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a b s t r a c t 

Being able to detect malware variants is a critical problem due to the potential damages and 

the fast paces of new malware variations. According to surveys from McAfee and Symantec, 

there is about 69 new instances of malware detected in every minutes, and more than 50% of 

them are variants of existing ones. Such a large volume of diversified malware variants has 

forced researches to investigate new methods based on common behavior patterns using 

machine learning. 

However, such methods only use single type of features such as opcode, system call, 

etc., which faces several drawbacks: Firstly, the methods lose a part of useful information 

since different types of features show different characteristics of malware. This severely 

limits detection precision and recall. Secondly, the accuracy and the speed (as a trade-off) of 

such methods fail to meet users ′ expectation. Thirdly, the precise classification of malware 

families is still a hard problem and is also important in malware analysis. 

In this work, we propose a feature-hybrid malware variants detection approach which 

integrates multi-types of features to address these challenges. We first represent opcodes 

by a bi-gram model and represent API calls by a vector of frequency, then we use principal 

component analysis to optimize the representations to improve the convergence speed, the 

next we adopt a convolutional neural network and a back-propagation neural network for 

opcode based feature embedding and API based feature embedding respectively, and finally 

we embed these features to train a detection model by using softmax. 

Theoretical analysis and real-life experimental results show the efficiency and optimiza- 

tion of our approach which achieves more than 95% malware detection accuracy and almost 

90% classification accuracy of malware families. The detection speed of our approach is less 

than 0.1 s. 
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1. Introduction 

Malware is one of the major security threat today. With large
amount of sophisticated tools readily available over the Inter-
net, malware now are able to quickly evolve into many differ-
ent variants and evade existing detection mechanism, render-
ing the ineffectiveness of traditional signature based malware
detection systems. 

As a survey in Gandotra et al. (2014) , McAfee catalogs over
100,000 new malwares every day, which means about 69 new
instances every minute, or more than one sample per sec-
ond. Symantec stated in its reports ( Symantec, 2017 ) that more
than 50% of new malwares are actually variants of existing
ones. 

This has forced researchers to come up with modern mal-
ware detection techniques which mainly search for similari-
ties between unknown and previously known malware sam-
ples, because malware variants from the same families still
share many common behavioral patterns which reflect their
origins and purposes. 

For a typical architecture of modern malware detection
system, when a user is going to install an unknown applica-
tion onto his/her device, the detection client will upload the
binary of such application to cloud servers for security check.
After receiving the binary, the detection server will first use
tools such as PolyUnpack ( Royal et al., 2016 ), PEiD 

1 , etc., to de-
tect packers and unpack the code if necessary. Then the de-
tection system will launch disassembly or reverse engineering
tools to extract one type of data (such as opcode, system calls,
etc.), and train a classification model for detection. 

However, such modern malware detection systems are also
facing some challenges of their own. First of all, a single type of
data, such as byte code, operation code (opcode), API call, sys-
tem call, etc., can only cover a part of characteristics of mal-
ware, that means it loses some information in malware which
will be useful to represent behavioral patterns as well. In this
way, the accuracy is severely limited ( Wang et al., 2018a ). Sec-
ondly, the accuracy and the speed (as a trade-off) of such sys-
tems fail to meet users’ expectation. Thirdly, the precise clas-
sification of malware families is still a hard problem and is
also important in malware analysis. 

To address these challenges, we aim to propose a novel
malware variants detection technique which integrates differ-
ent types of data and fuses multi-features to improve detec-
tion accuracy while retaining detection speed. However, it re-
mains two major problems. One is which type of data should
be chose to make a feature integration that can indeed im-
prove accuracy. The other one is how to integrate different
types of data since different types of data are unstructured
and heterogenous. Santos et al. (2013c) proposed a hybrid mal-
ware variant detector called OPEM, which utilizes a set of data
obtained from both static and dynamic analysis of executa-
bles. However, their method take disadvantages both of static
analysis and dynamic analysis. 

In this paper, we propose to choose two types of data:
one is opcodes and the other is API calls. Since opcodes are
1 https://forensicswiki.org/wiki/PEiD . 
widely used to represent binaries, and they are treated as a
fine gained semantic representation of binaries, we choose op-
codes for our approach. Although byte codes are also a seman-
tic representation of binaries, they may be treated as “ noisy
opcodes ′′ since the byte codes not only contain opcodes but
also contain operands (noise). We also choose API calls for our
approach since they can be extracted together with opcodes
by disassembly tools, such as IDA 

2 , W32dasm 

3 , etc.. This does
not take extra time consumption of data preparation. What’s
more, API calls show high-level behaviours of binaries as a
supplement of opcodes because they represent binaries in dif-
ferent levels and angles. Although system calls also show be-
haviours of binaries like API calls, they have to be extracted in
runtime by sandboxes, which costs a lot of time of data prepa-
ration. What’s the worse, these system calls sometimes lead a
mistake when a malicious binary checks the operating envi-
ronment and hides its malicious behaviours. 

Since the information in different types of data are un-
structured and are organized in different ways, building a
model to cover the information in different data are not an
easy work. A direct way to handle this case is to build differ-
ent models for each type of data to make decisions respec-
tively, and take an overall consideration of the decisions from
these models by adopting ensemble learning. However its ac-
curacy is limited by the decisions made by the worst model.
To avoid the bias, here we integrate them in feature-level to
generate a unified model. The idea is to use different neu-
ral networks to train different types of data and extract their
features, then use another classifier to merge these features
and make an overall decision. We integrate opcodes and API
calls by adopting appropriate neural networks since neural
networks are easier to achieve high accuracy compared with
statistical models. Our approach first uses opcode bi-gram
model for opcode semantic representation and uses a vec-
tor of API call frequency for API behaviour representation, and
then optimizes the representations by using principal compo-
nent analysis to increase the convergence speed. The next it
adopts a convolutional neural network (CNN) to train a model
for opcode embedding and adopts a back-propagation neural
network (BPNN) for API embedding. Finally it combines with
these embedded features by a serial manner and trains a mal-
ware detection model by a softmax classifier. Our approach
fuses opcodes and API calls to generate a unified model to
make full use of the information in opcodes (fine gained) and
API calls (high-level), and the model is self-adaptive to an op-
timized decision. 

Due to the different data structures and the different
meanings of opcode bi-gram model and API call frequency,
we generate our hybrid features by using structure-adaptive
neural networks to train high-level features respectively, and
embed them by a serial manner. The high-level features are
extracted from the last layer of the neural networks that they
can be used to represent malware or benign instead of opcode
bi-gram model and API call frequency. Besides, since the high-
level features are represented by one-dimensional vectors (as
the same data structure), they will be easily integrated. The
2 https://www.hex-rays.com/products/ida/ . 
3 https://www.softpedia.com/get/Programming/ 

Debuggers- Decompilers- Dissasemblers/WDASM.shtml . 

https://forensicswiki.org/wiki/PEiD
https://www.hex-rays.com/products/ida/
https://www.softpedia.com/get/Programming/Debuggers-Decompilers-Dissasemblers/WDASM.shtml
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igh-level features can be treated as a set of common features 
hared by the instances in the same class, Since the features of 
he instances in the same class will be closer in feature space 
y training with gradient descent method. 

Since the opcode is a fine-gained representation of exe- 
utables, the opcode bi-gram model can represent the inner 
elations among opcodes to capture more information. Many 
esearchers have proposed opcode bi-gram based approaches 
or representing executables, such as Santos et al. (2013a) ,
ang et al. (2016) , etc.. Since the API call is a high-level rep- 

esentation of executables, the vector of API call frequency 
an distinguish the distributions of behaviours in malware 
nd benign. Because the data structures of the opcode bi-gram 

odel and the vector of API call frequency are different, so we 
se two different neural networks to train their features re- 
pectively. Since the opcode bi-gram model is a 2-D matrix,
he relevant elements in this matrix are crossed (clustered),
nd its feature dimensions is very large, the CNN is applicable 
or training in this case by computing weighted dot product 
ith convolutional cores and reducing dimensions with pool- 

ng cores. Since the vector of API call frequency is 1-D struc- 
ured, the elements in this vector are relatively independent,
nd its feature dimensions is small, the BPNN is applicable for 
ast training in this case by directly using Sigmoid function.

hen the neural networks have trained features for opcodes 
nd API calls, a softmax classifier can easily train a classifica- 
ion model for malware detection. 

Our approach is applicable for addressing the problem of 
eterogeneous data integration by training from heteroge- 
eous network. For malware detection, our approach integrate 
eterogeneous data representation (opcode bi-gram, API call 

requency) and generate unified hybrid features to improve 
etection precision and detection recall. 

Contributions. The main contributions of this paper are 
ummarized as follows: 

1. To effectively and efficiently classify malicious executables 
and legitimate ones, we proposed our feature-hybrid mal- 
ware variants detection technique, which embeds opcodes 
and API calls by using a convolutional neural network and 

a back-propagation neural network. When comparing with 

the opcode based method and the API call based method 

respectively, our approach performs much better. 
2. To represent opcodes and API calls in binaries, we propose 

to use opcode bi-gram model and a vector of API call fre- 
quencies. In order to improve the convergence speed of 
neural networks for feature embedding, we adopt principal 
component analysis to optimize these representations. For 
feature fusion, we merge such embedded features which 

are extracted by neural networks from opcodes and API 
calls, and train an decision model with the merged fea- 
tures. 

3. We implement a prototype and evaluated with large scale 
of real world data sets. Evaluation results shows that our 
approach can achieve more than 95% detection precision 

when detecting binaries from Windows platform. Overall,
when comparing with the state-of-art methods, our ap- 
proach can significantly improve detection accuracy while 
retaining detection speed, which we believe that is very at- 
tractive when facing the large volume of malware variants 
coming out everyday. In addition, we also implement our 
approach to classify malware families and achieve almost 
90% classification accuracy. 

aper organizations. The remaining of this paper is orga- 
ized as follows. Section 2 presents the related works.
ection 3 introduces our feature-hybrid malware variants de- 
ection technique. Section 4 presents experimental results.
ection 5 shows the limitations and Section 6 shows the con- 
lusions. 

. Related works 

.1. Opcode based method 

ome researchers prefer to adopt opcode based static anal- 
sis. The opcodes will be embedded into a 1-D or 2-D vec- 
or and then sent to classifiers later to classify malicious pro- 
rams and legitimate ones. Santos et al. (2013a) proposed a 
ata mining technique to mine the 2-tuple opcodes similari- 
ies. Zhang et al. (2018a) proposed to build a opcode graph and 

xtract its topology features to detect Android malware. Kang 
t al. (2016) presented an n-opcode analysis based approach 

hat utilizes machine learning to classify Android malware.
e la Puerta et al. (2017) proposed to adopt several machine 

earning methods to detect the opcode vectors. McLaughlin 

t al. (2017) used a opcode embedding matrix for representa- 
ion and used a n-gram based CNN model ( Kalchbrenner et al.,
014 ) to train and classify Dalvik opcode sequences. However,
heir embedding matrix is inefficient while the sequences is 
ery long. Zhang et al. (2016a) proposed to convert opcodes 
nto 2-D matrix, and adopted convolutional neural networks 
CNN) to train the 2-D opcode matrix for malware recognition.
an et al. (2018) proposed to convert Android opcode into 2-D 

ray image with fixed size and adopt CNN to train and detect 
ndroid malware. 

.2. Byte code based method 

ome researchers prefer to use byte code to represent bina- 
ies. Nataraj et al. (2011) proposed a method for visualizing 
nd classifying Windows malware binaries as gray-scale im- 
ges. They converted executables into gray images, and then 

earched the texture similarities among the signatured sam- 
les. However, their detection speed is too slow to implement 

n practice, due to the similarity search can only be performed 

n a serial manner which would incur a long delay facing the 
arge volume of detection set. Raff et al. (2017) presented a 

ethod that uses convolutional neural networks with byte n- 
ram to achieve good performance, but no more theoretical 
xplanation or technical detail about their method. Kim et al.
2018) proposed a transferred deep-convolutional generative 
dversarial network for malware detection, which generates 
ake malware and learns to distinguish it from real malware.
he trained discriminator passes down the ability to capture 
alware features to the detector. 
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2.3. API call based method 

Some researchers propose to use API calls to represent exe-
cutables. Fan et al. (2018) proposed to construct frequent sub-
graphs of API calls to represent the common behaviors of mal-
ware samples that belong to the same family. Patanaik et al.
(2012) checked whether a target’s API call dependency follows
the same dependency of the signatured malware. Huang et al.
(2014) analyzed the user interface component associated with
the top level function and found the mismatch of the two to
detect stealthy behaviour. However, in some malware cases
(such as some virus), we cannot extract any API calls, that
leads the API call based methods cannot work. 

2.4. System call based method 

There are also some researchers propose to use system calls.
Rieck et al. (2011) proposed to automatically identify classes
of malware with similar sequential system calls and as-
sign unknown malware to these discovered classes. Xu et al.
(2016) implemented graph-based representation for system
calls, then used the graph kernels to compute pair-wise simi-
larities and fed these similarity measures into a support vec-
tor machine for classification. Kolbitsch et al. (2009) proposed
to build a graph of data flows among system calls, and then
use graph matching for malware detection. However, these
methods have to capture system calls in runtime by sand-
boxes, which costs a lot of time of data preparation. What is
the worse, the system call based methods sometimes make
mistakes when a malicious executable checks the sandboxes
and hides its malicious behaviours. 

2.5. Control data flow graph based method 

These researchers extract the control flow or data flow of bi-
naries and then use graph matching or subgraph similarity
searching methods to label unknown samples according to
known malware. Tian et al. (2018) proposed to utilize class-
level dependence graph and method-level call graph to rep-
resent an application, and extracted static behaviour features
to detect Android malware. Cesare et al. (2014a) proposed a
technique that performs similarity searching of sets of control
flow graphs. Martín et al. (2017) used third-party calls to by-
pass the effects of obfuscation, and then combined with clus-
tering and multi-objective optimisation to classify third-party
call groups. However, their methods cost much more detection
time when comparing / matching graphs in a serial manner. 

2.6. File via file graph based method 

These approaches extract the relationships between files and
other entities, such as hosts, domains, etc. to build a graph,
and then use belief propagation to label the unknown nodes
according to the labeled nodes. Tamersoy et al. (2011) pro-
posed to generate file via file relationships according to the
interactions between files and machines, and then adopted
belief propagation methods to assign scores to every unla-
beled file node. If the score of a file node is bigger than a
threshold, then the file will be treated as a malicious file.
Similar to Chen et al. (2015) . Stringhiniq et al. (2017) proposed
a semi-supervised Bayesian label propagation to propagate
the reputation of known files across a download graph that
depicts file delivery networks (both legitimate and malicious).
However, these file via file graph based methods are behind-
time, which means when a malicious binary is detected, many
of its copies have already been propagated in the network.
Some of the copies may have executed malicious behaviours 

2.7. Other method 

Besides, Massarelli et al. (2017a) proposed to extract features
on resource consumption through detrended fluctuation anal-
ysis and correlation, and employed SVM method to classify
malware into families. Enck et al. (2014) proposed to simulta-
neously track multiple sources of sensitive data and identified
the data leakage. Data from privacy sensitive sources are auto-
matically labeled (tainted) and labels are transitively applied
as sensitive data moves through interprocess messages, pro-
gram variables and files. Wang et al. (2014) proposed to an-
alyze the permission-induced risk of an individual permis-
sion and the risk of a group of collaborative permissions in
Android apps to detect Android malware. Later, they ( Wang
et al., 2018b ) proposed to integrate different types of fea-
tures from Android applications into a feature matrix for An-
droid malware detection. Burguera et al. (2011) collected traces
from a large number of real users based on crowd-sourcing
and then clustered these traces using k-means to detect mal-
ware. Liu et al. (2019) collected and analyzed users ′ action
(API) in Android platform to detect privacy leakage. Shabtai
et al. (2012) used machine learning algorithms to continu-
ously monitor device state to differentiate between benign
and malicious programs. Yan et al. (2012) proposed a method
in which both the Java-level and OS level semantics are recon-
structed seamlessly and simultaneously. By staying out of the
execution environment and moreover, privilege based attacks
can be detected. However, this approach also has a drawback
of having very limited code coverage. Oberheide et al. (2008) ,
proposed their malware detection system by integrating sev-
eral detection engines. However, it can only detect malware
while it has known which platform the malicious programs
belong to. 

3. Methodology 

3.1. Overview of our approach 

In this section, we propose a feature-hybrid malware variants
detection technique by embedding opcode based feature and
API call based feature to optimize the performance of malware
variants detection. The architecture of our malware detection
technique is presented in Fig. 1 , which includes five steps:
unpacking and disassembly process, representation process,
representation optimization process, neural networks based
feature embedding process, and feature fusion based training
and classification process. 

Step 1: Unpacking and disassembly process. Unpacking and
disassembly process aims to unpack and disassemble binaries
(.exe files) to obtain their opcodes and API calls. Since some bi-
naries are packed by some packing tools, making disassembly
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Fig. 1 – The architecture our approach. 
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arder, we check these binaries and unpack them first by sev- 
ral unpacking tools, allowing further analysis of the binaries,
uch as ASPack 4 , UPX 

5 , etc.. Unpacking is not necessary if a 
inary was not packed before. Then we disassemble the un- 
acked.exe files to generate their.alf files by using W32dasm 

n order to extract their opcodes and API calls. We do not use 
any different disassembly tools to avoid distortion of the re- 

ults. After scanning the.alf files, we built an opcode profile 
nd an API call profile for each binary, where the opcode pro- 
le contains a list of opcodes, and the API call profile contains 
 list of API calls. For example, an opcode profile may contain 
4 http://www.aspack.com . 
5 https://upx.github.io . 

w  

w
c

 list {call, mov, mov, test, je,....} , and an API call profile may con-
ain a list {WriteFile, VirtualQueryEx, UnmapViewOfFile, Sleep....} . 

Step 2: Representation process. Representation process pro- 
oses to generate a structured data to represent each binary.
he structured data will be treated as an input for the next 
omputations. Once we have obtained opcode profiles and API 
all profiles, here we use n-gram model to represent opcode 
ata and use a vector of frequency to represent API data, re- 
pectively. 

Step 3: Representation optimization process. Since we adopt 
eural networks to train the next feature embedding models,
hich will cost huge computations through many iterations,
e aim to optimize the representations of opcodes and API 

alls to improve the convergence speed. The representation 

http://www.aspack.com
https://upx.github.io
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Algorithm 1 Feature-hybrid malware variants detection. 

Input: A set of sequences of opcodes OPs = { OP 1 , OP 2 , . . . , OP k } . 
OP j = { op 1 , op 2 , . . . , op n } is an opcode sequence in OPs , 
where op i is the i th opcode in the sequence; A set of se- 
quences of API calls AP Is = { AP I 1 , AP I 2 , . . . , AP I k } . AP I j = 

{ api 1 , api 2 , . . . , api m 

} is an API call sequence in APIs , where 
api i is the i th API calls in the sequence. 

Output: A vector of confident scores score = { s 1 , s 2 } , where s 1 
means the probability of malware and s 2 means the prob- 
ability of benign. 

1: function Mal wareDet ect or (OP s, AP Is ) 
2: for OP j in OPs do 
3: Generate an opcode bi-gram matrix M (op i , op j ) ac- 

cording to the opcode sequence OP j . 
4: Generate a PCA initialized opcode bi-gram matrix 

PCAMat according to M (op i , op j ) . 
5: Adopt CNN to train a vector of features u op,i accord- 

ing to PCAMat. 
6: end for 
7: for API j in APIs do 
8: Generate a vector of API frequencies V(api i ) accord- 

ing to the API call sequence API j . 
9: Generate a PCA initialized API frequency vector 

PCAVec according to V(api i ) . 
10: Adopt BPNN to train a vector of features u api,i ac- 

cording to PCAVec . 
11: end for 
12: for OP j in OPs do 
13: Merge the features u op,i and u api,i to generate a vector 

of hybrid features U = { u op, 1 , u op, 2 , . . . , u api, 1 , u api, 2 , . . . } . 
14: Adopt Softmax to train U and gain score as a decision. 
15: end for 
16: end function 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

optimization process proposes to use principal component
analysis (PCA) to improve the performance of neural networks
while retaining useful information. 

Step 4: Neural networks based feature embedding process. After
representation optimization process, we get a PCA-initialized
opcode bi-gram matrix and a PCA-initialized API frequency
vector which will be sent to two different neural networks. We
choose a convolutional neural network (CNN) to train a feature
embedding model for opcodes and choose a back-propagation
neural network (BPNN) to train a feature embedding model
for API calls. The hidden layers before the last classifiers of
the two neural networks will be used as embedded features.
Here, we use CNN based opcode embedding model and BPNN
based API embedding model for feature embedding. The rea-
sons why we use different neural networks in our approach
are that: On one hand, the PCA-initialized opcode bi-gram ma-
trix is 2-D structured and its number of dimensions is very
large, the CNN architecture is very suitable in this case since
it computes the dot product between the entries of the filter
and the matrix, produces a 2-D activation map of that con-
volutional core, and compresses the dimensions by pooling
core. The PCA-initialized API frequency vector is 1-D struc-
tured and its number of dimensions is small, the BPNN ar-
chitecture is applicable for fast training since it directly sums
over the weighted features in the vector by several Sigmoid
functions. On the other hand, the BPNN architecture is unap-
plicable for training the PCA-initialized opcode bi-gram ma-
trix. It is hardly converged since the number of dimensions
of the matrix is too large, so that the sigmoid units are hard
to activate. The CNN architecture is unapplicable for training
the PCA-initialized API frequency vector, since the dot product
used in this case is unreasonable and the number of dimen-
sions in the vector is small while the CNN is more suitable for
larger number of dimensions. 

Step 5: Feature fusion based training and classification process.
Once we have obtain the embedded features, then we use soft-
max as a classifier to train and detect malware variants. This
process combines with the two vectors of embedded features
in a series manner and sends them into a softmax classifier.
By iterations, it trains a classification model which identifies
if a binary is malicious or legitimate. 

Processing the above five steps, we can effectively and effi-
ciently detect malware variants. The algorithm representation
is presented in Algorithm 1 . Besides, since classifying mal-
ware families is also important in researches of malware, we
change the labels of all of the classifiers in our approach from
malware/benign to malware families and retrain a new model
for classifying malware families. 

3.2. Representation process 

Since opcodes and API calls in binaries are unstructured data,
we need to convert them to structured representations. For
opcode based representation, because opcode sequences are
too long to remember the whole semantic, so we consider
the local semantic between an opcode and its neighbors. Here
we use n-gram model which is a contiguous sequence of n
items to represent opcode sequences. Usually, n is less than
3 , since the large number of dimensions of opcodes severely
limits the training speed and the detection speed, and does
not significantly improve the detection accuracy ( Kang et al.,
2017 ), ( Santos et al., 2013b ), we choose n = 2 to achieve high
accuracy while retaining speed. (The number of dimensions
is OpNum 

n where OpNum is the total number of the types of
opcodes. The training time cost and the detection time cost
exponentially grow when n increases). By statistics, we gener-
ate a list of opcode 2-tuples with their probabilities, like {{mov
mov 7.250437828371279E-4}, {mov sub 8.523058960887332E-5},
...} . These opcode 2-tuples will be mapped into a matrix, we
call it opcode bi-gram matrix, as shown in Fig. 2 . The element
op i,j in the opcode bi-gram matrix is the probability of the op-
code belonging to type i that has connected to the opcode be-
longing to type j . The opcode bi-gram matrix can be used to
represent a binary since the elements and their neighbors in
the opcode bi-gram matrix actually mean the probabilities of
clusters of opcodes which are important characteristics of bi-
naries, and the distributions of the probabilities between ma-
licious binaries and legitimate ones are different. 

For API based representation, since the API call is a high-
level representation of behaviours of binaries, each API call re-
flect many fine-gained operations. The API calls are more in-
dependent with each other compared with the opcodes. Here
we use a vector of frequencies of API calls to represent API
call sequences. By statistics, we generate a list of API calls
with their probabilities, like {{WriteFile 0.0126582278481013},



382 c o m p u t e r s  &  s e c u r i t y  8 4  ( 2 0 1 9 )  3 7 6 – 3 9 2  

Fig. 2 – The opcode bi-gram matrix. 
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LocalAlloc 0.0253164556962025}, ...} . These probabilities will be 
apped into a vector, we call it API frequency vector. The el- 

ment api i in the API frequency vector is the probability of 
he API belonging to type i . The API frequency vector can be 
sed to represent a binary since the distributions of the prob- 
bilities between malicious binaries and legitimate ones are 
ifferent. 

.3. Representation optimization process 

nce we have represent opcodes by opcode bi-gram matrix 
nd represent API calls by API frequency vector, then we 
ptimize these representation in order to reduce the inner 
omplexity while retaining the information. Although these 
epresentations are effective, they are inefficient due to the 
omplex co-occurrence relations among the elements which 

ncrease the computations in training iterations. To reduce 
he computation while ensuring accuracy, we use principal 
omponent analysis (PCA) to achieve it. PCA is an orthogonal 
ransformation to convert a set of inputs into a set of features 
f linearly uncorrelated variables called principal compo- 
ents, which reduce the inner complexity while retaining as 
uch information as possible ( Hotelling, 1933 ). 
For opcode based representation, given an opcode bi-gram 

atrix M ( op i , op j ), we first calculate the average matrix M ( op i ,
p j ) avg in training data sets. For each binary, we calculate the 
ariance matrix D ( op i , op j ) according to Eq. (1) , where k is the
D of the opcode bi-gram matrix. Let CV ( op i , op j ) be the covari-
nce matrix. The next we calculate the covariance matrix and 

ts eigenvectors, according to Eq. (2) , where n training is the total 
umber of binaries in the training data sets. 

 (op i , op j ) k = M (op i , op j ) k − M (op i , op j ) avg (1)

V(op i , op j ) = 

∑ 

D (op i , op j ) 
T 
k · D (op i , op j ) k 

n training 
(2) 
Let eigenVec be the column eigenvectors according to CV ( op i ,
p j ). Let eigenVec t be the t th eigenvector in eigenVec which are 
rdered by eigenvalue eigenVal t from large to small, according 
o Eq. (3) . 

 CV(op i , op j ) − eigenVal · E| = 0 (3) 

We organize top T eigenvectors (column vectors, T = 159 , the 
umber of dimensions of opcodes) to generate a new matrix 
igenMat and get the PCA-initialized representation PCAMat 
ccording to Eq. (4) . The PCAMat will be sent to a convolutional
eural network to train a vector of opcode embedded features.

CAMat k = D (op i , op j ) k · eigenMat (4) 

For API call based representation, we get the PCA- 
nitialized representation of API frequencies as the same as 
he above operations for opcode based representation. Given 

n API frequency vector V ( api i ), firstly we calculate the average 
ector V ( api i ) avg in training data sets. For each binary, we cal-
ulate the variance vector D ( api i ) according to Eq. (5) , where k
s the ID of the API frequency vector. Let CV ( api i , api i ) be the co-
ariance matrix. we next calculate the covariance vector and 

ts eigenvectors, according to Eq. (6) , where n training is the total 
umber of binaries in the training data sets. 

 (api i ) k = V(api i ) k − V(api i ) avg (5) 

V(api i , api i ) = 

∑ 

D (api i ) 
T 
k · D (api i ) k 

n training 
(6) 

Let eigenVec be the column eigenvectors according to 
V ( api i ). Let eigenVec t be the t th eigenvector in eigenVec which
re ordered by eigenvalue eigenVal t from large to small, accord- 
ng to Eq. (7) . 

 CV(api i , api i ) − eigenVal · E| = 0 (7) 

Finally we organize top T eigenvectors (column vectors,
 = 200 , in order to reduce the number of dimensions) to gen-
rate a new matrix eigenMat and get the PCA-initialized repre- 
entation PCAVec according to Eq. (8) . The PCAVec will be sent 
o a back-propagation neural network to train a vector of API 
all embedded features. 

CAVec k = D (api i ) k · eigenMat (8) 

.4. Neural networks based feature embedding process 

ere we use a convolutional neural network (CNN) to train the 
pcode embedded features and use a back-propagation neural 
etwork to train the API embedded features. As widely used 

eep learning methods, the convolutional neural networks 
re more appropriate to our opcode based, 2-D structured,
CA-initialized representation and the back-propagation neu- 
al networks (BPNN) are suitable for our API based, 1-D struc- 
ured, PCA-initialized representation. 

Training process. Our CNN has 8 layers, an input layer, two 
onvolution and pooling layers, a full connection layer, a soft- 
ax layer and an output layer. During forward pass, we first 
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push the opcode based PCA-initialized representation of exe-
cutables as inputs into the CNN. Then, each convolutional core
is convolved across the width and height of the inputs, com-
puting the dot product between the entries of the filter and
the input and producing a 2-D activation map of that convo-
lutional core. Pooling is a form of down-sampling, and fully
connects the next layer. Our approach uses mean-pooling. In
the full connection layer, the pooling map fully connects the
hidden units by ReLU function according to Eq. (9) . After that,
a softmax is used to train malicious instances and legitimate
ones. It fully connects the units to the output, according to
Eq. (10) . The output of softmax function is vector of two confi-
dence values, each of them represents the probability of mal-
ware or benign. 

ReLU(w · x ) = max (0 , w · x ) (9)

So ftmax 
(∑ 

w · x 
)

= 

e 
∑ 

w ·x ∑ 

e 
∑ 

w ·x (10)

During back propagation, the CNN uses the gradient de-
scent method ( Barzilai and Borwein, 1998 ) to back propagate
the variance from the output layer to the input layer and up-
dates the weight matrixes of the connections between layers.
The objective function is presented in Eq. (11) , where X is the
inputs, W is the weights in the neural network, H ( W · X ) is the
result of the forward passing process of the neural network
and Y is the value of the label ( 1/0 ). Here we use MSE (mean
square error) loss in our neural networks. The rationale of us-
ing MSE in malware variants detection is the existed similar-
ities among the variants, on the other words, the vectors of
the variants are close to each other in n-dimension Euclidean
space. Since several related works have demonstrated that
mean square can represent the distance between two variants
in Euclidean space, such as Santos et al. (2013a) , de la Puerta
et al. (2017) , etc., by using MSE loss in neural networks to train
a model may be reasonable. We update the weights according
to Eq. (12) , where α is the step size and (Y − H(W · X)) is the
variance. So the weights in the Softmax function are updated
according to Eq. (13) , where var is the variance. 

min E = (Y − H(W · X)) 2 (11)

� W = α · dE 
dW 

· (Y − H(W · X))) (12)

� w = α · So ftmax 
(∑ 

w · x 
)

· x · var (13)

Our BPNN has 3 layers, an input layer, a hidden layer and an
output layer. During forward pass, we first input the API based
PCA-initialized representation into the BPNN. Each unit in the
input layer fully connects the units in the next hidden layer,
and each unit in the hidden layer fully connects the units in
the next outout layer. The sigmoid function is according to
Eq. (14) . The vector of labels in the output layer is a vector con-
sisted by 1 and 0 which separately represents malware or be-
nign. During back propagation, the neural network also uses
the gradient descent method to back propagate the variance
from the output layer to the input layer, and updates weight
matrixes of connections between two layers according to
Eq. (15) , where var is the variance. 

Sig 
(∑ 

w · x 
)

= 

1 
1 + exp(−∑ 

w · x ) 
(14)

� w = α · Sig 
(∑ 

w · x 
)

·
(
1 − Sig 

(∑ 

w · x 
))

· x · var (15)

Retraining. Through iterations, the output of a neural net-
work is a vector of confidence values which represents proba-
bilities of malware and benign. When the confidence value of
malware is big enough, we deem this detection is sufficiently
believable. For retraining a new instance, we design a mecha-
nism based on active learning. We get new trained instances
with highly confidence score ( > 0.9) for retraining. When re-
training more and more incremental instances, the decision
boundary will continuously expand. Although it has to lose
some new instances to retrain, the proportion of retrained
instances will increase when the decision boundary expand
enough. In retraining process, we use a copy of the current
model to retrain. By testing the retrained model with the orig-
inal data sets to check if it is correct (the accuracy is not sud-
denly dropped) to avoid poisonous data attacks, we transfer
this retrained model to the current model. 

Feature embedding. At last, when the neural networks men-
tioned above are converged, we gain parameters from the con-
volutional cores, the pooling cores, and the weight matrixes of
the CNN, and gain parameters from the weight matrixes of the
BPNN. These parameters will be fixed into the CNN and the
BPNN respectively as our feature embedding model to gener-
ate embedded features. When an unknown instance is sepa-
rately sent into the para-fixed CNN model and the para-fixed
BPNN model, through forward passing, the units in the full
connection layer of the CNN model will be treated as the op-
code based embedded features and the units in the hidden
layer of the BPNN model will be treated as the API based em-
bedded features. These features will be sent to the next fea-
ture fusion based classifier for malware variants detection. 

This feature embedding method is applicable for heteroge-
nous neural networks, such as CNN, BPNN, etc.. Although the
architectures of CNN and BPNN are different, both of them
train the features by gradient descent method and map origi-
nal data representation into a multi-dimension feature space.
The features of the instances in the same class will be closer in
the multi-dimension space through training so that the neu-
ral networks can be converged. The features can be treated as
a set of common features shared by the instances in the same
class. In this way, the features will be effective in embedding
to other classifiers for further training and classification. 

3.5. Feature fusion based training and classification 

process 

We embed the opcode based features and the API based
features by a serial manner. Let U = { u op, 1 , u op, 2 , . . . , u api, 1 ,

u api, 2 , . . . } be the vector of the integrated features, where u op,i

is the opcode based feature and u api,i is the API based feature.
We input the integrated features U into a softmax classifier to
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Table 1 – The Windows malware data set. 

Malware family Number 

Backdoor 1479 
Worm 795 
Trojan Dropper 1117 
Trojan Banker 1376 
Virus 980 
Total 5250 

Fig. 3 – An example of opcode sequence. 
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6 http://vxheaven.org/vl.php . 
rain and detect malware variants. The forward passing pro- 
ess is according to Eq. (10) and the back propagation process 
s based on gradient descent method according to Eq. (13) .

hen the softmax classifier is converged, a model is gener- 
ted to classify malicious instances and legitimate ones. 

Multiple features can be merged by a serial manner when 

he features have a same scale of feature space. In our work,
y normalization process and training process, the features 
rom CNN and the features from BPNN will have a same scale 
0, 1), so that they can be merged into a joint feature space.
et m be the number of dimensions of the features trained 

rom CNN and let n be the number of dimensions of the fea- 
ures trained from BPNN. By training, the opcode bi-grams are 

apped into a new m-dimension space and the API call fre- 
uencies are mapped into a new n-dimension space. When 

ntegrating these features by a serial manner, the hybrid fea- 
ures are mapped into a (m+n)-dimension space. Since mal- 
are variants have some similarities in opcodes and API calls,

he opcode bi-grams and the API call frequencies which are 
sed to represent malware variants also have some similar- 

ties, and the hybrid features of similar malware instances 
hare similar patterns in the (m+n)-dimension space. Hence,
sing a classifier can divide the similar malware instances 

nto a same class in the (m+n)-dimension space. 
Softmax and Logistic are the two of the most widely used 

lassifiers in neural networks. Since the number of dimen- 
ions of our hybrid features (which are trained from CNN and 

PNN) is very large, and the softmax classifier is applicable 
or dealing with large number of dimensions while the logis- 
ic classifier is failed to train a classification model, here we 
se a softmax as the last classifier for the hybrid features.
hen using the logistic classifier, since the initial weights are 

andom values, the sum of weighted inputs to different sig- 
oid units are very close so that the sigmoid units are hard to 

ctivate. 
In addition, we change the labels of the CNN, the BPNN and 

he last softmax classifier from malware/benign to malware 
amilies and train new embedded features and a new classifi- 
ation model which will be used for a classification of malware 
amilies. 

. Experiments 

n this section, we present several experiments to show the 
erformance of our approach. At the beginning, we present 
he experiment setup, the data set and the validation. And 

hen, we discuss the performance of our approach and show 

ur approach can perform better by comparing with the state- 
f-art methods. 

.1. Setup, data set and validation 

e implement all of the experiments on one computer. The 
ersion of its CPU is Intel i5-3470 @ 3.20 GHz, the RAM is 
6.0 GB and the operating system is Linux Ubuntu 16.04.
ur approach is developed by Java programming language in 

hich the matrix computations are dependant on Jama-1.0.3.
Two data sets are considered in performance analysis of 

ur approach for Windows malware variants detection: a Win- 
ows malware data set and a Windows benign data set. To 
e close to real-life environment, the Windows benign bina- 
ies we used in our experiments is collected from several PCs.
he Windows malware instances which we use in our experi- 
ents are collected from VxHeaven 

6 . To make sure that the 
nstances in our data set are unpacked, we detect packers 
rst. We find some Windows executables have been packed 

efore and then unpack these executables by several unpack- 
ng tools. Our final dataset contains 5241 Windows benign bi- 
aries and 5250 Windows malware binaries. As is shown in 

able 1 . 
We split the malware data set into a training data set 

nd a testing data set, as well as the benign data set. To
void training biases, the volume of the malware training data 
et and the volume of the benign training data set are the 
ame size. We randomly choose 2000 malware samples and 

000 benign samples for training, and 3250 malware sam- 
les and 3241 benign samples for testing. In order to evaluate 
he performance of our approach, we use k-fold cross valida- 
ion in the experiments and choose the average values as our 
esults. 

.2. Opcode sequences and API calls 

o extract opcodes and API calls, we use W32dasm to dis- 
ssemble Windows binaries, and then obtain Windows op- 
ode sequences and API calls. The raw profiles of opcode 
equences and API calls are presented in Figs. 3 and 4 . We

http://vxheaven.org/vl.php
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Fig. 4 – An example of API calls. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 – The distribution comparison of opcodes between 

malware and benign. 

Fig. 6 – The distribution comparison of API calls between 

malware and benign. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

collect 159 opcodes and 1520 API calls, so that the size of op-
code bi-gram matrix is 159 × 159 and the size of API vector is
1 × 1520. In some cases (e.g. some binaries in virus family),
we cannot extract any API call, then we use a vector of all-
zero values to represent the binaries. The profiles not only in-
clude opcodes and API calls, but also include operands and
addresses. Since the opcodes and API calls contains enough
information, and the operands and addresses seem as noisy
information, so in this work, we only extract the opcodes and
the API calls in the profiles. The next we use these opcodes
and API calls to represent binaries respectively. After that, we
implement two models for feature extraction and embedding.
Through feature fusion, our approach train the embedded fea-
tures to generate a classification model to detect malware
variants. 

4.3. Differential analysis of opcode bi-gram and API call 
frequency between malware and benign 

Here we analyze the reasons why the hybrid features are ef-
fective. Since our hybrid features are generated by training op-
code bi-gram and API call frequency, the hybrid features are a
space projection of the two data representations, the hybrid
features can be used to represent the two data representa-
tions. If the differences of the two data representations be-
tween malware and benign are large enough, the hybrid fea-
tures will be effective for classifying malware variants and le-
gitimate ones. Hence, we give a differential analysis of the two
representations and explain why the differences exist. 

In this work, we integrate opcodes and API calls to repre-
sent binaries. Figs. 5 and 6 show the average probability distri-
butions of opcode bi-gram and API calls respectively. From the
results, we find the distributions of opcode bi-gram and API
calls between malware and benign are significantly different,
which means the representation of opcode bi-gram and the
representation of API call frequency can be used for a classifi-
cation of malware and benign. The distribution comparisons
of opcodes and API calls show that: The opcode bi-grams and
the API calls used in malware are concentrated while they are
dispersive in benign. The intuition here is the programs of the
variants of malicious softwares exist similarities ( Cesare et al.,
2014a ), since both of the opcodes and the API calls are the
representation of programs, the opcode bi-grams and the API
calls also exist similarities. These similarities make some of
the opcode bi-grams and some of the API calls concentrated in
malware when comparing with benign. This property makes
the neural networks train common features in malware. 

Here we use Kullback–Leibler divergence D KL to measure
the distance of the distributions between malware and be-
nign, according to Eq. (16) . The D KL of opcode bi-gram is 0.5459
and the D KL of API frequency is 0.3117. 

D KL = 

∑ 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

p malw 

· ln 

(
p malw 

p ben 

)
, p malw 

> p ben 

p ben · ln 

(
p ben 

p malw 

)
, p malw 

< p ben 

0 , p malw 

= p ben 

(16)

4.4. Convergence analysis of PCA-initialization 

To accelerate the convergence speed of the neural networks,
we use PCA to optimize the representation. We show ex-
amples of the convergence process of PCA-initialized neu-
ral networks and non-PCA-initialized neural networks, as
shown in Fig. 7 . For the CNN based opcode embedding, the
example shows the PCA-initialized representation can signifi-
cantly converge faster compared with the non-PCA-initialized
representation. For the BPNN based API embedding, the ex-
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Fig. 7 – The convergence comparison of training process 
between PCA-initialization and non-PCA-initialization. 

Table 2 – The hyper-parameter settings of our CNN based 

opcode embedding. 

Item Value 

Size of input vector 159 × 159 
Size of PCA vector 159 × 159 
Number of convolutional layers 2 
Number of convolutional cores for each layer 5 
Size of each convolutional core 5 × 5 
Number of pooling layers 2 
Number of pooling cores for each layer 5 
Size of each pooling core 2 × 2 

Table 3 – The hyper-parameter settings of our BPNN based 

API embedding. 

Item Value 

Size of input vector 1 × 1520 
Size of PCA vector 1 × 200 
Number of hidden layers 1 
Number of hidden units 50 
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mple shows the PCA-initialized representation can converge 
aster at the beginning of the training process compared with 

he non-PCA-initialized representation, that means the PCA- 
nitialized representation is more robust for training in neural 
etworks and can avoid potential under-fitting. 

.5. Hyper-parameter settings 

he hyper-parameters which are set by designers may have a 
reat affect on performance. In this subsection, we show the 
yper-parameter settings in our approach. Since it has two 
eature embedding models: the CNN based opcode embed- 
ing model and BPNN based API embedding model, we show 

he hyper-parameters in these models respectively, as shown 
n Tables 2 and 3 . The principle we set the hyper-parameters 
ere is to ensure accuracy while retaining training speed. 

.6. Performance analysis of malware detection 

o show that our approach is optimized and efficient, we 
ompare our approach with several state-of-art methods.
antos et al. (2013a) represented binaries by using opcode 2- 
uples and information gain, then adopted several machine 
earning methods to detect malware variants. de la Puerta 
t al. (2017) proposed to adopt several machine learning meth- 
ds to classify the opcode vectors. Kang et al. (2016) pre- 
ented an n-opcode analysis based approach that utilizes ma- 
hine learning to detect malware. Raff et al. (2017) used byte 
-gram matrix to represent executables and adopted con- 
olutional neural networks to detect malicious executables.
anzanese et al. (2015) proposed to use a vector of system call 
-gram frequencies and use several classifiers to detect mal- 
are. Santos et al. (2013c) proposed a hybrid malware variant 
etector which utilizes a set of features, we implement their 
ethod with opcodes and API calls as a comparison. 
All of the methods are implemented to run in the same 

onfigurations which include: the same machine, the same 
perating system, the same Java virtual machine (JVM), the 
ame training data set and the same detection data set. 

The benchmarks which we use for performance compari- 
on include classification accuracy, detection precision, detec- 
ion recall, detection false positive rate, F1-score, training time 
ost and detection time cost. The classification accuracy is ac- 
ording to Eq. (17) . TPR is true positive rate (malware detection 

ecall) according to Eq. (18) , where TP is the number of mal-
are cases which are correctly classified and FN is the num- 
er of malware cases which are misclassified as benign bina- 
ies. TNR is true negative rate, as shown in Eq. (19) , where FP
s the number of benign cases which are incorrectly classified 

s malware binaries and TN is the number of benign binaries 
hich are correctly classified. FPR is false positive rate, Preci- 

ion is malware detection precision, and F1 - score is according 
o Precision and Recall , as shown in Eqs. (20) –(22) . 

ccuracy = 

T P + T N 

T P + F N + T N + F P 
(17) 

 PR (Recal l ) = 

T P 
T P + F N 

(18) 

 NR = 

T N 

F P + T N 

(19) 

 PR = 

F P 
F P + T N 

(20) 

recision = 

T P 
T P + F P 

(21) 

 1 score = 

2 ∗ Precision ∗ Recall 
Precisio n + Recall 

(22) 

As shown in Table 4 , the performance evaluations of sev- 
ral state-of-art methods show that: 
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Table 4 – The performance evaluations of several state-of-art approaches. 

Method Classification Detection Detection Detection Detection 

accuracy (%) precision (%) recall (%) 1-FPR (%) F1-score (%) 

Our approach 95.1 95.7 94.3 95.9 95.0 
Santos et al. (KNN, opcode) 87.7 84.8 92.0 83.4 88.3 
Santos et al. (KNN, API) 79.1 92.7 63.2 95.0 75.2 
Santos et al. (KNN, opcode & APIcall) 89.8 93.3 85.8 93.8 89.4 
Puerta et al. (SVM, opcode) 83.5 86.5 80.6 87.4 83.4 
Kang et al. (NB, opcode) 79.7 78.3 82.2 77.2 80.2 
Raff et al. (CNN, bytecode) 83.8 82.5 85.8 81.8 84.1 
Canzanese et al. (SVM, syscall) 86.6 92.4 79.8 93.4 85.6 

Method Detection Training 
Time cost (s) Time cost (s) 

Our approach 0.034 140747.0 
Santos et al. (KNN, opcode) 5.130 0.0 
Santos et al. (KNN, API) 1.114 0.0 
Santos et al. (KNN, opcode & APIcall) 6.536 0.0 
Puerta et al. (SVM, opcode) < 0.001 31.0 
Kang et al. (NB, opcode) 0.005 134.0 
Raff et al. (CNN, bytecode) 0.053 213467.0 
Canzanese et al. (SVM, syscall) 0.094 179.0 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. By comparing with the other state-of-art methods, our ap-
proach significantly improves the classification accuracy,
the detection precision, the detection recall, the 1-FPR and
the F1-score of malware variants detection while retaining
the detection speed. The only sacrifice is the training time
cost, which will cost more than one day. 

2. Santos et al.’ (KNN, opcode) method uses K-nearest neigh-
bor (KNN) to search similarities of opcode 2-tuples be-
tween targeted binaries and labeled binaries in a serial
manner. Since the KNN method only needs to search sim-
ilarities between the targeted binary and each labeled bi-
naries in detection process and does not need to train a
model like other machine learning methods, so it does
not take any training time cost (the training time cost is
0.0 s), but cost much more time in detection process. How-
ever, users who need the malware detection engine care
more about detection time cost rather than training time
cost. 

3. Santos et al.’ (KNN, API call) method uses K-nearest neigh-
bor (KNN) to search similarities of API probabilities, it per-
forms poorly in terms of accuracy. 

4. Santos et al.’ (KNN, opcode & API call) method search simi-
larities of features which include opcodes and API calls. By
comparing with their opcode based method and API call
based method, it improves the accuracy. 

5. Puerta et al.’ (SVM, opcode) method uses opcode frequen-
cies to represent binaries and adopts support vector ma-
chine to detect malware variants. However, their features
are simple, which cannot contains enough information to
ensure the accuracy. 

6. Kang et al.’ (NB, opcode) method adopts naive bayes (NB)
to detect the 2-opcode vectors of malware variants. The
method is less accurate since naive bayes is based on a
simple assumption that the features are independent with
each other. However, this assumption is not really true in
practise. 
7. Raff et al.’ (CNN, bytecode) method detects malware vari-
ants by using convolutional neural networks (CNN) and
bytecode n-grams. Since bytecodes contains a lot of noise
compared with opcodes, the accuracy of their method are
limited by the noisy information. 

8. Canzanese et al.’ (SVM, syscall) method uses system call n-
gram to represent binaries, and adopts support vector ma-
chine (SVM) to detect malware variants. The performance
seems not too bad since the system call is a high-level rep-
resentation of binaries, like API calls, which can precisely
represent binaries’ behaviour. However, this dynamic anal-
ysis based method cannot work if a malware lurks in a
computer and hides its malicious behaviours. 

Our feature-hybrid approach includes two feature embed-
ding models: one is the CNN based opcode embedding model,
the other is BPNN based API embedding model. Here we show
the performance of these two models respectively to reflect
the improvement of our feature-hybrid model, as shown in
Table 5 . Since we can hardly extract API calls from some ma-
licious binaries in virus family, in the results of BPNN based
API embedding model, we use a vector of all-zero values to
represent the binaries. The performance comparison with our
feature-hybrid model and the other two models shows that: 

1. Our feature-hybrid model significantly improves the per-
formance by comparing with the other two models since it
embeds both of opcode features and API features. 

2. For our CNN based opcode embedding model, since the op-
code bi-gram can represent semantic features of binaries,
which has been widely used in many researches, and the
CNN can extract the features of the clusters of opcode bi-
grams, which retains much more useful information, this
model performs well in terms of accuracy by comparing
the above state-of-art methods. 
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Table 5 – The performance comparison with our feature-hybrid model and the single-feature model used in our method. 

Method Classification Detection Detection Detection Detection 

accuracy (%) precision (%) recall (%) 1-FPR (%) F1 - score (%) 

Our approach 95.1 95.7 94.3 95.9 95.0 
CNN based opcode embedding 91.2 92.0 89.6 92.8 90.8 
BPNN based API embedding 89.8 85.0 96.9 82.9 90.6 

Method Detection Training 
Time cost (s) Time cost (s) 

Our approach 0.034 140747.0 
CNN based opcode embedding 0.023 137582.0 
BPNN based API embedding < 0.001 1369.0 
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Fig. 8 – The stability evaluation of accuracy (The proportion 

of benign to malware is balanced). 

Fig. 9 – The training time cost of our approach when 

training in different volume of data sets. 
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3. For our BPNN based API embedding model, by using a 
high-level representation of binaries, API call (static anal- 
ysis), and a efficient classifier BPNN, the model can detect 
malware variants. The detection recall of the BPNN based 

API embedding model is a bit larger than that of our ap- 
proach, because we cannot capture any API calls both in 

some benign binaries (such as some executables in Win- 
dows kernel) and some malware binaries (such as some ex- 
ecutables in virus family), and this make the BPNN treats 
these instances (all-zero padding vectors) as malware, so 
that the detection recall is a bit higher. However, in this 
case, it makes the detection precision lower. When our ap- 
proach integrates opcode features and API features, the 
vectors of features are conducted by opcode features and 

API features, so that the vectors of features are not all-zero 
padding any more. This improves detection precision while 
retaining detection recall. 

.7. Stability evaluation of malware detection 

ince malware variants are rapidly growing in volume facing 
he Internet today, the volume of training samples is always 
maller than the volume of detecting set. When the detection 

et contains a large quantity of binaries and the training set 
s smaller (the radio of training 

t raining+ det ect ion is small), the detection 

ccuracy will severely limited ( Zhang et al., 2016b ). So here we 
valuate the stability of our approach by testing in different 
olumes of training sets. The size of our training sets are 500,
000 and 2000. 

The results from Fig. 8 show the accuracy, the precision,
he recall, the 1-FPR and the F1-score of our approach is sta- 
le, which means our approach is stable when the radio of 

training 
t raining+ det ect ion is different. The results also show our approach 

erforms well even the radio of training 
t raining+ det ect ion < 0 . 2 . In addi- 

ion, the results from Fig. 9 show the training time cost of our 
pproach when training in different volume of data sets. Since 
he proportion of benign to malware is not balanced in the real 
orld, usually the volume of benign is much more than that of 
alware. So here we demonstrate the effectiveness of our ap- 

roach at 90%-10%, 85%-15%, 80%-20% proportion of benign 

o malware. To avoid the data bias, we retrain malware data 
 times, 6 times, 4 times respectively when the proportion of 
enign to malware is 90%-10%, 85%-15%, 80%-20%. The results 
how our approach is also effective when the proportion of be- 
ign to malware is unbalanced, as shown in Fig. 10 . 
.8. Accuracy evaluation of malware family classification 

alware variants detection aims to classify malware variants 
nd benign instances, which protect operating systems from 

ttacks. The classification of malware family is also important 
o help people understand which family a malware instance 
elongs to. Many researches have presented that solving mal- 
are family classification problem is also important, such 

s ( Massarelli et al., 2017b ), ( Zhang et al., 2018b ), etc.. Since
ingle-feature model (e.g. opcode based model, API call based 
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Fig. 10 – The stability evaluation of accuracy (The 
proportion of benign to malware is unbalanced). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11 – The precision, recall, 1-FPR, F1-score of our 
approach for malware family classification. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

model) poorly classify malware families due to insufficient in-
formation in single type of representations (e.g. opcode or API
call), our approach which uses complementary features can
significantly improve the accuracy of malware family classifi-
cation. 

Here we implement our approach to classify malware fam-
ilies and evaluate the accuracy of our approach. As shown in
Fig. 11 , the results show that our approach can effectively clas-
sify malware families and precisely identify most of malware
variants. More details are presented in Fig. 12 . Confusion ma-
trix M gives a quick graphical overview of the performance of
a classifier. The generic element M i,j of the matrix is the num-
ber of samples belonging to class i that has been classified as
j by the classifier. The precision, recall, FPR and F1-score are
related measures, and are defined according to Eqs. (23) –(25)
and (22) . 

Precision i = 

M i,i ∑ 

i M j,i 
(23)

Recall i = M i,i (24)

F PR i = 

∑ 

i � = j 
M i, j (25)
Fig. 12 – The confusion matrix comparison of malware family
As shown in Fig. 12 , by comparing with the three models,
we can find both the opcode based model and the API based
model perform poorly for malware family classification since
the information is not enough, while our feature-hybrid model
performs well by considering both of opcode features and API
call features. For CNN based opcode embedding model, since
the malware families, worm and virus, contains much less in-
formation compared with other malware families, the opcode
based model makes more mistakes when identifying malware
variants in these malware families. For BPNN based API em-
bedding model, because we can hardly extract API calls from
the malicious binaries in virus family, so this model is not ap-
propriate for identifying virus family. 

5. Limitations 

Varied packers sometimes allow malware to bypass the mod-
ern malware detection techniques. In most cases, packers
can be unpacked by unpacking techniques or tools such as
PolyUnpack ( Royal et al., 2016 ), which recovers original soft-
ware sources. Because packed softwares have to unpack their
inner original codes before execution, so that unpacking tech-
 classification (The darkness determines the percentage). 
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iques always have a chance to get the original codes. But ob- 
uscated software is more harder to be de-obfuscated. So in 

his section, we mainly discuss the limitations caused by ob- 
uscation. 

Obfuscation is defined by Cesare et al. (2014b) as a result 
f a semantic preserving transformation and obfuscated pro- 
rams. Two obfuscated programs which are derived from the 
ame source program are similar. The the similarities sup- 
ort our technique to detect a degree of obfuscated mal- 
are variants. Several types of obfuscation have been found 

ut, such as identifier renaming, junk code injection, control 
ow based obfuscation, etc.. The identifier renaming obfus- 
ation renames variables which could prevent manual analy- 
is, but it is hard to impact distributions of instructions, op- 
odes, or other representations of binaries. The junk code in- 
ection could change the distributions, however it is easily to 
e detected and denoised. The control flow based obfuscation 

hanges the control flow graph which makes the control flow 

ased detection uncorrect. It generates some noisy instruc- 
ions but retains the original instructions, which keeps partly 
imilarities. Most of obfuscation techniques are simple ob- 
uscation such as renaming which cannot make a significant 
hange to the distribution ( Dong et al., 2018 ). Some obfuscated 

alware instances are treated as malware variants. In general,
ur approach can resist a degree of mistakes caused by obfus- 
ation. The obfuscated malware variants detection accuracy is 
elevant to the obfuscation degree and the noise distribution. 

Besides, adversarial machine learning attack is also a limi- 
ation of all of machine learning based applications. However 
t still needs more researches to solve such problem. 

. Conclusions 

n this paper, we propose a feature-hybrid malware variant de- 
ection technique which effectively and efficiently identifies 

alware variants from legitimate executables, and classifies 
heir malware families as well. This technique first collects 
pcodes and API calls from disassembling malicious executa- 
les and legitimate ones, then represents each executable by 
pcode bi-grams and API frequencies, the next trains opcode 
eatures and API features through principal component anal- 
sis initialized convolutional neural networks and principal 
omponent analysis initialized back-propagation neural net- 
orks respectively, and finally embeds these features into a 

oftmax classifier to train a classification model. The classifi- 
ation model will be used for malware variants detection. 

Our approach smoothly integrates fine-grained features 
opcodes) and high-level features (API calls) to cover more 
haracteristics of malware and improve detection precision 

nd detection recall of more than 5%. Real-life experimental 
esults show our approach achieves more than 95% malware 
etection accuracy and almost 90% classification accuracy of 
alware families. The detection speed of our approach is less 

han 0.1 s. 
As a future work, we will integrate more static analysis 

ased features to our approach, such as control data flow 

raph, etc.. Beside, our feature fusion based framework can 

ot only be sued for Windows malware detection, but also be 
sed for Android malware detection and other domains, such 

s traffic anomaly detection, anti-fraud, etc. 
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