFi, they can still obtain
identifiers from IoT hub through other protocols (e.g., NwkAddr for
Zigbee devices and Resolvable Private Address for BLE devices).

2.3 Insights into IoT Traffic
We carried out an exploratory analyse on the real-world IoT devices
and public datasets to characterize their network communication
patterns. We identify several insights which highlight the unique-
ness of IoT traffic comparing to the desktop and mobile traffic.
1) The devices belong to the same category have similar traffic patterns.
As one example, we show the traffic patterns of Amazon Echo Dot
and Google Voice Assistant (both are voice assistants) when they
are waken up in Figure 16 and Figure 17 of Appendix. As can be
seen, when the voice command is recognized, both of them generate
a traffic burst, followed by a period of continuous communication
with the remote server.
2) Same devices in different running statuses can have significantly
different traffic patterns. From Figure 18 of the Appendix we can
see, Orvibo switch produces dense, but a smaller amount of traffic
in standby mode compared with that in running mode. Another
example is Figure 19, from it we know Xiaomi camera generates
much more traffic in WAN shooting mode than in LAN shooting
mode.

Device (%) IPv4 UDP TCP TLS HTTP DNS O
Google Home 100.0 1.5 98.1 26.6 0 0.6 0.4
Echo Dot 100.0 ∼0 ∼100.0 14.6 ∼0 ∼0 ∼0

Tmall Assist 99.6 0 99.6 21.0 5.5 ∼0 0.4
360 Cam
(LAN mode) 99.7 78.6 21.1 0.4 0 0 0.4

360 Cam
(WAN mode) 100.0 99.9 0.1 ∼0 0 0 0

Orvibo 99.6 0.2 99.4 ∼0 0 0 0.4
Broadlink 99.7 99.7 0 0 0 0 0.3
Tplink 99.4 0.1 99.3 50.9 0 0 0.6

Xiaomi Hub 99.5 99.5 0 0 0 0 0.5
Noise - mobile 87.6 5.5 80.1 4.5 1.7 2.2 12.4
Noise - tablet 87.0 0.5 86.4 0.6 0.1 0.1 13.0

Table 1: Protocol distribution (O means other protocols).

3) The choice of protocol is diverse. The communication between
devices and remote services must follow certain conventions, which
is reflected in the chosen protocols. In Table 1 we show such di-
versified choices in terms of packets ratio under different network
protocols. Note that we only measure protocols at the network layer,
the transmission layer and the application layer, discarding those
from lower layers. According to our statistics, most traffic captured
by an attacker is IPv4-based. For devices with large volumes of
traffic, like network camera, UDP is usually adopted. Compared with
non-IoT devices, IoT devices generate much less HTTP traffic for
communication. Though DNS is usually used by previous works for
device identification [11, 12, 37], our results show that its ratio is
quite low compared to other protocols. As such, simply relying on
DNS does not guarantee device identification especially when the
traffic observed comes from an incomplete session.

2.4 NAPT and VPN
When the network traffic is observed between the gateway and the
service provider, the original device identifiers may be obscured.
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Firstly, the gateway could strip off the source MAC address from
the packets [3]. Even the port information can be changed under
NAPT (Network Address and Port Translation) or VPN (Virtual
Private Network). Below, we describe how changes are made by
NAPT and VPN.

NAPT. To conserve the limited global IPv4 resource, NAPT is devel-
oped to enable the sharing of one IP address among different devices.
In particular, NAPT modifies the network-layer and transport-layer
identifiers like destination IP address and destination port numbers
of inbound packets[38]. For outbound packets, the source IP address
and the source port are translated. In both cases, the IP address of a
local device is replaced with the gateway’s IP address. The gateway
using NAPT holds a translation table which records the mapping
of addresses and ports so that packets will be routed to the right
destination.

Figure 2: VPN-enabled gateway.

VPN. VPNs are often used to interconnect different networks to
form a new network with a larger capacity [19]. Based on the IP
tunneling mechanism, hosts in different subnets can communicate
with each other and the delivered information can be kept secret
with authentication and encryption.

Figure 2 shows the network structure after deploying a VPN-
enabled gateway. Different from normal routers, a VPN-enabled
gateway owns three network interfaces – wlan0, eth0 and tun0.
Among them, wlan0 works as the entrance of LAN, collecting and
delivering packets from local devices. The Ethernet interface eth0
holds the connection between the gateway and WAN. tun0 is cre-
ated by VPN client process. For every packet from wlan0 to eth0,
the VPN client first encrypts the original packet into a payload and
constructs a new packet. The new packet is then delivered to a
VPN server and gets decrypted. The VPN server then forwards re-
stored packets to their original destinations. From the viewpoint of
destination remote server, the original metadata like the source IP
address and the source port are completely hidden, which protects
user’s privacy against on-path eavesdroppers.

2.5 LSTM-RNN
Recently, deep neural network (DNN) has been gaining traction
in the security domain and showing promising results, with its
capability of feature representation learning. For example, Rim-
mer et al. demonstrated that websites visited by Tor users can be
fingerprinted automatically with DNN [34].

Recurrent Neural Network (RNN) is one type of DNN that is
good at handling temporal-related sequences. With multiple recur-
rent cells connected, the output of a previous cell can be passed
to the current one. In this way, historical information is kept and
forwarded. Among different implementations of RNN, LSTM (Long
Short-Term Memory)-RNN has become a popular choice, as it is
able to address the weakness of other RNNs like exploding and van-
ishing gradients. It provides a novel memory cell consisting of three
different gates: input gate, forget gate and output gate. These gates
are used to process the data transferred from the previous memory
cell and manipulate the current cell state. LSTM-RNN has achieved
many successes in different areas, such as speech recognition [21],
medical diagnose [28], and system log analysis [18]. Figure 3 shows
the structure of a basic LSTM-RNN.

Inspired by recent research, we find our problem is a natural fit
for LSTM-RNN models. Similar to system logs, traffic generated by
IoT devices can be organized in chronological order. There exists
contextual dependency between packets based on the running states
of the device and such dependency can be modeled by LSTM-RNN
models. In Section 3, we describe our LSTM-RNN models in details.

LSTM 
Block

…....

LSTM 
Block

c LSTM 
Block…....

LSTM 
Block

 c c c

Input Layer

hhhh

FC

Softmax 

FC

Softmax 

FC

Softmax 

FC

Softmax 

Figure 3: Structure of a basic LSTM used in our work (FC
means fully-connected layer).

2.6 Adversary Model
The goal of our adversary is to identify active IoT devices in a
targeted smart home. As previous work [9] shows, identifying
the type of devices in a smart home not only can leak sensitive
information like user preference for IoT products but also acts as the
building blocks for further inference, like user behavior detection.
Such privacy leakage can bring negative impacts to users’ daily
lives. For example, an ISP can infer the device information and sell
it to advertisers who like to do targeted advertising. Or a theft can
pick the time when the user is not at home by sniffing the outbound
traffic and inferring the status of the installed surveillance camera.

In this work, we consider passive eavesdroppers who can ob-
serve the encrypted network traffic flowing between the gateway
and the remote service. More importantly, there are two realistic
settings that are not considered by prior works. On one hand, we
assume that NAPTs or VPNs are enabled in the gateway so that the
original device identifiers are replaced by the gateway’s and the
traffic belonging to different devices aremerged, even the contacted
remote server becomes opaque to the adversary. On the other hand,
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we assume multiple devices (including IoT devices and non-IoT de-
vices such as mobile phones and tablets) may work simultaneously
such that their packets are interleaving. As shown in [37], non-IoT
devices usually have a higher rate in generating packets and their
volume is larger than that of IoT devices, which means the existence
of non-IoT devices can significantly distort the original statistical
features learned on IoT devices.

Previous works [9, 12, 41] assumed that the adversary can sniff
traffic within the smart home network (i.e., local adversary) or
traffic fusion is not performed by the gateway. In their scenarios,
the flows from different devices are clearly separated based on
device identifiers. Unlike previous works, the remote adversary in
our study is more realistic and the traffic analysis is much more
challenging to perform.

3 SYSTEM DESIGN
3.1 System Overview

smart home

traffic 
collection

wlan0 eth0

traffic 
pre-process

packet
representations 

traffic
identification

vpn

models

Internetgateway

training and evaluation

→  single-device environment
→  multiple-device environment
→  VPN environment

Figure 4: System design of HomeMole

The goal of HomeMole is to identify the active IoT devices in a
smart-home environment based on their network traffic. To this end,
HomeMole takes three steps – traffic collection, traffic pre-processing
and traffic identification. As Figure 4 shows, we first set up the
smart home environment and collect the raw traffic generated by
IoT devices and non-IoT devices under different settings. After
that, HomeMole pre-processes the traffic and convert it into the
form that can be recognized by its identification module. Finally,
the identification module uses the pre-processed data to train the
models and perform the device identification task.

Different from those doing fingerprinting at flow level[17, 41],
HomeMole works at packet level, which means a lable will be given
to all packets after they are processed by our models. As such,
HomeMole is able to work in online mode and give prompt results of
current device status. Apart from that, packet-level identification
can be easily applied to tasks with any other granularity, which is
discussed in Section 5.

3.2 Traffic Collection
While some traffic datasets in prior works were released [37], we
found that they could not be used in our study, as most of them
have different target environments compared with ours. We focus
on more complex network settings with NAPT and VPN enabled,
where LAN data is also purged due to our adversary model out of

the gateway. As such, we set up our own smart home environment
and collected the traffic.

We set up the environment in a campus laboratory with 15 de-
vices, including 10 IoT and 4 non-IoT devices. Table 2 shows the
details of our devices. Our devices can be divided into six categories:
voice assistant, IoT hub, IoT kits (smart plug), network camera, in-
teractive machine, and non-IoT devices. The devices have different
interaction modes and traffic patterns, which can be helpful to
depict the overall picture of IoT device traffic.

We use a Raspberry Pi [7] as the gateway. A typical Raspberry
Pi provides two network interface cards – eth0 and wlan0. To
simulate NAPT, we connect eth0 to the Internet and then enable
the Linux service hostapd to create an access point with wlan0
network card of Raspberry Pi. Next, we create rules for iptables
so that packets can be forwarded from wlan0 to eth0 and vice
versa. For VPN, we established a virtual machine with DigitalOcean
Droplets service [4] and used it as our VPN server, we then set up
openvpn client on our Raspberry Pi to enable VPN tunneling.

device MAC type
echo dot 88:71:e5:ed:be:c7 voice assistant

google home f4:f5:d8:db:61:84 voice assistant
tmall assist 18:bc:5a:19:eb:7d voice assistant
xiaomi hub 78:11:dc:e1:f0:6b hub
360 camera b0:59:47:34:16:ff network camera

xiaobai camera 78:11:dc:cf:c8:f1 network camera
tplink plug 30:20:10:fb:7c:05 smart plug
orvibo plug b4:e6:2d:08:63:0c smart plug

broadlink plug 78:0f:77:1b:00:8c smart plug
mitu story teller 28:6c:07:87:54:b0 interactive
xiaomi mobile a4:50:46:06:80:43 non-IoT
xiaomi tablet 20:a6:0c:5a:42:10 non-IoT
sony mobile 28:3f:69:05:2d:b0 non-IoT

motorola mobile 44:80:eb:21:cb:95 non-IoT

Table 2: Devices used in our experiment

We collect network traffic under three different settings:
• Single-device environment. We assume only one device is
active and we connect one IoT device to the gateway at a
time.

• Multi-device and noisy environment. In this case, all IoT and
non-IoT devices are connected to the gateway which has
NAPT enabled. Several devices may work simultaneously,
leading to traffic fusion.

• VPN environment. In addition to the above settings, we as-
sume a global VPN is enabled, which means the traffic pass-
ing through the gateway will be processed by a VPN client.
Traffic before and after VPN processing are both collected
from wlan0 and eth0 at the same time.

To generate traffic, we adopt two strategies: automatic trigger-
ing and manual triggering. Automation can relieve the burden of
tedious operations and manual triggering can simulate human-
machine interaction in real environments.
Automatic triggering. For devices like smart plugs and network
cameras that can be controlled by mobile apps, we use MonkeyRun-
ner [5] to interact with the UI of mobile apps and trigger different
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functions of IoT devices. For devices like voice assistants directly
controlled by human input, we replay the voice commands near
them. For example, Google Home plays songs when it hears the
command “sing a song”. We record a list of different commands
and play them in a loop with a proper interval. As smart devices
may have different responses even hearing the same command,
though the total amount of recorded commands is fixed, the traffic
we collect varies.
Manual triggering. Manual triggering is used in collecting traffic
from a multi-device scenario. In this setting, devices are set up in a
shared room (laboratory), people coming in and out of this room
can interact with the devices as they want. The functions triggered
in this scenario and their time intervals are irregular and comply
with what may happen in a real environment. Compared with the
automatic triggering approach, manual triggering introduces more
randomness to the dataset, which is helpful to the generalization
of our models.

Figure 5: Proportion of collected packets.

We adopt the popular network analysis tool tshark to monitor
wlan0 and eth0 simultaneously. The traffic collected is dumped
into files with extension “.pcapng” and is then pre-processed before
classification.

The collection lasts for 49.4 hours. In total, we collected 4.05 GB
traffic with 7,223,282 packets (those that cannot be obtained by our
adversary model are excluded, like packets only being transmitted
inside the LAN). The distribution of packets is shown in Fig 5. Due
to the variant functionalities of devices and users’ different habits,
the collected traffic does not comply with a uniform distribution.
Note that there are differences between the raw traffic collected at
wlan0 and what an attacker obtains due to identifiers of packets
are modified by NAPT and VPN. To simulate the real adversary
scenario, we then pre-process the traffic as Section 3.3 shows.

3.3 Traffic Pre-processing
Since the raw traffic cannot be directly used by HomeMole’s iden-
tification module, we pre-process the packets and convert them
into datasets that can be used to train the model. We utilize a multi-
platform packet parsing framework called PcapPlus Plus to do
the task. The goal is to extract low-level but useful features from
the packet and compose a numerical vector that can be processed
by our models.
Feature extraction. Due to the encryption enforced by the com-
munication, we extract features from the metadata of packet header.
We select features from different layers – frame length and epoch
time from physical layer, and destination port number from

transport layer. In addition, we use a binary sequence to repre-
sent the protocols in packet transmission. We select 6 most common
protocol types including IP, TCP, UDP, TLS/SSL, HTTP and DNS, ac-
cording to our measurement (see Table 1). If a packet involves
one of the protocols, the corresponding bit will be set to 1, other-
wise 0. We set the last position of the ‘binary string’ to be others
for the protocols beyond the previous 6 protocols. For example, a
UDP-based DNS request is represented as <1010010> and a NTP
packet is represented as <1010001>. The only feature we consider
beyond metadata is the direction of the packet. We use 0 and 1
for inbound and outbound packets respectively.

Note that we do not use the domain name in DNS request/re-
sponse like previousworks [11, 12] for two reasons. Firstly, plaintext
DNS information is unavailable under VPN or DNS encryption (e.g.,
DNS-over-TLS and DNS-over-HTTPS) [23, 24]. Secondly, as our re-
sult shown in evaluation, even without DNS information, HomeMole
can achieve good accuracy. The destination IP is not used because
it is periodically changed when the IoT vendors run the remote
server on the public cloud, which has become a popular choice [2].

In the end, we concatenate all the selected 11 features and com-
pose a one-dimensional vector as the representation of a packet
<dport, protocols, direction, frame length, time interval>,
as shown in Figure 6. Note that we compute time interval from
the epoch time between two adjacent packets and use it as the
feature to model the temporal relations between packets.
Packet labeling. After transforming each packet into a vector
with eleven features, we label them to facilitate the training and
evaluation of our identification module.

For NAPT environment, we extract the source MAC address
and destination MAC address of each packet. Since the collection
under NAPT is done at wlan0, the original information of MAC
addresses is well kept. We compare them to MAC addresses of
our devices and decide the label of that packet and its direction
(inbound or outbound). Note that MAC addresses are only used
in packet labeling. The physical location of our adversary model
determines that he/she cannot take advantage of MAC addresses
of an original packet, as they have been masqueraded by NAPT.

For VPN environment, as Section 2.4 shows, packets collected
outside smart home (or between eth0 and VPN server) are all
merged into a single flow (packets with the same destination IP
and port [41]), without any original identifier of sender/receiver. To
identify the VPN packets and label those with their corresponding
devices, we develop a mapping technique based on three obser-
vations obtained through our empirical analysis: (1) The size of a
packet increases after being processed by VPN; (2) Multiple packets
with different sizes can have the same size after the encryption per-
formed by VPN; (3) There is a delay of packet transmission caused
by VPN, which is usually shorter than 0.02 second.

Observation (1) and (2) can be reasoned through the cryptog-
raphy algorithms used by openvpn servers. It provides three sym-
metric encryption algorithms – BF-CBC, AES-128-CBC and DES-
EDE3-CBC. All of them are block ciphers through which encryption
increases the size of packets. Observation (3) helps us reduce the
scope for linking packets before and after the VPN. As a result, for
each VPN-processed packet with timestamp t , we first check its
direction. If it is inbound, we search its counterpart with smaller
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packet size in the time window (t, t + 0.02]. If it is outbound, the
time window becomes [t − 0.02, t). To evaluate the effectiveness
of such a pairing method, we deploy a VPN-enabled gateway with
only one device connected to it and collected the packets reaching
and leaving the gateway simultaneously. We then apply the pairing
method to all packets to obtain packet pairs and measure the rate
of correct packet pairs. The overall accuracy reaches 98.8%.

54087 1 0 1 0 0 0 0 0.384 0

443 1 1 0 1 0 0 0 0.967 0.5e-2

54087 1 0 1 0 0 0 0 0.384 2.3e-4

53 1 0 1 0 0 1 0 0.684 5.1e-3

dport protocol packet 
size 

time
interval

… ...

packet 0

packet 1
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packet n

0

1

0

1

dir

Figure 6: An example of traffic window.

3.4 Traffic Identification
In this section, we describe how we perform traffic identification
with the pre-processed traffic datasets and the two types of models
we use. The baseline model is targeted at single packet. Its goal is to
learn whether the features extracted from an individual packet are
enough to fingerprint the device it belongs to. We then present our
sequence-based model, which takes a group of consecutive packets
as input, to emphasize the gain of mining the hidden information
between packets.
3.4.1 Single-packetModel. We consider Random Forest as our base-
line model as it has been widely used in previous works on device
fingerprinting [9, 37, 41]. A typical Random Forest is comprised
of multiple single decision trees. During the training phase, inner
decision trees are trained with different parts of the dataset and
a final result is given based on the voting of those separate trees.
In our work, we train a Random Forest model with the labeled
packet vectors and the model predicts the device associated with
each packet of the testing dataset.

Among all the 5 features, dport needs to be processed before
being used by the baseline model, since it is a discrete value with a
wide range (0∼65536) that cannot be directly learned by a machine-
learning model. We first encode dport value into a one-hot binary
string. Since most of the ports are rarely used, we use principal
component analysis (PCA) to reduce the string into 50 principal
components. The total variance of them is around 98.9% according
to our statistics, which means the 50 components keep most of
information involved in ports.

For the hyper-parameters of Random Forest, we set the number
of individual trees to 100 to balance training speed and performance.
3.4.2 Sequence-basedModel. In Section 2.5, we overview the LSTM-
RNN and describe its advantage when being used to solve our prob-
lem. Belowwe describe the construction of our LSTM-based models,
including a basic version and a bidirectional version.

Embedding
dimension

LSTM hidden
dimension

LSTM
layer

Dropout
rate

30 64 1 0.5
Learning

rate
Activation
function Optimizer Training

epochs
0.001 ReLU Adam 15

Table 3: Parameters of a LSTM-RNN model.

We show the impact of window size on evaluation result in
Section 4.2.2.
Basic LSTM. A basic version contains multiple blocks and each
block contains 4 layers:
-Embedding layer. Embedding has been widely used in the do-
main of Natural Language Processing (NLP) [31, 40] which trans-
forms discrete values into continuous vectors. In our LSTM models,
we transform dport information into embeddings instead of the
one-hot encoding like the baseline model, mainly because this em-
bedding layer can be seamless connected to other layers. In addition,
it is a dynamic “mini” neural network gradually updating during
the training phase. Therefore, this representation can be optimized
during the training phase.
-LSTM layer. After the processing of the embedding layer, the
input will be fed into the LSTM layer. At each step, a packet is
assigned to an LSTM cell. The output of LSTM cells can be stacked
into a matrix as the input of the next layer.
-Fully-connected layer. We put a hidden fully-connected layer
between the LSTM layer and softmax layer with the size equal to
the number of total categories.
-Softmax layer. The hidden dense layer output is then fed into
the softmax layer for normalization. The output of the softmax
layer is the probability distribution indicating how likely a sample
belongs to a category, which sums to one. For our task of multi-class
classification, we select the category with the highest probability
as the final output.

LSTM
block

LSTM
block

LSTM
block

LSTM
block

LSTM
block

LSTM
block

concat

…...

…...

…...

concat concat

FC FC FC…...

softmax …...softmax softmax

Inputs

…...

Embedding
layer

Embedding
layer

Embedding
layer

Figure 7: Structure of the bidirectional LSTM used in our
work.

Bidirectional LSTM. The basic LSTM model only looks into the
“past” of a packet when learning contextual information. Bidirec-
tional LSTM (BLSTM) is an extension to the basic LSTM, which
utilizes the information from the “future”, by combining another
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LSTM layer moving from the end of a sequence to its beginning [20].
In areas like phoneme classification [22] and sequence tagging [26],
BLSTM significantly improves the performance compared to a tra-
ditional one. Since our model works on a sequence of consecutive
packets, we can utilize the information of the packets transmitted
after the current packet to classify it. The main change we apply
on the LSTM layer is to concatenate cell states of backward and
forward LSTM layers and feed them to the dense layer. Figure 7
shows the structure of the bidirectional LSTM used in our work.

4 EVALUATION
In the evaluation, we want to understand how our models perform
under different network scenarios. In this section, we first introduce
the datasets we used for evaluation and our evaluation metrics.
Then we describe our two scenes and the corresponding results.
Finally, we show several case studies.

As a quick overview of our results, we found LSTM-RNN models
can well handle packet identification tasks with an overall accu-
racy of over 92.0% in NAPT and VPN configurations on IoT traffic.
Compared to basic LSTM, bidirectional LSTM performs better, sug-
gesting the packet dependency indeed reveals the patterns unique
to each individual IoT device.

4.1 Experiment Settings
Scenarios. We evaluate HomeMole in two scenarios – pure-IoT
(only one active IoT device) and noisy (multiple active IoT and
non-IoT devices). In each scenario, we evaluate HomeMole with two
different gateway configurations – NAPT and VPN.
Traffic window. After pre-processing, each packet is transformed
into a feature vector. To facilitate the training and testing of sequence-
based models, we group every n consecutive vectors to form a
traffic window. Figure 6 shows an example of a traffic window.
With traffic windows, we are able to model the temporal relations
of adjacent packets.
Datasets.We constructed two datasets for the two scenarios. Each
dataset has a NAPT version and a VPN version. We split each
dataset with the training and testing ratio of 8:2 and conduct 5-fold
cross-validations on it. Below are the details of each dataset.

(1) Dataset-Ind. This dataset contains traffic representations
from 10 individual IoT devices. To facilitate the training pro-
cess of LSTM-RNN models, the dataset is organized into
collections of traffic windows, each traffic window only con-
tains packets from one certain device. To make the dataset
more balanced, we set a maximum threshold of 5,000 win-
dows for each device. All IoT devices own 5,000 randomly-
selected samples except Xiaomi hub, tplink plug, orvibo plug
and broadlink plug, due to that they generate much fewer
packets than others. In total, Dataset-Ind contains 32,760
traffic windows.

(2) Dataset-Noise. The traffic used to generate this dataset
comes from multiple active IoT and non-IoT devices. As a
result, the traffic windows in this dataset are composed of
packets frommore than one device. In total, Dataset-Noise
includes 114,989 traffic windows. Figure 8 shows the distri-
bution of device combinations in traffic windows. From it
we can see, 2-device and 3-device combinations are most
common.

Figure 8: Proportion of device combinations
(geq: greater than or equal to 7).

Metrics. Since HomeMole is able to classify individual packets, we
measure the effectiveness of HomeMole based on the probability
that the device is correctly identified per packet. We use overall
accuracy (similar to [36]) and category accuracy for our case. For
overall accuracy, we count N as all the packets and Pcorrect as the
total number of correctly classified packets, and compute Pcorrect

N .
For category accuracy, we assess how HomeMole performs on each
device. For deviceA, we count NA as all packets belonging toA and
PAcorrect as A’s packets correctly classified under A. The category
accuracy for A is PAcorrect

NA . As an example, the diagonal cells on
the confusion matrix shown in Figure 10 describe the category
accuracy.

4.2 Pure-IoT Scenario
In this setting, there is only one active IoT device working during
the data collection period. In practice, such a scenario happens
when the rest of IoT devices enter hibernation mode.

4.2.1 Single-packet Model. We first evaluate the performance of
our baseline model, Random Forest. The purposes are two-fold: (1)
To explore the feasibility of classifying individual packets without
context; (2) To evaluate the effectiveness of features we selected
from the packet’s metadata.
Experiment results. Table 4 shows the accuracy of Random Forest
in NAPT and VPN configuration. As can be seen, with NAPT config-
uration, Random Forest can reach a high identification accuracy on
most IoT devices. Among them, smart plugs and network cameras
have the highest accuracy while voice assistants have a lower accu-
racy of ∼ 87%. Compared with NAPT, the result is worse in VPN
configuration with a 9.0% decline in overall accuracy. Accuracy on
voice assistant is affected most.
Result analysis.We first use the built-in API provided by scikit-
learn library to obtain feature importance. The results show that in
NAPT, dport, frame length, time interval and protocol hold
an importance factor of 55.5%, 22.8%, 12.8% and 8.0% separately. In
VPN, frame length and time interval take up around 54.9% and
43.0% separately.

The obvious accuracy decline in VPN mainly comes from the
change of dport and protocol (dport and protocol information
are not preserved in the packets between gateway and VPN server)
and partial loss of frame length due to the padding by VPN client.
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config model average echo
dot

google
home

tmall
assistant

xiaomi
hub

360
cam

tplink
plug

orvibo
plug

mitu
story

xiaobai
camera

broadlink
plug

NAPT
RF 92.2 89.0 85.9 86.9 89.6 99.0 99.9 99.9 93.3 98.5 99.3

LSTM 97.3 98.5 91.6 93.9 98.6 99.9 99.9 99.9 98.7 99.9 99.9
BLSTM 99.2 97.0 99.2 99.8 99.9 99.9 99.9 99.9 99.3 99.9 99.9

VPN
RF 83.2 76.1 81.2 74.7 94.0 83.2 89.1 93.1 87.5 90.5 99.0

LSTM 92.4 89.7 89.7 75.4 96.1 95.9 92.2 95.5 96.8 94.7 95.7
BLSTM 97.7 96.6 96.8 94.7 99.4 98.5 98.0 99.5 98.9 99.7 96.7

Table 4: Accuracy of baseline model under pure-IoT scenario
(RF, LSTM and BLSTM stand for Random Forest, basic LSTM and bidirectional LSTM respectively).

4.2.2 Sequence-based Model. We conjecture that the dependency
of packets can be used for device identification, and we model it
through LSTM-RNN models. Below we evaluate the two proposed
LSTM-RNN models on Dataset-Ind.
Experiment results. Table 4 also shows the performance of basic
LSTM and bidirectional LSTM when the input traffic window
contains 100 consecutive packets. We can see that compared to the
baseline, both of the models have seen an increase in accuracy on
most devices. The result also shows LSTM-RNN models can well
handle IoT devices producing a large volume of traffic like voice
assistant.
Impact of trafficwindow size.We compare the accuracy of LSTM-
RNN models with different window sizes: 20, 40 and 100. The result
is shown in Figure 9. From it we can see for both NAPT and VPN
configurations, LSTM-RNN models perform better when the traffic
window size grows. This result indicates the relation between pack-
ets with long timing gaps can still provide useful information for
our models. In the following sections, we take 100 as the default
size of our traffic window.

Figure 9: The impact of traffic window size (pure-IoT).

4.3 Noisy Scenario
When there are multiple active devices functioning in the smart
home, the situation becomes more complicated, since the mixture
of traffic from different devices introduce confusion to the network
observers (attackers).

To better illustrate the influence brought by the noisy environ-
ment, we consider the results under two conditions, which we call
session-clear condition and session-obscure condition.

The session-clear case refers to the NAPT environment, in
which the original source IP of outbound traffic and the destination
IP of inbound traffic are masked by the router. However, in most

cases, each connection between two parties owns an unchanged
connection 5-tuple (sip,dip, sport,dport,protocol) [14]. Packets un-
der the same tuple are associated with the same TCP/UDP session,
naturally coming from/going to the same device.

However, the session becomes obscure when it comes to global
VPN. Since source IP, destination IP, source port and destination
port are all masked by VPN, and the original session information is
completely removed. In this way, packets from different sessions
are merged into the same session and thus a traffic window may
contain packets from different devices.

To better simulate the real conditions met by a network observer,
we perform an extra processing step on Dataset-Noise. As traffic
in NAPT (session-clear) environment can be differentiated through
the connection 5-tuple, we use PcapPlusPlus to split the traffic into
sessions. Packets in each session are determined to be from the same
device, therefore avoiding the impact of traffic fusion. Since the
split traffic has a different length, we concatenate or cut them into
traffic windows of the same size and control the number of traffic
windows in the same setting as Dataset-Ind. However, as for the
VPN (session-obscure) environment, we leave Dataset-Noise as
unchanged, which means a traffic window may contain packets
from different devices.

4.3.1 Single-packet Model. We first tested Random Forest using
Dataset- Noise to understand the impact of non-IoT traffic and
traffic fusion. Given the different traffic volume among devices, the
packets we collect are imbalanced, as Figure 5 shows.
Experiment results. Compared with pure-IoT scenario, Random
Forest has a prominent decline in the overall accuracy, reaching
85.6% in NAPT and 67.6% in VPN. We also use confusion matrix
across devices to show the classification results by category with
non-IoT traffic in NAPT and VPN configuration (Figure 10 and
Figure 11). From there we can see, voice assistants, like Echo
Dot, Google Home and Tmall Assistant, see larger performance
drop compared to other IoTs, with a ∼ 8% average decline in NAPT
and a ∼ 50% average decline in VPN configurations.
Result analysis.We manually check the misclassified packets and
find that most of them are transmitted through ports 443 and 80.
The primary reason is that those ports are likely to be used by
different IoT and non-IoT at the same time, so our model is more
likely to be confused.

4.3.2 Sequence-based Model. Experiment results. Figure 14 and
Figure 15 give the comparison results between three models in
NAPT and VPN configurations. The last group of columns (“aver-
age”) shows the overall accuracy. Bidirectional LSTM achieves the
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Figure 10: Confusion matrix of RF (noisy+NAPT).
(X axis: predicted labels, Y axis: true labels)
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Figure 11: Confusion matrix of RF (noisy+VPN)
highest accuracy of 95.3% in NAPT and 80.9% in VPN. Basic LSTM
reaches 91.9% and 74.1%. Figure 12 and Figure 13 show the concrete
classification results of bidirectional LSTM by device categories in
two configurations. From them we know: (1) LSTM-RNN models
are good at recognizing traffic in NAPT configuration; (2) LSTM-
RNN performs much worse in VPN configuration, especially on IoT
devices like smart plugs (BLSTM: 13.4% for Orvibo, 20.2% for Tplink
and 14.9% for Broadlink in 5 cross-validations). (3) Non-IoT traffic
has a negative impact on the identification of most IoT devices.
Result analysis. From the above results, we can see LSTM-RNN
models fail to classify traffic generated by smart plugs and Xiaomi
hub in VPN configuration. We find this observation can be ascribed
to the sparse traffic generated by the devices. Due to the relatively
long time intervals between packets and the low packet amount, the
traffic generated by these devices can be easily “overwhelmed” by

traffic from others, leading to the original relation between packets
being impaired. In extreme cases, packets generated by smart plugs
can be “diluted” to less than 3% in a traffic window (3 in 100 packets).
The situation becomes worse when distinctive features like dport
and frame length are more likely to be confused. In Section 4.4
we show a case of orvibo plug.

On the other hand, we find the following characteristics of non-
IoT traffic causes misclassification under VPN configuration: (1)
Large volume ratio ( 33.9% of all packets) (2) Persistent communica-
tion (non-IoT devices usually continuously contact remote server
while IoT devices send out packets sparsely) (3) Irregular commu-
nication patterns (non-IoT devices are activated or used frequently
but their activation and usage time are quite variable).
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Figure 12: Confusion matrix of BLSTM(noisy+NAPT).
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Figure 13: Confusion matrix of BLSTM(noisy+VPN).
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Figure 14: Performance of three models in NAPT setting.

Figure 15: Performances of three models in VPN setting.
4.4 Case Studies
Scarce traffic. Several IoT devices have a low traffic volume, such
as orvibo plug and tplink plug. Therefore, the packets generated
by them may be “overwhelmed” by other devices in the same traffic
window. Take orvibo plug as an example. It has a three-TCP-
packet sequence appearing multiple times. Their frame lengths
are 224, 54, 240 bytes in two seconds correspondingly. But those
numbers are not unique. According to our analysis, packets with
the same sizes are generated by other devices so our classification
models could be confused. In particular, 360 camera produces
UDP packet of 224 bytes very frequently. xiaomi hub and xiaomi
tablet generate TCP packets of 54 bytes consistently at high speed
(15 packets in 0.1 second). As such, the three consecutive packets of
orvibo plug are likely to be separated by those packets from other
devices, leading to wrong classification results, especially in VPN
configuration when protocol information is missing. This could
explain why LSTM-RNN models perform worse in identifying IoT
devices of small traffic volume in the VPN environment.
Effectiveness of bidirectional LSTM. Section 4 shows the accu-
racy of the bidirectional LSTM model is better than the basic LSTM
model in most cases. Below we use one example to explain this
performance difference. Through our manual check of traffic from
different devices, we find packets of the size 66 bytes are commonly
sent to the server in a sequence by Echo Dot and Google Home.
However, the responses from the server are different between the
two devices. For Echo Dot, most of the responses are of a size
1388 bytes while for Google Home, most of them are TLS pack-
ets with the size of 108 bytes and 105 bytes. Compared to a basic
LSTM, a bidirectional LSTM can utilize the later packet (1388-byte
or 105-byte) to help classify the previous packets (66-byte). As such,
adding the information from “future” could improve the chance of
correctly classifying packets.

5 DISCUSSION
Beyond packet identification.Different from previous work that
assigns binary labels to network flows or traffic windows [9, 11, 15,
17, 41], our model classifies all packets within a time period. There
are two reasons for this design decision:

(1) Packet-level identification allows the adversary to learn the
running status of an IoT device in real time.

(2) The result of packet-level identification can be used to la-
bel objects of any other granularity, like traffic window or
network flow.

To the first point, after packets of an IoT device are identified, the
adversary can compute certain statistics from the packet labels to
infer the device status. For example, if packets are observed sparsely,
the device could be in sleeping or standby mode. Otherwise, the
device could be busy running a task. Actions can be taken more
promptly by the adversary and further threatens users’ privacy and
safety. For IoT camera, if a thief knows when a network camera
is transmitting bulk data continuously, she can infer whether the
homeowner is around and pick the best time to break into the
house.

To the second point, we evaluate the accuracy of classifying
traffic windows using the data from Dataset-Noise in a VPN en-
vironment. The label of a window consists of all devices with ac-
tive network activities in the time period. For example, if a traffic
window contains packets from three different devices A,B and C ,
then the label for this window is [A,B,C]. Since the problem be-
comes a multi-label classification problem, we select Hamming
Loss as the metric. Hamming Loss [42] indicates the fraction of
wrongly-classified samples to the whole dataset and can be calcu-
lated by 1

|N | · |L |
∑ |N |

i=1
∑ |L |
j=1 xor (yi , j , zi , j ), where N stands for the

total amount of samples and L is the number of classes. Each target
y and prediction z are represented by a 0-1 vector with L elements.
To notice, both false positive (predicting an IoT device not existed
in smart home) and false negative (missing an active IoT device)
will introduce Hamming Loss. Our model reaches a 0.12 hamming
loss, which means 88% of the labels are correctly matched.
Defense against traffic fingerprinting attack. Experimental re-
sults in section 4 show that the fingerprinting attack based on net-
work traffic introduces considerable privacy threat to smart-home
users when the traffic from different devices can be separated. This
observation aligns with previous works [9, 11, 12]. When traffic is
merged across IoT/non-IoT devices under NAPT and VPN scenarios,
accurately pinpointing IoT networks would be more difficult. In
particular, from Section 4.3.1 and Section 4.3.2, it can be seen that
accuracy drops ranging from 8.2% to 87.4% under the VPN scenario,
especially for the devices generating small traffic volume. However,
we believe a more principled approach that can achieve sufficient
protection under all network configurations and device combina-
tions is still necessary. To this end, we plan to explore whether
local differential privacy (LDP) [27], which adds noise based on the
randomized response, can be applied to obfuscate IoT traffic.

6 LIMITATION
VPN connections. In the experiment, we only establish our VPN
connection using UDP protocols. Another option – TCP (TLS) is not
tested. The main reason is that UDP is the default protocol adopted
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by the openVPN service and is the most-widely protocol used by
VPN providers due to its low latency [6] compared with TCP. VPN
using TCP requires modification of our packet labeling algorithm
in Section 3.3 and we decide to leave it as our future work.
Behavior identification.We focused on device identification dur-
ing the evaluation, while previous works also explored user be-
havior identification [9]. We did not experiment with behavior
identification because the labeling cost is high given that we have
large datasets with millions of IoT packets. On the other hand, we
believe our models can be applied to this scenario if we have enough
training samples. We will explore approaches that can generate
labeled behavioral datasets efficiently.

7 CONCLUSION
In this paper, we systematically evaluated the effectiveness of traffic
analysis in a smart home environment, even when traffic fusion
like NAPT and VPN are enabled and non-IoT and IoT devices are
both active. By exploiting the dependency between packets through
DNNmodels like LSTM-RNN, we show it achieves high accuracy in
device identification, even under the complex network environment
as described above.

Our result suggests the network communications of IoT devices
do have serious privacy implications, even under encryption and
traffic fusion. We believe more research should be done to better
understand the privacy issues in smart home network and mitigate
such issues. To facilitate the research in this domain, we also release
the data and our models.
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A APPENDICES
Figure 16 and Figure 17 show the traffic patterns when echo dot
and google voice assistant are waked up respectively. Figure 18
uses two different colors to depict the traffic patterns of Orvibo
switch when it is turned on/off and in standby mode. In Figure 19
we compare the traffic patterns of Xiaomi camera in WAN mode
and LAN mode.

Figure 16: Echo dot

Figure 17: Google Voice Assistant

Figure 18: Echo dot

Figure 19: Google Voice Assistant

Session 1: IoT Security and Privacy  ASIA CCS '20, October 5–9, 2020, Taipei, Taiwan

59

https://doi.org/10.1109/TDSC.2014.2369033
https://arxiv.org/abs/1708.06376
http://arxiv.org/abs/1701.05007
http://arxiv.org/abs/1701.05007
https://doi.org/10.1145/3243734.3243768
https://doi.org/10.1109/INFCOMW.2017.8116438
https://doi.org/10.17487/RFC2663
https://doi.org/10.17487/RFC2663
https://doi.org/10.1145/3038912.3052709
https://doi.org/10.1109/EuroSP.2016.40
https://doi.org/10.1109/EuroSP.2016.40
https://doi.org/10.1109/CCIS.2014.7175718

	Abstract
	1 Introduction
	2 Background
	2.1 Related Work
	2.2 Smart Home Network
	2.3 Insights into IoT Traffic
	2.4 NAPT and VPN
	2.5 LSTM-RNN
	2.6 Adversary Model

	3 System Design
	3.1 System Overview
	3.2 Traffic Collection
	3.3 Traffic Pre-processing
	3.4 Traffic Identification

	4 Evaluation
	4.1 Experiment Settings
	4.2 Pure-IoT Scenario
	4.3 Noisy Scenario
	4.4 Case Studies

	5 Discussion
	6 Limitation
	7 Conclusion
	References
	A appendices



