
Received August 6, 2018, accepted September 11, 2018, date of publication September 17, 2018, date of current version October 12, 2018.

Digital Object Identifier 10.1109/ACCESS.2018.2870534

Dalvik Opcode Graph Based Android Malware
Variants Detection Using Global
Topology Features
JIXIN ZHANG 1,2, ZHENG QIN 1, KEHUAN ZHANG2, HUI YIN 1, AND JINGFU ZOU1
1College of Computer Science and Electronic Engineering, Hunan University, Changsha 410082, China
2Department of Information Engineering, The Chinese University of Hong Kong, Hong Kong

Corresponding authors: Zheng Qin (zqin@hnu.edu.cn) and Kehuan Zhang (khzhang@ie.cuhk.edu.hk)

This work was supported in part by the National Natural Science Foundation of China under Grant 61472131 and Grant 61772191, in part
by the National Key Research and Development Program of China under Grant 2018YFB07040, and in part by the Science and
Technology Key Projects of Hunan Province under Grant 2015TP1004 and Grant 2016JC2012.

ABSTRACT Since Android has become the dominator of smartphone operating system market with a
share of 86.8%, the number of Android malicious applications are increasing rapidly as well. Such a large
volume of diversified malware variants has forced researchers to investigate new methods by using machine
learning since it provides a powerful ability for variants detection. Since the static analysis of malware
plays an important role in system security and the opcode has been shown as an effective representation
of malware, some of them use the Dalvik opcodes as features of malware and adopt machine learning to
detect Android malware. However, current opcode-based methods are also facing some problems, such as
considering both of accuracy and time cost, selection of features, and the lack of understanding or description
of the characteristics of malware. To overcome the existing challenges, we propose a novel method to
build a graph of Dalvik opcode and analyze its global topology properties, which will first construct a
weighted probability graph of operations, and then we use information entropy to prune this graph while
retaining information as more as possible, the next we extract several global topology features of the graph
to represent malware, finally search the similarities with these features between programs. These global
topology features formulate the high-level characteristics of malware. Our approach provides a light weight
framework to detect Android malware variants based on graph theory and information theory. Theoretical
analysis and real-life experimental results show the effectiveness, efficiency, and robustness of our approach,
which achieves high detection accuracy and cost little training and detection time.

INDEX TERMS Dalvik opcode graph, global topology features, information theory, similarity searching.

I. INTRODUCTION
Being an open source operating system in smart phone,
Android has increased the risk and serious issues related
to malicious applications. Also the increase in the scale
of applications in Android market makes it an easy target
for malware authors [35]. According to [1], [12], and [18],
recent statistical data show that over 95% of mobile malware
targeted Android, and there were about 500K suspicious
APK files or Android related files (e.g., dex, elf, jar files)
submissions in VirusTotal each day. Traditional and commer-
cial malware detection systems have predominantly utilised
string signatures to query a database of pre-known malware
instances. However, it is facing the problem that so many new
malware coming every day.

In recent years, various approaches have to be devised to
fight malware based on their nature. Some researches have
proposed their Android malware detection methods by using
machine learning with the features such as operation codes
(opcodes), API functions, system calls, system status, etc.
through static analysis and dynamic analysis.

Since static analysis of malware does not require condi-
tional, untrusted or sandboxed execution of malware once
the original contents of the malware are visible [10], and
dynamic analysis such as [9] and [26] which monitor sys-
tem calls or system status can hardly pre-detect the threat
while the malware hides its malicious behaviours until there
is a chance to attack, some of them prefer to use static
analysis. Wu et al. [32] proposed a system, called DroidMat

51964
2169-3536
 2018 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

VOLUME 6, 2018

https://orcid.org/0000-0001-6890-8953
https://orcid.org/0000-0003-0877-3887
https://orcid.org/0000-0001-8960-887X

J. Zhang et al.: Dalvik Opcode Graph-Based Android Malware Variants Detection Using Global Topology Features

which extracts the information such as permissions, API calls
from the manifest file, then applies K-means algorithm that
enhances the malware modeling capability, and finally adopt
kNN algorithm to classify the application as benign or mal-
ware. Fan et al. [16] proposed to extract APIs from the .apk
file to build a matrix according to the frequencies of their
calling relationships, and then compare the matrix similar-
ities between two .apk files. However, since the APIs are
coarse-grained and sparse, it will be easier obfuscated by
polymorphic techniques.

Since Dalvik opcodes [5] as one of the most used static
features can finely represent behaviour patterns of programs,
many researches propose to extract Dalvik opcode as their
features and adopt diversified machine learning methods for
their approaches. Some of them present traditional machine
learning methods or statistical models such as [6], [8], [37],
etc. They propose to firstly select some N-tuple opcodes as
their features (Usually, N is less than 3, since large number
of feature dimensions severely limits the performance. The
number of feature dimensions is OpNumN where OpNum is
the total number of single opcodes.), and then choose one
of applicable machine learning methods as their classifiers
to classify malicious programs and legitimate ones. Some of
them adopt deep learning based methods such as [24], [36],
etc. Their approaches extract features and classify them by
deep learning methods their own.

However, such opcode based machine learning researches
are also facing some challenges. For N-tuple opcode based
traditional machine learning approaches, they face a difficult
choice of the scale of the selected features. As any single
N-tuple opcode cannot certainly decide whether an instance
is malicious or not, and less N-tuple opcodes cannot contain
enough information to cover the characteristics of a wide
rage of malware, they try to select more N-tuple opcodes
to improve the accuracy. But the more N-tuple opcode is,
the larger feature dimensions become, which brings more
noise and more complexity, as well as more time cost of train-
ing and classification. For deep learning based approaches,
although it automatically extracts features and organizes rela-
tionships between features, the key problem is that it is hard
to understand the real meaning of the features and the inner
relationships between the features. In addition, the training
process of deep learningmethods costs twomuch time, which
makes it hard to implement in practice when facing the large
scale of malware and so many new malware coming every
day. For an instance, using a convolutional neural networks
with one convolution layer (several convolution cores), one
pooling layer (several pooling cores), a full connection layer
and a softmax classifier to train thousands of pre-labeled
samples in a server machine needs several days.

In this paper, we propose to address these challenges
based on graph theory. There exist some call graph based
approaches, such as [10], [16], etc. They use Control Flow
Graph or API Call Graph to represent executables, and
then search similarities between subgraphs of unlabeled
samples and labeled samples. However these call graph

based approaches are easier obfuscated by changing the call-
ing sequence. There also exist some file-file graph based
approaches, such as [11], [29], et.. These researches propose
to build file-file relationships according to the interactions
between files and hosts, and then adopt belief propagation
methods to detect malicious files. However, due to the cold
start problem, they cannot detect new malware variants in
time.

Unlike the above mentioned approaches, we build a graph
of opcodes instead of APIs or system calls to finely-gained
represent the dependencies between opcodes. We use transi-
tion probability instead of control flow or data flow to main-
tain the statistical information which contains very important
characteristics to distinguish malware and benign. Specially,
we use topology features to formulate the characteristics of
malware. Since graph can represent the natural relationships
between entities, using a graph of Dalvik opcodes can rep-
resent dependencies between operations in malware. These
dependencies show some characteristics of malware. Several
global topology features are presented to represent the char-
acteristics, which will be used to detect Android malware.
The topology feature is a high-level, global representation
of malware, which means it covers the whole information
while reducing complexity of relationships between features.
This improves the overall performance. Since the number of
dimensions of topology features is much smaller than the
low-level features such as N-tuple opcodes, the time cost of
processing will be greatly reduced. In addition, it can be eas-
ier to understand and analyze its realistic meaning by human
beings. We can gain some rules or knowledge by observing
the difference of global topology properties betweenmalware
and benign. These will be very attractive given the fact there
are so many new malware coming every day.

In order to achieve this goal, we have to address sev-
eral challenging problems. One challenge is that although a
graph of Dalvik opcode can represent the dependencies of
operations in programs, however there is no evidence that
shows a significant difference of operations and dependencies
between malware and benign. The other challenge is that the
existing global topology properties, such as graph density,
the number of average neighbors, etc., cannot satisfy the need
of representing the characteristics of malware. We addressed
these challenges based on an important observation that the
possibilities of relationships between operations can give us
enough information for representing the activities of mal-
ware. In this paper, we proposed a weighted probability graph
of Dalvik opcodes and several novel topology features to
show the high-level representation of programs. The dif-
ferential analysis in Evaluation Section shows the topology
features betweenmalware and benign can be significantly dif-
ferent. Since similar malicious code is often found throughout
the malware landscape as attackers reuse existing code to
infect different Android applications [17], the topology fea-
tures between malware variants in the same family are quite
similar, so a similarity search method is presented to detect
malware by using these topology features.

VOLUME 6, 2018 51965

J. Zhang et al.: Dalvik Opcode Graph-Based Android Malware Variants Detection Using Global Topology Features

A. CONTRIBUTIONS
The main contributions of this paper are summarized as fol-
lows.

1) We analyzed malicious operations in a very different
way. Based on our observation, we found some high-
level, global properties of malware, which formulate
the characteristics of malware.

2) To effectively and efficiently detect Android malware,
we proposed a weighted probability graph of Dalvik
opcodes and several novel global topology features.

3) Implemented a prototype and evaluated with real world
datasets. Evaluation results showed that our approach
can stably achieve high classification accuracy of
almost 94% and cost little detection time (less than
0.001s per executable). Overall, when comparing with
the state-of-art approaches, our method achieves a bet-
ter performance in terms of several aspects by using
only 6 topology features and a simple similarity search-
ing method, while the Support Vector Machine (SVM)
based method needs to uses 58564 2-tuple Dalvik
opcode features to achieve similar accuracy, but sac-
rifices much more speed.

B. PAPER ORGANIZATIONS
The remainings of this paper are organized as follows.
Section 2 shows the overview of our approach. Section 3
presents our Dalvik opcode graph construction & pruning
and Section 4 presents the global topology features extrac-
tion & similarity searching. Section 5 shows the evaluations
and Section 6 introduces the related works. Section 7 and
Section 8 show the discussion and conclusion.

II. OVERVIEW OF OUR APPROACH
In this section, we convert the Android malware/benign
classification problem to a graph based topology features
similarity searching problem. We propose a weighted proba-
bility graph of Dalvik opcodes and extract its global topology
features for our Android malware detection approach. There
are two phases in our approach: online phase and offline
phase, as shown in Figure 1. In offline phase, we construct
our opcode graph to prepare for pre-labeled feature database.
In online phase, we extract topology features and search
similarities between topology features in pre-labeled feature
database. For both of the two phases, packed programs are
first unpacked to remove packers. A packer is a program
that encrypts or compresses other programs to packed pro-
grams so that the packer can protect the programs from
disassembly. When executing a packed program, the packer
decrypts or decompresses the packed program to the orig-
inal unpacked program in memory and then executes the
unpacked program. Then we decompress unpacked .apk exe-
cutable files to .dex files and disassemble the .dex files to
Dalvik opcodes profiles to obtain the opcode sequences.
The module of graph construction & pruning generates
a profile which contains a set of opcodes (vertices) and

FIGURE 1. The architecture of our approach.

dependencies (edges) between opcodes as well as weights
(values) which will be used to build the opcode graph.

Our approach includes the following four key steps: Dalvik
opcode graph construction, Dalvik opcode graph pruning,
global topology features extraction, and similarity searching.
Step 1 (Dalvik Opcode Graph Construction): Firstly,

we obtain Dalvik opcode sequences from disassembling .dex
files which are decompressed from .apk files (Android exe-
cutables). We convert these Dalvik opcode sequences to a
directed graph of vertices and edges. Each vertex represents
an operation and each edge represents the sequential relation-
ship between two operations. The weight values of the edges
represent the co-occurrence probability of the two operations.
Step 2 (Dalvik Opcode Graph Pruning): Then, we prune

the above mentioned Dalvik opcode graph based on infor-
mation theory to reduce the complexity of the graph while
maintaining the malware sensitive information as more as
possible.
Step 3 (Global Topology Features Extraction): The next,

based on graph theory, we extract 6 global topology features
of the pruned Dalvik opcode graph. These features represent
centrality of operations, activity of operation traces, density
of graph, etc.
Step 4 (Similarity Searching): Finally, we search the sim-

ilarities between the target and pre-labeled samples accord-
ing to Manhattan Distance. The label of the most similar
pre-labeled sample is also the label of the target.

III. DALVIK OPCODE GRAPH CONSTRUCTION & PRUNING
In this section, we first construct our Dalvik opcode graph,
and then prune a part of nodes and edges in the graph while
retaining as many as possible important connections between
nodes.

A. DALVIK OPCODE GRAPH CONSTRUCTION
The Dalvik opcode graph is a directed graph of ver-
tices which represent operations and directed edges which

51966 VOLUME 6, 2018

J. Zhang et al.: Dalvik Opcode Graph-Based Android Malware Variants Detection Using Global Topology Features

represent relationships between operations. Let G=(V, E) be
the opcode graph, where V is a set of vertices and E denotes
a set of directed edges. Each vertex vi represents one of
Dalvik opcode, such as ADD-DOUBLE, INVOKE-DIRECT-
EMPTY, MONITOR-ENTER, etc. Each edge represents the
dependencies between two sequential opcodes, for example,
the edge ei,j=<vi, vj> represents a sequential operations from
vi to vj.
Let osi={opj, opk ,, opt , opm} be an opcode sequence

of a program where m is the length of the sequence. Let
OPtotal={op1, op2,, opn} be the set of Dalvik opcodes
where n is the total number of the opcodes, and OPi={opj,
opk , opt , opm,} be a subset of OPtotal where the opcodes
in the subset are also in osi. Let Gi=(Vi, Ei) be the Dalvik
opcode graph of the program. The Gi=(Vi, Ei) is a subgraph
of the whole opcode graph and is automatically built by
connecting the opcodes in the sequence osi according to the
sequential relationships between opcodes, whereVi=OPi and
Ei={ej,k=<opj, opk>,, et,m=<opt , opm>}.
For example, the osi={NEW-INSTANCE, SGET-

OBJECT, INVOKE-DIRECT, INVOKE-VIRTUAL,
INVOKE-VIRTUAL, INVOKE-VIRTUAL, MOVE-
RESULT,} is an opcode sequence of a program,
we obtain the OPi={NEW-INSTANCE, SGET-OBJECT,
INVOKE-DIRECT, INVOKE-VIRTUAL, MOVE-RESULT,
....} according to osi. In the Gi=(Vi, Ei) of the pro-
gram, the Vi=OPi and the Ei={<NEW-INSTANCE,
SGET-OBJECT>, <SGET-OBJECT, INVOKE-DIRECT>,
<INVOKE-DIRECT, INVOKE-VIRTUAL>, <INVOKE-
VIRTUAL, INVOKE-VIRTUAL>, <INVOKE-VIRTUAL,
MOVE-RESULT>,}, as shown in Figure 2.

FIGURE 2. An example of Dalvik opcode graph within vertices and edges.

For each application, we build a Dalvik opcode graph,
according to the sequential relationships of the opcodes
in the opcode sequences. Each sequential relationship
between two opcodes represents the operation dependency
and the co-occurrence of the sequential operations. Since
the opcode sequence is very long and the two sequential
opcodes are various, the Dalvik opcode graph will be highly
connected.

As we observed, the single operations and single depen-
dencies between operations in malware are not unique, which
means the single operations and the single dependencies
in malware may also exist in benign. Fortunately, it has a
significant difference between malware and bengin about
the co-occurrence frequencies of these operations. So in this
paper, we focus on the probabilities of the relationships. Such
probability is the property value of the edges in the graph.

Let val(ei,j) be the edge value of ei,j which represents prob-
ability of the sequential relationships from vi to vj, according
to Eq. (1), where Nei,j is the frequency of ei,j by counting the
number of ei,j in the program.

val(ei,j) =
Nei,j∑n,n

k=1,t=1 Nek,t
(1)

B. DALVIK OPCODE GRAPH PRUNING
Since we only concentrate on malware activities, so we
maintain the active dependencies in malware and prune
the other dependencies to reduce the computation com-
plexity. The pruning method is based on information
entropy, according to Eq. (2), where IG(ei,j) is the entropy,∑

in−malware val(ei,j) is the sum of edge value of ei,j in mal-
ware and

∑
in−benign val(ei,j) is the sum of edge value of ei,j

in benign. If IG(ei,j)>t, where t is a threshold, we maintain
the edge ei,j, otherwise we prune it. The IG(ei,j) will be used
as the weight of ei,j later.

IG(ei,j) = ln(

∑
in−malware val(ei,j)∑
in−benign val(ei,j)

) (2)

The Figure 3 shows several examples of Dalvik opcode
graph when the threshold t is 0, 1, 2, 3. To reduce the
computation complexity while retaining as more as possible
information, we choose threshold t=0.

IV. GLOBAL TOPOLOGY FEATURES EXTRACTION &
SIMILARITY SEARCHING
Once we have constructed the opcode graph and pruned
non-active connections, we extract topology features from
this graph, and finally search similarities between programs
by using these features.

A. GLOBAL TOPOLOGY FEATURES EXTRACTION
We propose 6 global topology features which represent
global activity of programs in different angles. We extract
such topology features based on graph theory which are
illustrated as follows.

Node Number (NB) is the total number of vertices in
the Dalvik opcode graph of a program. As a basic global
topology feature, it represents the diversity of operations of
the program.

Centrality (Ctr) identifies the number of the most impor-
tant vertices within a graph, which represents the concen-
tration degree of operations in the program. The important
vertex is a vertex with high degree. We use the degree cen-
trality according to Eq. (3), where ID(vi) is the in-degree of

VOLUME 6, 2018 51967

J. Zhang et al.: Dalvik Opcode Graph-Based Android Malware Variants Detection Using Global Topology Features

FIGURE 3. The Dalvik opcode graph.

vertex vi and OD(vi) is the out-degree of vertex vi. The intu-
ition here is that the operations in most legitimate programs
discretely connect with each other while the operations in
some malicious programs concentratively connect with a few
operations.

Ctr =
∑
vi∈V

1, {ID(vi) > t|OD(vi) > t} (3)

Edge Value (EV) is the sum of probability value of edges
in the graph, as one of the basic global topology features,
which represents co-occurrence frequencies of dependencies
between operations, according to Eq. (4), where P(ei,j) is the
probability of edge ei,j.

EV =
∑
ei,j∈E

P(ei,j) (4)

Graph Probability Density (GPD) is the probability
density of the graph, which represents interaction intensity
between operations. Similar to graph density, we introduce
probability density to graph, according to Eq. (5), where NB
is the total number of vertices in the graph. As an observation,
the average node number of malicious programs is less than
the average node number of legitimate ones, and the average
edge value of malicious programs is higher than the average
edge value of legitimate ones. So the graph probability den-
sity of malicious programs should be much larger than the
density of legitimate programs.

GPD =
2 ·

∑
ei,j∈E P(ei,j)

NB · (NB− 1)
(5)

Graph Distance (GWD) is the distance of weighted prob-
ability between the dependencies in the target program and
the average dependencies in whole programs for training,
according to Eq. (6), where the Avg(ei,j) is the average value
of ei,j in our training sets. With a intuition, since our Dalvik
opcode graph is more sensitive to malicious operations and
dependencies, which means that, each sequential relation-
ships (edge) between operations (vertices) in legitimate pro-
grams are more tend to uniform distribution (GWD is close

to 0) while the relationships in malicious programs are more
tend to non-uniform distribution and its distance towards a
positive direction (GWD > 0).

GWD =
∑
ei,j∈E

IG(ei,j) · (P(ei,j)− Avg(ei,j)) (6)

Graph Activity (OTWA) is the sum of weighted proba-
bility of operation traces OT=ot1, ot2,, otx in the graph,
which represents the probability of malicious operation trace
in the graph, according to Eq. (7). The operation trace oti
is the subgraph of the Dalvik opcode graph, which includes
all reachable vertices from a initial vertex and the edges
between these vertices. We extract the operation trace by
using depth-first search [30]. The intuition is that the more
frequent weighted operation trace in our graph is more trend
to appear in malicious programs.

OTWA =
∑

ei,j∈OT

IG(ei,j) · P(ei,j) (7)

All of the above mentioned global topology features
will be used to search similarities between non-labeled and
pre-labeled instances in the next subsection.

B. SIMILARITY SEARCHING
To search the similarities between programs, we use Manhat-
tan Distance to measure the distance between programs. The
shorter distance is, the higher similarity is.

In this paper, we first use unity-based normalization to
bring all values into the range [0,1] for each feature dimen-
sion, then use a simple similarity searching method and a
simple distance equation to present the effectiveness and
efficiency of our global topology features. LetDist(Featuresi,
Featuresj) be theManhattan distance between two programs i
and j, according to Eq. (8), where Featuresi and Featuresj are
the topology feature sets (vectors) of two programs, Nfeature
is the number of features in the feature set and fi,k is the kth

51968 VOLUME 6, 2018

J. Zhang et al.: Dalvik Opcode Graph-Based Android Malware Variants Detection Using Global Topology Features

features in the feature set of program i.

Dist(Featuresi,Featuresj) =
Nfeature∑
k=1

(fi,k − fj,k) (8)

For each target, we detect it by searching its similarities
with pre-labeled samples in training sets, and then find the
most similar (minimum distance) pre-labeled sample. The
label of the sample is also the label of the target.

V. EVALUATIONS
In this section, we present several experiments to show the
performance of our approach. At the beginning, we present
the experiment setup, the data set and the validation. And
then, we discuss the performance of our approach and show
that our approach can perform better by comparing with
the state-of-art methods. Finally, we present a differential
analysis of our topology features to explain the reasons why
these topology features can be used to achieve such high
performance.

A. SETUP, DATA SET AND VALIDATION
We implement our experiments on one computer. The version
of its CPU is Intel i5-3470 @ 3.20GHz, the RAM is 16.0GB
and the operation system is Linux Ubuntu 16.0. Our approach
is developed by Java programming language.

Two data sets are considered in performance analysis of
our approach for Android malware variants detection: the
Android malware data set and the Android benign data set.
To be close to real-life environment, the Android benign
binary data set is downloaded from Google Play [4]. The
Android malware instances are collected fromDrebin [7] and
MobileSandbox project [27]. Our final dataset contains 5550
Android benign apps and 5560 Android malware instances.
As is shown in Table 1. For opcode based approaches, we use
Dedexer [3] to disassemble Android instances, and obtain
their dalvik opcode sequences.

TABLE 1. The Android malware data set.

In order to evaluate the performance of our approach,
we use k-fold cross validation in the experiments and choose
the average values as our results. To avoid experimental
biases, the pre-labeled malicious data sets and pre-labeled
legitimate data sets have the same size. For similarity
comparing, we randomly choose 2000 malware samples
and 2000 benign samples as pre-labeled samples from our
malware data sets and benign data sets and treat the other
samples in our data sets as unknown targets.

FIGURE 4. An example of the opcode sequences in .ddx file.

For each malware and benign samples as inputs, we first
write a script to automatically decompress the .apk files to
the .dex files, and then automatically disassemble the .dex
file to the .ddx file by using dedexer mentioned before. The
next we obtain the opcode sequences from the .ddx file, such
as ‘‘sget-object, invoke-virtual,’’, as shown in Figure 4.
The opcode sequences will be later sent to built the opcode
graph according to the co-occurrence relationships between
sequential opcodes. Since the .ddx files have a standard for-
mat, we can easily extract the opcode sequences and build
the Dalvik opcode graph in the same way. The Dalvik opcode
graph is applicable for all .ddx files.

B. STATE-OF-ART METHODS FOR PERFORMANCE
COMPARISON
We compare our approach with several machine learning
(deep learning) methods for dalvik opcode based Android
malawre detection, such as Softmax, Back Propagation Neu-
ral Networks (BPNN), Support VectorMachine (SVM), Con-
volutional neural networks (CNN) with N-tuple opcodes
(N = 2), similar to [6], [25], etc. For all of these methods
(include our method) in the experiments, we do not abandon
any features to retain more information and we use these
learning methods for automatic training, weighting and clas-
sifying. We also re-implement several state-of-art approaches
such as [8], [14], etc. Puerta et al. [14] proposed to adopt sev-
eral machine learning methods to classify the Dalvik opcode
vectors. Kang et al. [8] presented an n-opcode analysis based
approach that utilizes machine learning to detect Android
malware. The benchmarks we used for performance com-
parison include classification accuracy, detection precision,
detection recall, detection false positive rate, detection time
cost and disassembly time cost.

C. PERFORMANCE COMPARISON OF SEVERAL DALVIK
OPCODE BASED APPROACHES
To demonstrate that our approach is effective and effi-
cient, we implement our approach and the other state-of-art

VOLUME 6, 2018 51969

J. Zhang et al.: Dalvik Opcode Graph-Based Android Malware Variants Detection Using Global Topology Features

TABLE 2. The average performance comparison with several machine learning (deep learning) methods for Android malware detection.

TABLE 3. The average performance comparison with the state-of-art approaches for Android malware detection.

methods for performance comparisons. We also adopt SVM
to classify malware and benign based on our global topol-
ogy features to show that the topology features are also
easier to classify. The classification accuracy is according
to Eq. (9). TPR is the true positive rate (malware detection
recall) according to Eq. (10), where TP is the number of
malware cases which are correctly classified and FN is the
number of malware cases which are misclassified as benign
binaries. TNR is the true negative rate, as shown in Eq. (11),
where FP is the number of benign cases which are incorrectly
classified asmalware binaries and TN is the number of benign
binaries which are correctly classified. FPR is the false pos-
itive rate and Precision is the malware detection precision,
as shown in Eq. (12) and Eq. (13).

accuracy =
TPR+ TNR

2
(9)

TPR =
TP

TP+ FN
(10)

TNR =
TN

FP+ TN
(11)

FPR =
FP

FP+ TN
(12)

Precision =
TP

TP+ FP
(13)

As shown in Table 2, the experimental results show that:
1) By using a simple similarity searching method with the
6 global topology features, our approach performs well in
terms of classification accuracy, detection precision, recall,
FPR, training speed as well as detection speed by comparing
with the other state-of-art methods. Our approach does not
cost any training time but only search the maximum simi-
larities. The results of SVM method based on our topology
features show that the topology features can also be fitted to
classification model. 2) The N-tuple opcode contains more
information compared with single opcode, it needs stronger
classifier, otherwise it is easier to lose classification ability.
To address such problem, one solution is to select a few

features to reduce the number of dimensions to match
machine learning methods, however, in this way it lose much
more original information [37]. To maintain the accuracy,
the N-tuple opcodes based methods need much more features
while sacrificing the training and classification speed. 3) The
BPNN method fails at training and classification, because
the number of dimensions of the 2-tuple opcode is too large,
the initial weights are random values, so the sum of weighted
features to different sigmoid units are very close that the
sigmoid units are hard to activate. 4) The CNN method cost
several days to train the 2-tuple opcode from thousands of
samples in our server machine, which is hard to implement in
practice while facing large scale of Android malware.

As shown in Table 3, the experimental results show that
our approach can significantly improve the overall perfor-
mance by comparing the state-of-art approaches for Android
malware detection. In terms of accuracy, our approach and
BooJoong et al.′ approach (SVM, 2-opcode) perform better.
However, BooJoong et al.′ approach costs too much training
and detection time cost due to its heavy feature dimensions.
BooJoong et al.′s method (SVM, 2-opcode) performs better
than Puerta et al.′s methods because their features contain
more information, however, as a trade-off, their method costs
much more time consumption. The accuracy of NB method
(BooJoong et al.) is reduced because it assumes that the fea-
tures are independent of each other, however the assumption
is not really true.

D. ROBUSTNESS ANALYSIS OF OUR TOPOLOGY
FEATURES BASED APPROACHES
Since training proportion Ntraining

Ntotal
is sensitive to the perfor-

mance of supervised methods, it is also an important factor
which should be considered (where Ntraining is the number of
training samples and Ntotal is the number of total samples,
and Ntotal−Ntraining

Ntotal
is the detection proportion). To show that

our approach is robust, we implement our approach to search
similarities in different training proportions of the whole data
sets. As show in Figure 5, the experimental results show that

51970 VOLUME 6, 2018

J. Zhang et al.: Dalvik Opcode Graph-Based Android Malware Variants Detection Using Global Topology Features

FIGURE 5. The robustness analysis of our topology features based
approaches.

TABLE 4. The comparisons of global topology features between Android
malware and benign.

our approach can perform well in different training propor-
tions. We also implement our global topology features in
SVM classifier for Android malware detection. The results
show that our topology features are robust both in similarity
searching and SVM classification.

E. DIFFERENTIAL ANALYSIS OF GLOBAL TOPOLOGY
FEATURES BETWEEN ANDROID MALWARE AND BENIGN
We analyze the difference of the global topology features in
malware and benign to show that the features of malware
and benign are very different. Such difference reflects the
high-level characteristics of malware. As shown in Table 3,
the results of comparisons show that: In our Dalvik opcode
graph. 1) The average number of nodes and the average
centrality of malware show that the operations in malware are
more concerntrated. 2) The average value of edges, the aver-
age probability density of graph and the average weighted
activity of graph show that the co-occurrence relationships
between operations in malware are more frequent. 3) The
results of the average weighted distance of graph show that
the operations and the co-occurrence frequencies in benign
are more average.

We present the distributions of the topology features
between malware and benign, as shown in Figure 6. The
results show a significant gap between malware and benign.
The result of Ctr / NB shows that most of central nodes
are in malicious programs. The other results also show the

significant difference of distributions between malware and
benign. From the results, the distributions of benigns aremore
centralized, because most of behaviours in benign are normal
while malicious programs will have some special behaviours
such as registry, trigger, etc.

VI. RELATED WORKS
Recent researches tend to use machine learning (includes
deep learning) as well as graph computing methods to detect
malware and its variants.

A. MACHINE LEARNING BASED MALWARE DETECTION
METHODS
For machine learning based approaches, varied features are
extracted from programs by using static analysis and dynamic
analysis [35].

1) OPCODE BASED STATIC ANALYSIS
Some of them prefer to adopt opcode based static analysis.
These opcodes will be embedded in a 1-D or 2-D vector and
then sent to classifiers later to classify malicious programs
and legitimate ones. Kang et al. [8] presented an n-opcode
analysis based approach that utilizes machine learning to
detect Android malware. With their n-opcode features, they
found that Support Vector Machine (SVM) achieves best
performance. Puerta et al. [14] proposed to adopt several
machine learning methods to classify the Dalvik opcode
vectors. McLaughlin et al. [24] used an opcode embedding
matrix for representation and used a NGram based CNN
model [20] to train and classify Android Dalvik opcode
sequence. However, their embedding matrix is inefficient
while the sequence is very long. Zhang et al. [36] proposed to
convert opcodes into 2-D matrix, and adopted convolutional
neural networks (CNN) to train the 2-D opcode matrix for
malware recognition. Yan et al. [19] proposed to convert
Android opcode into 2-D gray image with fixed size and
adopt CNN to train and detect Android malware.

2) DYNAMIC ANALYSIS
Another prefer to use dynamic analysis. Massarelli et al. [23]
proposed to extract features on resource consumption through
fluctuation analysis and correlation and employ SVMmethod
to classify malware into families. Yan et al. [34] proposed a
method in which both the Java-level and OS level semantics
are reconstructed seamlessly and simultaneously. By stay-
ing out of the execution environment and moreover, privi-
lege based attacks can be detected. This approach also has
a drawback of having very limited code coverage. Enck
et al. [15] proposed to simultaneously track multiple sources
of sensitive data and identify the data leakage. Data from
privacy sensitive sources are automatically labeled (tainted)
and labels are transitively applied as sensitive data moves
through interprocess messages, program variables and files.
Burguera et al. [9] collected traces from a large number of
real users based on crowd-sourcing and then clustered these
traces using k-means to detect malware. Shabtai et al. [26]

VOLUME 6, 2018 51971

J. Zhang et al.: Dalvik Opcode Graph-Based Android Malware Variants Detection Using Global Topology Features

FIGURE 6. The distribution of Ctr / NB, EV / NB, GPD / NB, GWD / NB, OTWA / NB between malware and benign.

used machine learning algorithms to continuously monitor
device state to differentiate between benign and malicious
programs.

B. GRAPH BASED MALWARE DETECTION METHODS
Some researchers prefer to adopt graph based methods for
malware detection, such as control flow graph, data flow
graph, file-file graph, etc.

1) CONTROL DATA FLOW GRAPH
Their researches extract the control flow or data flow of
API calls or system calls to build graph and then use
graph matching or subgraph similarity searching methods to
label the unknown samples according to known executables.
Ming et al. [16] proposed to construct frequent subgraphs of
API calls to represent the common behaviors ofmalware sam-
ples that belong to the same family. Tian et al. [31] proposed
to utilize class-level dependence graph and method-level call
graph to represent an app, and extract static behaviour fea-
tures to detect Androidmalware. Cesare et al. [10] proposed a
technique that performs similarity searching of sets of control
flow graphs.Martín et al. [22] used third-party calls to bypass
the effects of obfuscation, and then combined clustering
and multi-objective optimisation to classify third-party call
groups. Kolbitsch et al. [21] proposed to build a graph of data
flows between the system calls, and then use graph matching
for malware detection.

2) FILE VIA FILE GRAPH
These approaches extract the relationships between files and
other entities, such as hosts, domains, etc. to build a graph,
and then use belief propagation to label the unknown nodes
according to the labeled nodes. Tamersoy et al. [29] pro-
posed to generate file via file relationships according to the

interactions between files andmachines, and then adopt belief
propagation methods to assign scores to every unlabeled file
node. If the score of a file node is bigger than a threshold,
then the file will be treated as a malicious file. Similar to [13].
Stringhiniq et al. [28] proposed a semi-supervised Bayesian
label propagation to propagate the reputation of known files
across a download graph that depicts file delivery networks
(both legitimate and malicious).

VII. DISCUSSION
Static analysis based malware detection methods always rely
on disassembly tools and other reverse engineering tech-
niques. If a malicious sample is encrypted or compressed by
packers, the disassembly tools cannot work. This problem
limits the static analysis based malware detection methods in
some situations.

However, in most cases, packers can be unpacked by
unpacking techniques such as [33], which recovers original
software sources. Since packed softwares have to unpack
their inner original codes before executing the original codes,
so that unpacking techniques always have a chance to get
the original codes. For novel packing techniques, unpacking
is often a dynamic process making effective static analy-
sis against novel malware a hybrid approach. Additionally,
snapshots of process images can be taken at runtime, thus
avoiding the most common packing issues and can be used
to statically identify if those processes belong to a known
malware family [10].

In addition, dynamic analysis based methods may obtain
software behaviours in runtime, but also face other limita-
tions. The malicious samples can bypass detections by hiding
their malicious behaviours until satisfying some conditions,
such as non-virtual machine, burst point, etc. There does
not exist a perfect technique which can break all of the
limitations.

51972 VOLUME 6, 2018

J. Zhang et al.: Dalvik Opcode Graph-Based Android Malware Variants Detection Using Global Topology Features

VIII. CONCLUSION
In this paper, we propose a novel Android malware detec-
tion approach which achieves high accuracy and speed.
In our approach, we first propose a weighted probability
graph of Dalvik opcodes and then prune a part of edges to
reduce the computation complexity. After pruning, we extract
a few topology features as representation of programs.
By searching the similarities between the target program and
pre-labeled samples with these features, we decide the target
program is malicious if it is maximally similar to one of
pre-labeled malware.

In the future, our technique can not only be used to detect
malicious program, but can also be used to detect if a system
is under threat by analyzing the interactions between system
events, such as processes, files, sockets, etc.

REFERENCES
[1] (2014). Mobile Malware. [Online]. Available: http://www.forbes.com/

sites/gordonkelly/2014/03/24/report-97-of-mobile-malware-is-on-android
-this-is-the-easyway-you-stay-safe

[2] (2016). IDC: Smartphone OS Market Share. [Online]. Available: http://
www.idc.com/promo/smartphone-market-share/os

[3] (2017). Dedexer. [Online]. Available: http://dedexer.sourceforge.net
[4] (2017). Google Play. [Online]. Available: http://vxheaven.org/vl.php
[5] (2018). Dalvik Opcodes. [Online]. Available: http://pallergabor.uw.hu/

androidblog/dalvik opcodes.html
[6] A. Ali-Gombe, I. Ahmed, G. G. Richard, III, and V. Roussev, ‘‘OpSeq:

Android malware fingerprinting,’’ in Proc. 5th ACM Program Protection
Reverse Eng. Workshop (PPREW), 2015, p. 7.

[7] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and K. Rieck,
‘‘DREBIN: Effective and explainable detection of Android malware in
your pocket,’’ inProc. 21st Annu. Netw. Distrib. Syst. Secur. Symp. (NDSS),
2014, pp. 1–12.

[8] B. Kang, S. Y. Yerima, K. Mclaughlin, and S. Sezer, ‘‘N-opcode analy-
sis for Android malware classification and categorization,’’ in Proc. Int.
Conf. Cyber Secur. Protection Digit. Services (Cyber Secur.) Jun. 2017,
pp. 1–7.

[9] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani, ‘‘Crowdroid: Behavior-
based malware detection system for Android,’’ in Proc. ACM Workshop
Secur. Privacy Smartphones Mobile Devices, 2011, pp. 15–26.

[10] S. Cesare, Y. Xiang, and W. Zhou, ‘‘Control flow-based malware variant-
detection,’’ IEEE Trans. Depend. Sec. Comput., vol. 11, no. 4, pp. 307–317,
Jul./Aug. 2014.

[11] D. H. P. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and C. Faloutsos,
‘‘Polonium: Tera-scale graphmining and inference formalware detection,’’
in Proc. SIAM Int. Conf. Data Mining, 2011, pp. 131–142.

[12] K. Chen et al., ‘‘Finding unknown malice in 10 seconds: Mass vetting
for new threats at the Google-Play scale,’’ in Proc. Usenix Conf. Secur.
Symp. (USENIX), 2015, pp. 659–674.

[13] L. Chen, W. Hardy, Y. Ye, and T. Li, ‘‘Analyzing file-to-file relation
network in malware detection,’’ in Proc. 16th Int. Conf. Web Inf. Syst.
Eng. (WISE), 2015, pp. 415–430.

[14] J. G. de la Puerta, B. Sanz, I. Santos, and P. G. Bringas, ‘‘Using Dalvik
opcodes for malware detection on Android,’’ Logic J. IGPL, vol. 25, no. 6,
pp. 938–948, 2017.

[15] W. Enck et al., ‘‘Taintdroid: An information-flow tracking system for
realtime privacy monitoring on smartphones,’’ ACM Trans. Comput. Syst.,
vol. 32, no. 2, p. 5, 2014.

[16] M. Fan et al., ‘‘Android malware familial classification and representative
sample selection via frequent subgraph analysis,’’ IEEE Trans. Inf. Foren-
sics Security, vol. 13, no. 8, pp. 1890–1905, Aug. 2018.

[17] H. Gascon, F. Yamaguchi, D. Arp, and K. Rieck, ‘‘Structural detection of
Android malware using embedded call graphs,’’ in Proc. ACM Workshop
Artif. Intell. Secur. (AISec), 2013, pp. 45–54.

[18] H. Huang et al., ‘‘A large-scale study of Android malware development
phenomenon on public malware submission and scanning platform,’’ IEEE
Trans. Big Data, to be published, doi: 10.1109/TBDATA.2018.2790439.

[19] J. Yan, Y. Qi, and Q. Rao, ‘‘Detecting malware with an ensemble method
based on deep neural network,’’ Secur. Commun. Netw., vol. 1, pp. 1–16,
Feb. 2018, Art. no. 7247095.

[20] N. Kalchbrenner, E. Grefenstette, and P. Blunsom. (Apr. 2014). ‘‘A con-
volutional neural network for modelling sentences.’’ [Online]. Available:
https://arxiv.org/abs/1404.2188

[21] C. Kolbitsch, P. M. Comparetti, C. Kruegel, E. Kirda, X. Y. Zhou, and
X. Wang, ‘‘Effective and efficient malware detection at the end host,’’ in
Proc. 18th USENIX Secur. Symp., 2009, pp. 351–366.

[22] A. Martín, H. D. Menéndez, and D. Camacho, ‘‘MOCDroid: Multi-
objective evolutionary classifier for Android malware detection,’’ Soft
Comput., vol. 21, no. 24, pp. 7405–7415, 2017.

[23] L. Massarelli, L. Aniello, C. Ciccotelli, L. Querzoni, D. Ucci,
and R. Baldoni. (Sep. 2017). ‘‘Android malware family classifica-
tion based on resource consumption over time.’’ [Online]. Available:
https://arxiv.org/abs/1709.00875

[24] N. McLaughlin, J. M. del Rincon, B. Kang, and S. Yerima, ‘‘Deep
Android malware detection,’’ in Proc. ACM Conf. Data Appl. Secur. Pri-
vacy (CODASPY), 2017, pp. 301–308.

[25] I. Santos, F. Brezo, X. Ugarte-Pedrero, and P. G. Bringas, ‘‘Opcode
sequences as representation of executables for data-mining-based
unknown malware detection,’’ Inf. Sci., vol. 231, no. 10, pp. 64–82, 2013.

[26] A. Shabtai, Y. Elovici, U. Kanonov, Y.Weiss, andC. Glezer, ‘‘‘Andromaly’:
A behavioral malware detection framework for Android devices,’’ J. Intell.
Inf. Syst., vol. 38, no. 1, pp. 161–190, 2012.

[27] M. Spreitzenbarth, E. Florian, S. Thomas, C. F. Felix, and J. Hoffmann,
‘‘Mobile-sandbox: Looking deeper into Android applications,’’ in Proc.
28th Int. ACM Symp. Appl. Comput. (SAC), 2013, pp. 1808–1815.

[28] G. Stringhini, Y. Shen, Y. Han, and X. Zhang, ‘‘Marmite: Spreading
malicious file reputation through download graphs,’’ in Proc. 33rd Annu.
Comput. Secur. Appl. Conf. (ACSAC), 2017, pp. 91–102.

[29] A. Tamersoy, K. Roundy, and D. H. Chau, ‘‘Guilt by association: Large
scale malware detection by mining file-relation graphs,’’ in Proc. ACM Int.
Conf. Knowl. Discovery Data Mining (SIGKDD), 2014, pp. 1524–1533.

[30] R. Tarjan, ‘‘Depth-first search and linear graph algorithms,’’ in Proc. 12th
Annu. Symp. Switching Automata Theory (SWAT), Oct. 1971, pp. 114–121.

[31] K. Tian, D. D. Yao, B. G. Ryder, G. Tan, and G. Peng, ‘‘Detec-
tion of repackaged Android malware with code-heterogeneity fea-
tures,’’ IEEE Trans. Depend. Sec. Comput., to be published, doi:
10.1109/TDSC.2017.2745575.

[32] D.-J. Wu, C.-H. Mao, T.-E. Wei, H.-M. Lee, and K.-P. Wu, ‘‘DroidMat:
Android malware detection through manifest and API calls tracing,’’ in
Proc. 7th Asia Joint Conf. Inf. Secur., Aug. 2012, pp. 62–69.

[33] L. Xue, X. Luo, L. Yu, S. Wang, and D. Wu, ‘‘Adaptive unpacking of
Android apps,’’ in Proc. IEEE/ACM 39th Int. Conf. Softw. Eng. (ICSE),
May 2017, pp. 358–369.

[34] L.-K. Yan and H. Yin, ‘‘DroidScope: Seamlessly reconstructing the OS and
Dalvik semantic views for dynamic Android malware analysis,’’ in Proc.
USENIX Secur. Symp., 2012, pp. 569–584.

[35] R. Zachariah, K. Akash, M. S. Yousef, and A. M. Chacko, ‘‘Android
malware detection a survey,’’ inProc. IEEE Int. Conf. Circuits Syst. (ICCS),
Dec. 2017, pp. 238–244.

[36] J. Zhang, Z. Qin, H. Yin, L. Ou, and Y. Hu, ‘‘IRMD: Malware variant
detection using opcode image recognition,’’ in Proc. 23rd IEEE Int. Conf.
Parallel Distrib. Syst. (ICPADS), Dec. 2016, pp. 1175–1180.

[37] J. Zhang, Z. Qin, H. Yin, L. Ou, S. Xiao, and Y. Hu, ‘‘Malware variant
detection using opcode image recognition with small training sets,’’ in
Proc. 25th IEEE Int. Conf. Comput. Commun. Netw. (ICCCN), Aug. 2016,
pp. 1–9.

JIXIN ZHANG received the B.S. degree in math-
ematics and the M.S. degree in computer sci-
ence and technology from the Wuhan University
of Technology in 2007 and 2011, respectively.
He is currently pursuing the Ph.D. degree with
the College of Information Science and Engi-
neering, Hunan University, and doing research
with the Department of Information Engineering,
The Chinese University of Hong Kong. His pri-
mary researches focus on system security, machine

learning, and knowledge graph.

VOLUME 6, 2018 51973

http://dx.doi.org/10.1109/TBDATA.2018.2790439
http://dx.doi.org/10.1109/TDSC.2017.2745575

J. Zhang et al.: Dalvik Opcode Graph-Based Android Malware Variants Detection Using Global Topology Features

ZHENG QIN received the B.S. degree from the
Wuhan University of Technology in 1991 and
the Ph.D. degree in computer software and the-
ory from Chongqing University, China, in 2001.
Then, he was with industry from 2001 to 2005.
He is currently a Professor of computer science
and technology with Hunan University, China. His
main interests are information security, computer
network, and big data. He is a member of the China
Computer Federation and ACM.

KEHUAN ZHANG received the B.S. and M.E.
degrees from Hunan University in 2001 and
2004, respectively, and the Ph.D. degree from
The Chinese University of Hong Kong (CUHK)
in 2012. He was with industry from 2004 to
2007 before starting his Ph.D. Program at Indiana
University, Bloomington. During his Ph.D. Pro-
gram, he was an Intern at the IBM T. J. Watson
Research Center in 2010. He is currently a Pro-
fessor with the Department of Information Engi-

neering, CUHK. His primary research interests are: security and privacy
in computer network, Web, clouds, smart phones, embedded systems and
other distributed computing systems. He has published several high quality
papers on all of the four top conferences in network and system security area,
including IEEE Oakland, ACM CCS, USENIX Security, and NDSS. He is
also an active external reviewer of these top conferences.

HUI YIN received the B.S. degree in computer
science from Hunan Normal University, China,
in 2002, the M.S. degree in computer software
and theory from Central South University, China,
in 2008, and the Ph.D. degree from the College of
Information Science and Engineering, Hunan Uni-
versity, China, in 2018. He is currently anAssistant
Professor with the College of Applied Mathemat-
ics and Computer Engineering, Changsha Univer-
sity, China. His interests are information security,

privacy protection, and applied cryptography.

JINGFU ZOU received the B.S. degree from
the Xi’an University of Finance and Economics
in 2015 and the M.E. degree in computer tech-
nology from Hunan University. His main research
interests are knowledge graph and personalized
recommendation.

51974 VOLUME 6, 2018

	INTRODUCTION
	CONTRIBUTIONS
	PAPER ORGANIZATIONS

	OVERVIEW OF OUR APPROACH
	DALVIK OPCODE GRAPH CONSTRUCTION & PRUNING
	DALVIK OPCODE GRAPH CONSTRUCTION
	DALVIK OPCODE GRAPH PRUNING

	GLOBAL TOPOLOGY FEATURES EXTRACTION & SIMILARITY SEARCHING
	GLOBAL TOPOLOGY FEATURES EXTRACTION
	SIMILARITY SEARCHING

	EVALUATIONS
	SETUP, DATA SET AND VALIDATION
	STATE-OF-ART METHODS FOR PERFORMANCE COMPARISON
	PERFORMANCE COMPARISON OF SEVERAL DALVIK OPCODE BASED APPROACHES
	ROBUSTNESS ANALYSIS OF OUR TOPOLOGY FEATURES BASED APPROACHES
	DIFFERENTIAL ANALYSIS OF GLOBAL TOPOLOGY FEATURES BETWEEN ANDROID MALWARE AND BENIGN

	RELATED WORKS
	MACHINE LEARNING BASED MALWARE DETECTION METHODS
	OPCODE BASED STATIC ANALYSIS
	DYNAMIC ANALYSIS

	GRAPH BASED MALWARE DETECTION METHODS
	CONTROL DATA FLOW GRAPH
	FILE VIA FILE GRAPH

	DISCUSSION
	CONCLUSION
	REFERENCES
	Biographies
	JIXIN ZHANG
	ZHENG QIN
	KEHUAN ZHANG
	HUI YIN
	JINGFU ZOU

