
All Your VMs are Disconnected: Attacking Hardware
Virtualized Network

Zhe Zhou1,3, Zhou Li2, Kehuan Zhang1,3

Department of Information Engineering, Chinese University of Hong Kong1

ACM Member2
CUHK Shenzhen Research Institute3

{zz113, khzhang}@ie.cuhk.edu.hk1, lzcarl@gmail.com2

ABSTRACT
Single Root I/O Virtualization (SRIOV) allows one physi-
cal device to be used by multiple virtual machines simulta-
neously without the mediation from the hypervisor. Such
technique significantly decreases the overhead of I/O virtu-
alization. But according to our latest findings, in the mean-
time, it introduces a high-risk security issue that enables an
adversary-controlled VM to cut off the connectivity of the
host machine, given the limited filtering capabilities pro-
vided by the SRIOV devices.

As showcase, we demonstrate two attacks against SRIOV
NIC by exploiting a vulnerability in the standard network
management protocol, OAM. The vulnerability surfaces be-
cause SRIOV NICs treat the packets passing through OAM
as data-plane packets and allow untrusted VMs to send and
receive these packets on behalf of the host. By examin-
ing several off-the-shelf SRIOV NICs and switches, we show
such attack can easily turn off the network connection within
a short period of time. In the end, we propose a defense
mechanism which runs on the existing hardware and can be
readily deployed.

Keywords
SRIOV; Virtualization; OAM

1. INTRODUCTION
Virtualization techniques are important to today’s com-

puting infrastructure like cloud. They enable hardware re-
sources to be shared among different users through running
heterogeneous virtual machines (VMs). They also provide
secure computing environment to users based on the strong
guarantees of isolation. In the beginning, virtualization suf-
fered from significant runtime performance penalty. As one
main cause, a lot of computation has to be taken in order to
emulate the access to I/O devices, which becomes the major
bottleneck. To address this issue, a suite of I/O virtualiza-
tion techniques were proposed to reduce such unnecessary
overhead.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CODASPY’17, March 22-24, 2017, Scottsdale, AZ, USA
© 2017 ACM. ISBN 978-1-4503-4523-1/17/03. . . $15.00

DOI: http://dx.doi.org/10.1145/3029806.3029810

The initial I/O virtualization design required the partici-
pation of the hypervisor who emulates I/O devices and acts
as a bridge between VMs and I/O devices [27]. Such de-
sign is called para-virtualization and unnecessarily consumes
a lot of extra computing resources due to the replication
of numerous I/O operations. In recent years, a new tech-
nique, Single Root I/O Virtualization (SRIOV) was devel-
oped and is quickly gaining tractions. This technique can
partition the hardware into multiple compartments and di-
rectly assign each compartment to a VM [11, 26, 31, 21]. As
such, the hypervisor is removed from the I/O process path
and most I/O operations cab achieve nearly bare-metal per-
formance [20, 18, 15, 28]. According to VMware’s recent
research, the SRIOV passthrough mode NIC virtualization
achieves 99.8% throughput of a native machine, while less
than 50% for para-virtualization. In terms of latency, in av-
erage, SRIOV passthrough mode is only 13% higher than
a native machine while the number is 107.7% for the para-
virtualized mode [30].

Meanwhile, the security of SRIOV was studied since the
very beginning. In principle, an SRIOV device should not be
directly configured by a VM, as the VM can be easily con-
trolled by an attacker. Therefore, the functions provided by
the device are separated into two groups under control-plane
and data-plane, and by assigning only data-plane functions
to the VM. Control-plane functions are assigned to the hy-
pervisor and all requests from the VM regarding configu-
rations are firstly routed to the hypervisor for sanitization.
Under this setting, the security requirements seem to be sat-
isfied.

However, such design is problematic under today’s com-
plicated network environment when numerous network pro-
tocols have to be supported. In particular, we found one net-
work protocol, Ethernet OAM (Operations, Administration,
Maintenance), could cause severe disruption to the network
environment if abused by the adversary. To launch the at-
tack, the adversary controlling a VM simply needs to send 3
OAM packets to a multicast address. Then, the port con-
nected by the host will be closed, causing other VMs and
the hypervisor residing on the same host all disconnected.
This kind of attack could lead to much worse consequence
when numerous VMs are controlled by attackers.

This vulnerability is a result of the combination of mul-
tiple factors. First, the switch can be configured to auto-
matically turn off the port when receiving an error signal
from the entity at the other end. This design is reasonable
when the other end is a single host but questionable when
multiple untrusted VMs run on the end host. Second, the

249

OAM packet is considered as a data-plane packet as
there is no command in the packet content, which bypasses
checks performed by the hypervisor. Though this issue is
not limited to SRIOV devices, the design principle of the
SRIOV (data transparent to hypervisor) makes it very
difficult to fix. Third, the existing SRIOV networking
devices have rather limited hardware-based filtering ca-
pabilities regarding the packets sent to multicast addresses.

To demonstrate the severity of this vulnerability, we showed
a new attack against SRIOV NIC (Network Interface Card)
by abusing a VM on the same host. We overcame several
obstacles, including adding the VM’s address into the re-
cipient list of multicast packets and finishing the handshake
process of OAM, and showed that it is possible to achieve
the goal of disconnecting the host. We found that the attack
can immediately take effect but recovering from the failure
requires considerable manual efforts. Then, we developed a
defense mechanism based on our observation that the legiti-
mate VM does not need to initiate OAM conversations. The
defense requires a small modification to the NIC driver to
prevent VM from adding itself to the recipient list of OAM
packet. As a result, the attack is thwarted since the adver-
sary cannot finish the handshake process, a required step
before sending valid OAM messages to the switch.

Next, we explored the possibilities of bypassing our basic
defense and it turns out the adversary is able to completely
skip the handshake process. By thoroughly evaluating the
OAM protocol, we found that the possible values indicat-
ing the switch configuration are within limited range. In
fact, learning the configuration can be done without go-
ing through the handshake process. By repeatedly send-
ing OAM packets with possible configuration values, the at-
tack could still succeed. As shown in our evaluation, the
switch does not check the contents of the handshake pack-
ets, which enables attackers to freely set up OAM connec-
tions and launch the attack without receiving any packet.
Considering its severity, we reported the issue to the switch
manufacture. The manufacture confirmed the vulnerability
and promised to fix it soon. In addition, as noted by the
manufacture, the relevant RFC standard does not re-
quire handshake validation and we speculate the issue
could exist in other switches as well.

At last, we explored the existing implementations of all
entities involved and found that an unused field in OAM
packets can be retrofitted to include a secret value that is
hard to be guessed by the adversary. We proposed a mitiga-
tion approach that only requires small changes to the switch
firmware and the test result showed that it is quite effective.

Contributions. The contributions of this work are sum-
marized below:

• We discovered a vulnerability on SRIOV NIC in han-
dling the OAM protocol and the multicast channel.
Such vulnerability can result in a severe consequence
where untrusted VM can cut off the physical machine’s
entire network connectivity.

• Based on this finding, we successfully launched attacks
in a virtualized environment, leveraging a flaw of the
switches shipped by a well-known manufacturer. In
fact, the cause of the flaw comes from the rough spec-
ification by the RFC OAM standard.

• We proposed a method to defend against the attack
without any modification to the physical layer of the

existing hardware. The method only requires modifi-
cation to the switch firmwares and NIC drivers. We
also set up a emulation environment to validate the
defense method.

Roadmap. Section. 2 introduces two main technologies
that are related to this work. Section. 3 describes how at-
tacker can launch the attack. Section. 4 shows a simple de-
fense that only modifies the NIC driver which is later turned
out to be not enough. Section. 5 describes an updated attack
method that can be used to counter the defense. Section. 6
analyzes the root reason of the vulnerability. Section. 7 in-
cludes a practical defense that can truly prevent attackers
from launching this kind of attack. Section. 8 describes re-
lated works and Section. 9 concludes this paper.

2. BACKGROUND
Our study reveals a critical vulnerability underlying SRIOV

devices when handling Ethernet OAM (Operations, Admin-
istration, Maintenance) packets. In this section, we briefly
describe these two technologies.

2.1 SRIOV

Hypervisor VM

Port

PF VF

PF
Driver

VF
Driver

Virtual Embedded Bridge

VM
VF

Driver

VF

...

IOMMU

Port

NIC Driver

Virtual Bridge

VM
Virtual NIC

Driver

VM
Virtual NIC

Driver

...

Hypervisor

Data Path

Configurations

SR-IOV NIC Bridged Virtual NIC

Figure 1: SRIOV NIC workflow.

Design. SRIOV was proposed by the PCI Special Inter-
est Group (PCI-SIG) to allow a PCIe device to appear as
multiple separate physical PCIe devices and be manipulated
by VMs directly. Under the traditional I/O virtualization
model, a hypervisor mediates all the flows between VMs and
I/O devices. The flows have to be multiplexed before being
forwarded to hardware. The right part of Figure 1 shows an
example of the bridged Virtual NIC. In this setting, the hy-
pervisor must virtualize software NICs (including interfaces
and ring buffers) for an VM to access network and set up
virtualized bridge to connect VM’s virtualized NICs to the
physical port. Extra CPU and memory resources are con-
sumed by hypervisor to forward the packets to the correct
destinations (software-based forwarding). The penalty ex-
acerbates when a huge volume of data has to be processed,
e.g., in 10G Ethernet network.

To the contrary, SRIOV directly assigns the logical ac-
cessing port of the hardware to VM and makes the whole
processing flow transparent to hypervisor, achieving nearly
bare-metal performance. The left part of Figure 1 illustrates

250

the processing flow through SRIOV capable NIC 1. Such NIC
integrates an efficient hardware unit called Virtual Embed-
ded Bridge (VEB) [17, 12, 13]. Flow forwarding is done by
VEB and no extra performance penalty is incurred by hy-
pervisor. To notice, VEB is not required by every SRIOV
device. But in this NIC case, it is a must-have because an
NIC has only one physical port and VEB enables the port
sharing among different VMs.

To enable the access from the upper levels, SRIOV device
offers Physical Function (PF) and Virtual Function (VF).
Each device is required to provide at least one PF and mul-
tiple VFs.

A PF is a fully featured PCIe function supported by a
hardware driver, via which its owner can fully control the
hardware device including configure its setting (control plane)
as well as performing I/O operations (data plane).

A VF has only a subset of features of PCIe function and is
supported by a driver different from PF’s. It is only allowed
to exchange data with hardware device (data-plane only).
VF is designed to be invoked by VMs and a hardware unit
IOMMU (Input output memory management unit) is built
to map a VM to a specific VF.

Take SRIOV NIC as an example. The interface controller
usually provides 63 VFs to serve up to 63 VMs simultane-
ously. NIC receives all the packets from VF, PF and devices
outside of the machine, and then passes them to its VEB.
VEB needs to route the packets to their destination, as a re-
sult it forwards them to either PF/VF of the same machine
or sends them out to other machines through network cable.

Many devices nowadays are SRIOV capable, like storage
controller, GPU and NIC. These devices have already been
widely deployed by cloud service providers (e.g., Amazon
EC2 HPC), enterprise data centers and high performance
computers (HPC) [2, 3].

Security model. A major security requirement for SRIOV
is to protect the hardware from being tampered by untrusted
parties, i.e., VMs controlled by attackers, on the host ma-
chine. In the traditional I/O virtualization model, hyper-
visor is leveraged as the guard to apply filtering rules on
the virtual bridge. For example, hypervisor can use ebta-

bles to set rules for filtering packets from VM based on the
protocol, source MAC address, or destination MAC address.
In the SRIOV model, hypervisor is removed from the path,
so, as a replacing security mechanism, SRIOV device sep-
arates its functionalities into data-plane and control-plane,
and group them into PF and VF. Then, it delegates PFs
to trusted party, usually hypervisor, and VFs to untrusted
parties, usually VMs. If the owner of VF intends to change
the hardware configuration, it has to issue a request to the
owner of PF (i.e., hypervisor). If the request is approved,
PF will be used by its owner to fulfill the requests.

Under this setting, adversary who controls VM can only
exchange data through the hardware and configuring hard-
ware is out of her reach. This security model appears to
be sound but our attack (see Section 3 and Section 5) shows
that such design is not perfect. The problem emerges due to
the ill-conceived integration of old management protocol and
new virtualized environment, and further complicates due to
the lack of finer-grained filtering capabilities on SRIOV de-
vices.

1We use the term SRIOV NIC afterwards for brevity.

2.2 Ethernet OAM
To help the network operator diagnose the network, IEEE

802 working group established IEEE 802.3ah (Ethernet in
the First Mile, EFM) protocol which supports link layer Eth-
ernet management (Ethernet OAM) and included it into the
overall standard 802.3-2008. To date, Ethernet OAM was
implemented by the majority of the network device vendors.
The features required by OAM include link discovery and
monitoring, remote fault detection and remote loopback [8].
Below, we describe the data format of OAM packet and the
handshake process within the protocol.

OAM Data Packet. As defined by the EFM protocol
family, OAM data packets are exchanged under basic 802.3
slow protocol frames, which are also called OAMPDU (OAM
Protocol Data Units). By default, OAMPDUs are transmit-
ted at limited speed, which is up to 10 packets per second.
Another restriction on OAMPDU is that it is designed to be
transmitted between two endpoints of a single link.
Even when the receiving endpoint does not support OAM,
OAMPDU cannot be relayed to other entities. To
communicate across links, support from higher-layer appli-
cations is required.

Length Field Value

6
Destination Address

Slow Protocol Address
01-80-c2-00-00-02

6 Source MAC address any
2 Type 88-09
1 Sub-type 0x03
2 Flags any
1 Code any

42-1496 Payload any
4 Check Sum any

Table 1: OAMPDU format.

Table 1 elaborates the format of OAMPDU. When the
endhost attempts to send OAMPDUs, the destination can
only be the device at the other end of the cable, e.g., switch.
Therefore, the Rx (Receive) address is a constant value (first
row in Table 1) and defined as a multicast address, while the
Tx (Transmit) address can be any valid value (second row
in Table 1). Such setting disables packet relays as required
by OAM protocol. In addition, every packet of OAMPDU
carries 15 bits of flags representing entity’s real-time status,
including the OAM connection status (4 bits, 2 bits for local
status and the other 2 bits for remote status) and emergency
link events (4 bits with each bit referring to Link Fault,
Dying Gasp, Critical Event and Link Loss).

There are 3 types of OAMPDU defined by EFM: infor-
mation OAMPDU, event notification OAMPDU and loop-
back control OAMPDU. Information OAMPDU is used to
exchange information between OAM entities, including the
process of handshaking and error reporting. In this work,
we discovered the vulnerability of SRIOV device when han-
dling information OAMPDU and we introduce its structure
here (also illustrated in Figure 2).

For an information OAMPDU, the data field in the pay-
load section contains one or more TLV (Type-length-value),
which is the container for entity configurations. The TLV
can be used to describe local entity, remote entity or be filled
with customized information. Each Local/Remote TLV is 16
bytes long and composed of 9 fields.

251

DA

SA

Type

Sub-type

Flags

Code=0x00

Payload

FCS

Local
Information TLV

Remote
Information TLV

Other
Information TLV

16

16

n

Type (0x01)

Length (0x10)

Version (0x01)

Revision

State

OAM Conf

OAMPDU conf

OUI

Vendor Specific

OAMPDU Payload TLV

Figure 2: Information OAMPDU format.

Initial
Status:

discovery

Initial
Status:

discovery

2. Check if the
setting in the

received
Information
OAMPDU is

compatible to local
settings. If so, set
status to Detect.

4. Check whether
the EFM setting in

the received
OAMPDU is

compatible to the
local setting. If so,
enter Detect state.

Figure 3: OAM handshake flow chart.

Handshake flow of information OAMPDU. Essentially,
the handshake process has to be successfully completed be-
fore actual conversation of OAM. Figure 3 illustrates this
process and the details are elaborated as follows:

1. In the beginning, the entities of the both ends set their
status to Discovery. Then, either one of them in ac-
tive mode continuously broadcasts its own configura-
tion settings through OAMPDUs to indicate the inten-
tion of setting up connection. Only a local information
TLV is contained in OAMPDU.

2. When the remote entity successfully receives the packet,
it checks if the received configurations are compatible
with its pre-defined format. If the check is passed, it
replies to the sender with an Information OAMPDU
that carries flags indicating that it is satisfied with
the configuration and changes the connection status to
Detect. The Information OAMPDU embeds both its
own information TLV (in local TLV) and the received
information (in remote TLV) into the payload.

3. After the responding OAMPDU reaches the sender,
the embedded configuration information will be checked

as well in the same compatibility checking process. If
compatibility requirement is fulfilled and the attached
configuration of the remote entity conforms to that of
the first packet issued by the sender, the sender’s sta-
tus will be switched to Detect, announcing that the
connection is successfully set up. Following that, both
entities will periodically send Information OAMPDUs
as heart-beat signal.

All other OAM functionalities are enabled after the con-
nection is set up, like link quality measurement. The most
commonly used feature is error isolation, through which the
remote entity turns the interface status to Error Down if
the entity detects the link failure by itself or receives the er-
ror report sent through that interface. This feature is very
helpful to accelerate the routing converge of the higher layers
and avoid the problematic link being clogged by the network
data. However, this feature could be turned into an attack
vector if abused by the adversary, i.e., to disconnect other
legitimate hosts sharing the same network, and our attack
demonstrates this is feasible.

3. ATTACK
In this section, we elaborate how we leverage the OAM

protocol to attack the SRIOV device and disconnect all VMs
and the hypervisor linked to it. We first describe the adver-
sary model and attacker’s motivation. Then, we show the
details of the attack and evaluate the attack effectiveness.

3.1 Adversary Model
We assume the adversary is targeting the network infras-

tructure of a cloud service, which could be either public
cloud (like Amazon EC2) or private cloud deployed within
an organization. Attacker’s goal here is to disrupt the service
operation. The computer of the cloud service runs multiple
VMs connected to a switch. The NIC of the computer is
SRIOV capable and the feature is already enabled. Each
VM on the machine is assigned with an NIC VF to allow
direct access to network consisting of a switch that supports
OAM protocol. .

Comparing to controlling hypervisor or switch for the at-
tack purpose, obtaining access to the VMs is a more at-
tainable goal. In public cloud, the adversary could rent a
VM and issue malfeasant configuration requests. In private
cloud, attacker could exploit the vulnerability of a less pro-
tected VM and take the full control. As described later in
Section 3, by just issuing carefully crafted OAMPDU from
an attacker-controlled VM to SRIOV NIC of the host, all the
network connections between the VMs and the hypervisor
to the switch will be terminated, causing network failures
hard to recover. Given that a cloud host-machine usually
runs many VMs at the same time, the damage to the users
or customers could be tremendous. Since SRIOV devices are
widely deployed by cloud services and these devices are usu-
ally off-the-shelf, the number of cloud services under threat
is potentially very large. In addition, our attack does not
break the isolation mechanisms of VM-to-VM and VM-to-
hypervisor, making prevention very difficult.

We also assume the administrator follows the security
guidance of SRIOV, under which PF is controlled by benign
hypervisor and VF is delegated to untrusted VMs. While
the attacker could request hypervisor to adjust settings that
are exposed to her, hypervisor can easily reject such illegal

252

requests by enforcing the standard detection logic. In con-
trast, our attack only leverages VF to communicate with
the host NIC and all the checks from the hypervisor are
bypassed.

A recent work by Smolyar et al. has shown that SRIOV-
capable NIC is vulnerable to DoS attack launched by VM [24].
By sending illegal flow control packets, the performance of
the network is significantly dropped, e.g., 250% increase of
network latency. Comparing to that attack, ours could cause
much more severe consequence - disconnecting the entire
network connections.

3.2 Attack Method
Attack Overview. Our attack exploits the error isola-
tion feature provided by OAM protocol. As described in
Section 2.2, an entity could send an information OAMPDU
packet to the linked switch to indicate if there is a link fault.
Receiving this signal, the switch could cut off the connec-
tion of the host machine. This feature is innocuous when the
sender is a hypervisor: even if the hypervisor is controlled
by attacker, sending this packet only disconnects itself. The
attack cannot be easily launched if virtualization is realized
through software bridges, because hypervisor can easily fil-
ter out OAM packets. However, damage could be caused
when it is sent by an attacker-controlled VM, as all other
VMs and their hypervisor sharing the same NIC would be
disconnected while the hypervisor is agnostic.

While it is assumed that the sender reports only after de-
tecting the link error, such assumption is not guaranteed.
VM could fake a link fault message and there is no mecha-
nism in place to check its authenticity. Though error report-
ing is supposed to be the responsibility of the hypervisor, we
suspected VM could undertake this task as well. We tested
such hypothesis by sending the OAMPDU packet through
VM and discovered that VEB treats the packet as a normal
multicast packet (data-plane packet) and forwards it to the
remote switch. To complete the error reporting process, a
handshake has to be completed ahead. Again, this is achiev-
able by VM: VM can register its address as the destination
address of the OAM protocol and receive all the OAMPDUs
sent by the switch. Below, we elaborate how the attack can
be launched.

Attack Implementation. Our attack takes two steps: the
first step is to set up an OAM connection and the second step
is to send the heart beat packet with the fault flag toggled.

Attacker could set up the OAM connection using raw
socket and inject crafted packets that accord to the OAM
handshaking format. By setting the destination address to
a multicast address 01:80:C2:00:00:02 (see Section 2.2), the
packet will be sent out by the NIC of the host and reach
the switch. However, receiving the packet and completing
the handshake process are not trivial for VM: by default,
the responding packet is also sent to the same multicast ad-
dress instead of the Tx address provided by the VM and
then transmitted to the NICs of the linked hosts. It turns
out the VEB of host NIC normally would refrain from for-
warding multicast packet to VMs due to two performance
concerns: 1)It consumes a lot of computations unnecessarily
as not every VM needs multicast packet. 2) Handling those
multicast packets not belonging to the VM costs the VM
considerable resources.

Here, we let the VM configure Multicast Table Array (MTA)
of the host NIC to receive the reply packets. For an Intel

SRIOV NIC, when it receives a packet towards a multicast
address, it will look up MTA which logs a list of destina-
tion addresses and forward the packet to the VMs whose
addresses are enlisted. Though MTA has to be updated by
the hypervisor and cannot be configured by VM directly, it
turns out that VF driver of Intel SRIOV NIC provides API
for a VM to ask hypervisor for updating MTA. By default,
hypervisor will accept the request and fulfill it automatically
without any actions from the administrator. In particular,
the attacker could run IP maddr add command on the VM
to append the address into MTA. After that, the malicious
VM is able to receive OAMPDUs and complete the hand-
shake process.

The latter step is rather straightforward. When the at-
tacker wants to cut off the network of the physical machine,
she only needs to set the link fault flag in the Informa-
tion OAMPDU to 1, which represents “critical errors”. The
switch will shut down the corresponding connection once
this OAMPDU is received.

3.3 Evaluation
To test the effectiveness of the attack, we set up a testbed

consisting of a SRIOV capable server and an OAM capable
switch. We created two VMs supervised by KVM hypervisor
and all of them run Ubuntu 14.04.3 LTS OS. Table 2 shows
the detailed information of the platform.

We assume one VM (VM1) has been controlled by the
attacker while the other is benign (VM2). Both of them
have been assigned with NIC VF. Meanwhile, VM1, VM2

and the host OS are all configured to use static IP addresses
belonging to the same class-C IP subnet. The physical NIC
port of the machine is connected to a HUAWEI S3328TP-EI
switch that connects to a LAN with Internet access through
another port. The OAM of the switch is turned on and
the fault isolation is enabled, which means the switch will
terminate all the connections for the port and turn the status
of the port to Error Down if an error is received or perceived
from the port.

As for the experiment result, after VM1 set up OAM con-
nection and sent an Information OAMPDU carrying a link
fault flag, we found that the switch cut the connection as
expected, immediately after the OAMPDU is received, in
less than 1 second. Consequently, VM2 can no longer access
the Internet, together with the hypervisor. From the con-
sole of the switch, we observed that the status of the port
was turned to Error Down, and all the services associated
with the port were terminated. This result clearly proves
our attack is effective and easy to carry out.

We also evaluated the difficulty for an technician to restore
the network from such failures.

First, it turns out without the admin privilege, the switch
cannot recover the network activities by itself. We detached
the cable from the port and attached it to the port again
after 30 seconds. The status of the port was not changed
and the connection was still blocked. According to the con-
figuration guide of the tested switch [1], traffic will not be
resumed even if the faulty link recovers, because the error
status of the interface is not reset.

Second, we also tested whether the administrator could
use the network manager account to reset the connection.
The link status came back to normal after we restarted the
interface. However, the restarting process should be con-
ducted carefully, as the guide warns network managers that

253

Table 2: Platform Information.
Host VM

CPU Intel Xeon E5-2620 V3 Intel Xeon E5-2620 V3 (2 cores)
Memory 16G DDR4 8G

Mother board ASUS Z10PE-D16 /
NIC Dual Port Intel Ethernet Controller i350-AM2 Intel Ethernet Controller i350 VF
OS Ubuntu 14.04.3 LTS Ubuntu 14.04.3 LTS

NIC driver igb 5.3.2 igbvf 2.3.5
Hypervisor KVM + virt-manager /

they should manually check link quality after switching back
the traffic. Therefore, the network manager still has to man-
ually examine the network status or even recover by herself,
a very time-consuming task.

The consequence can be much more severe if the network
manager configured EFM Association [1]. When the switch
receives the Information OAMPDU with link fault, firstly it
invokes Layer-2 operations (e.g., turn down the interface.)
to the port according to the configurations. Besides, it may
also trigger other modules or other EFM entities by broad-
casting the error. The error broadcast could incur further
damage to the network. For example, it could trigger BFD
(Bidirectional Forwarding Detection) module to change the
routing behavior of a upper layer router. It may also trig-
ger another switch to shut down a port, etc. Such snowball
effect would cause more machines to be disconnected.

4. BASIC DEFENSE SCHEME
To protect the cloud service from being disrupted by this

attack, we propose a defense mechanism which can be easily
implemented without any change to the hardware and net-
work infrastructure. We believe the capabilities of the VM
in configuring OAM should be controlled. In the meantime,
all other communication channels from VMs should not be
affected. Below, we elaborate our defense scheme and the
evaluation result.

4.1 Method
Shutting down the OAM channel of a VM while ensur-

ing other data communication channels run normally are in
fact not easy. Hypervisor has no visibility and control over
the data sent by VM, when VM accesses SRIOV NIC. One
intuitive idea is to grant hypervisor the ability to block cer-
tain data flows between VM and SRIOV NIC, in particular
through manipulating the functional registers provided by
the NIC, which however requires hardware modification and
cannot be readily deployed.

As described in Section 3.2, VM has to enlist the OAM-
PDU multicast address in MTA of SRIOV NIC to receive
the response OAMPDU packet and this registration process
has to go through hypervisor, therefore we could ask the
hypervisor to supervise the process. In particular, we found
NIC is responsible for writing a specific multicast address
in MTA [4] and we implemented the checking routine as
a module in NIC which blocks the registration request of
OAMPDU multicast address.

Before describing the details of our mitigation, we first
introduce the process on how address is registered in MTA
to motivate our implementation choice.

The functionality of multicast filtering is implemented in
NIC. Specifically, the VM Offload Register (VMOLR) in the

Application

Guest OS Kernel

VF Driver

PF Driver

NIC

IP maddr add

ioctl

e1000_update_mc_addr_list_vf()

igb_set_vf_multicasts()

MTA

Message Box

H
y

p
e

rv
is

o
r

 V
M

Figure 4: Multicast Addr Registration Call Graph.

NIC has a field ROMPE (the 25th bit) that can be used to
enable or disable multicast forwarding (enabled by default).
NIC will forward a multicast packet if the destination ad-
dress of the packet is in the MTA when multicast forwarding
is enabled. Therefore, VM has to write the multicast address
ahead to MTA to let NIC forward those packets, which is
accomplished by calling PF upon the request of VF invoked
by VM.

Figure 4 shows the important functions invoked during
multicast registration. On VM’s side, command IP parses
the request from user and invokes the relevant system calls
based on the input parameters. When Linux kernel receives
those calls, it checks the privilege of the invoking process
and then forward the request to VF drivers’ corresponding
interface, i.e., function e1000_update_mc_ad dr_list_vf()

of the igbvf driver, which is a linux base driver for Intel
network connection[7]. The function computes the hash val-
ues for at most 30 input multicast addresses (the remain-
ing ones will be discarded). Then this function composes
a message using the least significant 12 bits of every hash
value and sends the message to PF through the mailbox sys-
tem which exchanges messages between VM and hypervi-
sor. Mailbox system routes the message to the handler func-
tion igb_set_vf_multicasts() in the igb driver (PF driver)
owned by the hypervisor. The PF function parses the mes-
sage to get the hash values and stores them to the MTA for
that VF. After that, the hypervisor replies ACK (if success)
or NACK (if fail) to VF through the mail box. When these
steps are completed, NIC forwards the multicast packets to
VF if the destination address is in the VF’s MTA.

Since the VM could be fully controlled by the adversary,
we added a filtering module to the MTA updating functions
in the PF driver code, i.e., within igb_set_vf_multicasts()

(see Figure. 5) of the NIC, to prevent NIC from writing
the OAM protocol address to the MTA for any VM. And

254

all other parts of the driver are kept unchanged. In other
words, a VM could still receive multicast packets from NIC
except the ones related to OAM. Because the address will
never appear in the MTA, forwarding unit in the NIC would
not forward the OAMPDUs to VMs. As a result, VM can
no longer set up the OAM connection with the switch to
further launch the attack.

1 static int igb_set_vf_multicasts (...){
/*get number of maddr from msg;*/

3 int n = ...;

5 /*get pointer of hash list from msg*/
u16 *hash_list = ...;

7
/*Add Filter Here*/

9 for(i = 0; i < n && i < 30; i++)
if(hash_list[i] == hash(OAMAddr))

11 hash_list[i] = dummyAddrHash;
/*End of the Filter */

13
/* Sanitized hash_list is written */

15 for (i = 0; i < n; i++)
vf_data ->vf_mc_hashes[i]=

17 hash_list[i];
......

19 }

Figure 5: Code illustration of the filter. Line 9 to
11 are added while other codes are kept unchanged.

4.2 Evaluation
We modified the PF driver to add our code blacklisting the

OAMPDU multicast address and compiled the customized
driver. Then, we updated the driver of NIC and relaunched
our attack. As expected, the adversarial VM can no longer
complete the handshake process with the switch because it
cannot receive the replies from the switch, thwarting our
attack. The performance cost is negligible to hypervisor
and VMs, since the check only takes place during address
registration process. However, as shown in the next section,
this check can be bypassed by an improved version of our
attack.

5. UPDATED ATTACK
In this section, we propose an updated version of the at-

tack scheme which can circumvent the defense scheme pro-
posed in Section 4. The regular OAM communication pro-
cess requires the handshake step to be completed before us-
ing other OAM functionalities. While our last defense could
prevent adversarial VM from receiving OAMPDU packets
from the switch, it does not stop adversary sending out
packet to the switch. As such, it is possible for the adver-
sary to guess the right parameters of the outbound OAM-
PDU packets to complete handshake process. Below, we
elaborate the new attack scheme.

5.1 Attack without OAM replies
For a successful OAM handshake, VM needs to receive the

TLV information returned from the switch. Without know-
ing that TLV, what the attacker can do is just to enumerate
all the possible value and send the link fault signal with the
guessed value to the switch. However, this is doable in rea-

sonable time as shown later. We assume the switch works
in passive mode to constantly receive and process the pack-
ets from the adversary. Even if the switch works in active
mode, it will be switched to passive mode when the coun-
terpart of the channel is in active mode, which can be set
by the adversarial VM. The attack works as follows:

1. First, the attacker sends an Information OAMPDU
with its own configuration contained in the local in-
formation TLV, like the regular process.

2. When the switch receives this packet, it replies an In-
formation OAMPDU with switch’s configuration in lo-
cal information TLV field and the attacker’s configura-
tion in remote information TLV field. Local Discovery
status and Remote Discovery status of the OAMPDU
are set to be Satisfied and Discovery respectively
according to the EFM standard. The reply packet
however cannot be received by the adversary this time
when our basic defense is deployed.

3. The adversary has to respond to the switch with a valid
OAMPDU to finish the handshake process. In partic-
ular, the adversary has to correctly fill Local Discovery
status, Remote Discovery status, Local TLV and Re-
mote TLV. The first three fields are easy to fill: the
adversary can assign Satisfied to both Discovery sta-
tus fields and set the same local TLV value of the first
packet. For remote TLV, the attacker enumerates the
possible configuration setting of the remote switch and
fills the corresponding value.

4. The attacker sends the OAMPDU packet to switch
using the above crafted values. If the connection is
terminated, the attack is successful. Otherwise, the
attacker should go back to step 1 for another round
and try a new remote TLV at step 3.

One would worry that the attack is not practical as a huge
number of TLV has to be enumerated and the attack would
be discovered before succeeded. Interestingly, the range of
valid TLV is quite narrow, making the guess attempts
ends in short time. Figure 6 shows the format of a TLV
which can represents either local configuration information
or remote configuration information. Some of the fields can
be fixed with constant value: Remote Information for the
information type field, 0x10 (16 bits) for Information length
field (the length of a TLV), 0x01 for OAM version and
0x0000 for Revision. The valid values for the remaining
fields are described below.

• State. There are only 3 possible values for Parser
Action (forwarding, looping back, discarding) and 2
values (0 or 1) for Mux.

• OAM configuration. This segment has 5 fields while
each one is only 1-bit long, adding up to 25 = 32 pos-
sible values in total.

• Max OAMPDU Size. Maximum OAMPDU size is
often set to the default value 128.

• Vendor Identifier. Organizationally Unique Identi-
fier is assigned per manufacturer. According to the

255

7 6 5 4 3 2 1 0

Information

Type

Information

Length

OAM Version

Revision

State Mux

OAM

Configuration
Vars Events LB Unidir Mode

Vendor

Identifier

24 bits Organizational Unique Identifier

32 bits Vendor Specific Information

Reserved

Reserved

OAMPDU

Configuration
Max OAMPDU Size

0x01 for Local Information, 0x02 for Remote Information

0x10

0x01

0

Reserved Parser Action

Figure 6: Information OAMPDU TLV format

statistics from IDC [9], the top 5 Ethernet switch ven-
dors have taken the lion’s share of the market, as shown
in Table 3. In other words, using 5 values correspond-
ing to the top vendors is sufficient in most cases. Ven-
dor Specific Information is often set to all 0 as we
examined a large number of the switch documents of
mainstream switches.

Vendor Cisco HP Huawei Juniper Arista Others
Revenue 3827 592 393 243 217 1190

Table 3: Market share of switch vendors ($M).

Hence, an attacker only needs to guess at most 3 ∗ 2 ∗
32 ∗ 5 = 960 TLV values till finding the right TLV. As one
optimization, the adversary could start from the most pop-
ular configurations, e.g., the top switch vendor identifier, to
reach the correct answer more quickly.

Next, we compute the time required for trying the 960
possible TLV values. An end host can send at most 10 OAM-
PDU packets per second, while a switch replies 1 OAMPDU
per second by default. Our attack requires VM to send
3 OAMPDU packets and wait the switch to reply with 1
OAMPDU packet, so the attacker can try a TLV value in
less than 1.5-second interval, assuming that the switch works
at the default setting. In the end, an attacker can exhausts
all possibilities in 24 minutes at most.

Under the real-world settings, the time overhead could be
reduced to a much lower amount. Network managers tend
to modify only several fields and keep others unchanged. As-
suming that at most 2 bits among the 5 OAMPDU config-
uration bits are modified by the network manager, attacker
needs to try (C2

5 + C1
5 + C0

5) ∗ 5 = 80 times maximally to
find the right TLV, which means in average, the attacker
only needs to guess 40 times, taking around 1 minute.

5.2 Evaluation
We tested the updated attack scheme on the same plat-

form mentioned in Section 3.3. The basic defense described
in Section 4 is deployed to prevent VMs from receiving OAM-
PDUs. We discussed with an experienced network adminis-

trator and modified two configuration item of the switch to
non-default values and kept other configurations unchanged
to simulate the real-world settings.

Though based on the theoretical analysis, in average tens
of guesses have to be made to pass the check from switch,
surprisingly it took only one guess to succeed no matter what
value we chose for the two configuration items. It turns out
the root reason is that the switch does not compare the re-
mote TLV within the received OAMPDU packet with its
own configuration at all. We consider this is a severe vul-
nerability and have reported it to the product security team
(PSIRT) of the vendor (Huawei). The team confirmed the
vulnerability and committed to fix it in the later versions.
The team also replied to us that the switch does not
check the TLV because the RFC standard does not
specify the checking process. Hence, they considered it
a generic problem they plan to report to IETF. We foresee
it would take a long time before the standard is mended, but
even it happens, our attack is still viable as the attacker is
able to guess the right configuration in short time.

The consequence is similar: the attacker can successfully
disconnect the physical machine and the recovery process is
also painful. The network manager must use her account to
login the switch and reset the interface to wake the port up
from Error Down.

6. LIMITATIONS OF SRIOV NIC
For the updated attack, leveraging hypervisor to termi-

nate the handshake process between VM and switch is im-
possible as hypervisor is not on the data plane. The only
countermeasure available is letting the NIC to inspect the
outbound packets but unfortunately there is no way to eas-
ily implement the filtering mechanism. We read through
the document of the I350 NIC we experimented with [6] and
other documents of the advanced models (e.g., Intel 82599
10GbE NIC [5]). It turns out there is no programmable in-
ternal filter inside the NIC, or VEB more specifically, that
we can use to switch packets between VMs and external
LAN, handle broadcast or multicast packet forwarding.

The outbound packets could be controlled by the Tx switch-
ing to some extent. There are some filters like L2 filters
and VLAN filters implemented in the original SRIOV NIC
which redirect the packets to the virtual pool and decide
which one should be sent out through a series of matching
process. However, there is one exception of Tx packet
filtering 2: multicast and broadcast packets are al-
ways sent to external LAN. That means there is no way
for an existing NIC to stop VMs from sending multicast or
broadcast packets. Routing multicast packet to its desti-
nations is implemented in MTA but MTA cannot be used
for filtering. Intel does provide 3 outbound security mecha-
nisms: MAC anti-spoofing, VLAN tag-validation and VLAN
anti-spoofing. However, these mechanisms are all targeting
spoofed and invalid Tx address which cannot be leveraged
for defense, since the Tx address used for attack is valid. In
fact, the SRIOV NIC design overlooked the special usage of
multicast protocol and simplified the multicast forwarding
procedure such that all ethernet control protocols based on
multicast run mistakenly over the virtualized environment.

In addition, the OAM vulnerability not only impacts ma-
chines equipping SRIOV NIC, but also neighboring machines

2Rx switching does not have this exception.

256

OAM
Entity 1

Entity 3

OAM
Entity 2

Figure 7: An incorrect network structure.

sharing the same network, when the network is configured
incorrectly. We show one such network structure in Fig-
ure. 7, where 2 OAM entities (Entity 1 and Entity 2) and
an OAM incapable entity (Entity 3) are connected to an
OAM incapable switch. As the switch cannot handle OAM
packets, it will always forward them to other connected enti-
ties. In this case, when Entity 1 reports link error, the link
between Entity 2 and the switch will be shut down because
the OAMPDU is relayed to Entity 2 who assumes the error
is reported by the connected switch. Subsequently, the link
between Entity 3 and Entity 2 will be cut off. As such, an
attacker controlling one entity could force disconnections of
other innocent entities. We tested this attack following the
paradigm shown in Figure. 7 and found the attack always
succeeded. To mitigate this issue, the network administrator
should keep the devices consistent in OAM handling (on/off
for all devices).

7. UPDATED DEFENSE
Filtering outbound multicast packets from VM on the NIC

side is not a feasible defense solution due to the limited fil-
tering capabilities provided by the current hardwares. As
an alternative way, we look for the defense schemes on the
switch side which aims to identify whether the OAMPDU
is from VM. Below we describe a practical defense method
and also discuss other solutions.

7.1 Defense through Distinguishing VMs
Our updated attack could succeed because the amount of

valid TLV values in the inbound OAMPDU to NIC is too
small. While the handshake process is designed to prevent a
random entity from reporting error message through OAM,
it is bypassed under this problematic implementation. In-
tuitively, we could fix this vulnerability through introducing
more randomness into the OAMPDU.

Extending the OAM protocol to add an additional field
bearing a random number could serve the defense purpose
but might cause compatibility issues. Fortunately, we found
the 32-bit Vendor Specific Information (VSI) field could be
used (see last row of Figure 6). It is always set to all 0
and unused by switch. Therefore, we design the updated
defense by filling a random number into this field as a secret
in the outbound OAMPDU and checks if the same value is
observed in the follow-up inbound OAMPDU. This modifi-
cation occupies the VSI that is designed for vendor specific
purpose. If a vendor has already occupied this field for its
private functionalities, the private functionalities can be im-
plemented in Organization Specific TLV that is also designed

for vendor specific purpose and has better extensibility re-
sulted from a larger space.

Specifically, we could command switch to generate a ran-
dom 32-bit number and fill it into the VSI field whenever
sending reply OAMPDUs to the remote entity, as shown in
Figure.8. A valid entity would see the random number and
the response will automatically include the same number (in
remote TLV) according to the EFM standard. For an adver-
sary, since the handshake reply never reaches VM, she has to
guess the number, which lies in a much larger range. On the
side of switch, if VSI field of the inbound reply OAMPDU
packet has an unmatched value, the packet is dropped.

We further analyze this scheme in three aspects below.

• Effectiveness. Attacker has to explore the config-
uration space of 232 values to launch one successful
attack. There is a 1.5-second interval between two at-
tempts. As the result, it takes the attacker over 200
years in worst case (100 years in average for uniformly
generated random number) to succeed. Without this
defense, an attacker could succeed under a minute.
Therefore, our defense substantially raises the bar for
the attack.

• Cost. The only change to OAM protocol is adding
a random number to OAMPDU, which requires mod-
ification to the switch firmware for random number
generation and received value verification. The NIC
vendors need to provide a patch to the driver and no-
tify the customers to upgrade their NIC driver to de-
ploy the basic defense scheme described in Section 4.
The raised cost is moderate to them. For hypervisor
and VMs, there is no extra cost.

• Performance. The penalty is incurred when exchang-
ing OAM packets, while all other components are not
impacted. Given that OAM is a slow protocol (0.1-
second interval between communications at most), the
increased time delay is very small comparing to the
overall overhead.

Switch Init RandGen()

a rand
Receive an
OAMPDU

Send an OAMPDU

Substitute VSI in
local TLV with rand

VSI CheckHave Remote TLV? Y

Original OAMPDU Receiving Logic

N Pass Fail:Drop

Original OAMPDU
Sending Logic

Figure 8: Flow chat of the defense scheme.

Evaluation. The ideal scenario for evaluating our new de-
fense scheme is to modify the switch firmware and test under
the same settings as Section 5.2. This is very difficult since
we cannot get the source code from the switch vendor. As
an alternative solution, we implemented an emulated switch
that runs the modified OAM protocol using a PC (we call
it switch PC) and connected the virtualized server to the

257

switch PC. The virtualized server follows all the steps re-
quired by the OAM standard and the additional routines
for randomness.

We let the VM to repeatedly guess the vendor specific in-
formation and send out OAMPDU to the switch PC. In the
meantime, we check if any such packet can successfully ar-
rive at the destination. After running the experiment for 24
hours, no OAMPDU packet sent from VM can be observed,
suggesting our defense is effective.

7.2 Other Approaches

7.2.1 Checking MAC Address
If the switch could differentiate VMs and hypervisor, our

attacks will be easily thwarted. The most straightforward
way to achieve this goal is to examine the source MAC
address of OAMPDU. Network manager could compile a
whitelist of hypervisors’ MAC addresses and integrate the
list into the switch. When the switch receives an OAMPDU
packet from an unlisted sender, it drops the packet. Because
VMs cannot fake a source MAC address, OAMPDUs from
VMs are always dropped.

The major advantage of this defense scheme is that it re-
quires only changes to the receiving logic of the switch. The
program logic to read the MAC address of the remote OAM
entity has been built into the switch we tested (the MAC
address of remote OAM entity is displayed in the manage-
ment interface of the switch). So, switch vendors could just
add a small piece of code to check if the address is in the
whilelist. Besides, the scheme has negligible performance
penalty because all changes are made in control plane and
date plane is kept unchanged.

This scheme has a drawback that a lot of manual works
have to be introduced when the network is quite dynamic.
For instance, when a new network device is connected to
the switch, manager must use her credential to login to the
switch and add its MAC address to the whitelist.

7.2.2 Filtering by Hypervisor
We also consider filtering out the OAMPDUs by a soft-

ware based switch instead of the NIC or physical switch.
Smolyar et al. proposed a filtering technique to mitigate
DoS attack in virtualized environment [24]. The main idea is
to let one Ethernet controller forward all packets it received
to the hypervisor by utilizing a software bridge. The bridge
removes all the illegal packets and forwards the remaining
packets to another Ethernet controller that is connected to
the switch. We evaluated the feasibility of this defense here
as well and concluded it is not practical for defending our
attack.

VM

Hypervisor

NIC

VM

Hypervisor

NIC

VM

Hypervisor

NICNIC

①

②

① ①

② ③

Traditional
 I/O virtualization

SR-IOV with
software bridge

SR-IOV

Figure 9: Comparison of the 3 other approaches.

This method seems to be effective against our attacks but
it dims the benefits of high performance SRIOV NICs: trans-
parent data path to hypervisors.

First, obviously, two Ethernet controllers (one for inbound
and one for outbound) are required which means there is one
Ethernet controller not available to the user.

More importantly, the performance penalty is also non-
negligible, because all the communications on the data path
need to go through hypervisor, which violates the fundamen-
tal goal of SRIOV. As shown in Figure. 9, for the SRIOV
scheme, a packet sent by VM is transferred from VM’s mem-
ory directly to NIC’s buffer. For traditional I/O virtualiza-
tion technique, the packet is copied from VM’s memory to
hypervisor’s memory through a virtual NIC first, and then
a software bridge in the hypervisor forwards it to physical
NIC, which incurs 2 times I/O overhead compared to SRIOV
scheme. For SRIOV with defense scheme from [24], packets
are sent from VM to NIC and then copied back from NIC
to hypervisor’s memory for filtering and finally sent with
another NIC, which incurs overall 3 times I/O overhead.
Such heavy performance penalty makes the adoption ques-
tionable, because it is even worse than the traditional I/O
virtualization.

7.2.3 Updating NIC Hardware
NIC vendors are able to update their next generation

products to provide enough outbound filtering capabilities
and open interfaces to hypervisor to defend this attack. This
mitigation could resolve all the security issues discovered by
us, but the cost could be considerable. In the meantime, the
old models are still vulnerable.

8. RELATED WORKS
Network interface virtualization is a hot research area and

the related techniques have been widely adopted by many
organizations. Sheta et al. surveyed the widely used NIC
virtualization techniques and evaluated them with different
metrics [23]. Yassour et al. evaluated the SRIOV method
for the network interface [31]. Dong et al. elaborated the
SRIOV networking architecture in the Xen hypervisor [14].

The security problems of network interface virtualization
are also studied. Recently, Richter et al. and Smolyar et
al. proposed two different DoS attacks [22, 24] against vir-
tualized network interface. Pek et al. discovered a series
of attacks that can be launched under a direct device as-
signment settings [19], using an automatic tool to discover
hardware-level vulnerabilities. Different from their works,
our attacks can totally cut off the network connectivity of
the machine, resulting in much worse consequences. Besides
causing connectivity issues, SRIOV NIC can be exploited as
a side channel for detecting co-located VMs in the cloud, as
shown in [10].

The I/O virtualization technologies can be used to launch
or defend against other attacks. Wojtczuk et al. showed
a Message Signalled Interrupt(MSI) based attack on x86-64
machine, allowing a virtual machine to run privileged code
in Xen environment [29]. Stewin et al. studied how malware
can attack the host machine stealthily [25]. As an example,
they implemented a key logger that attacks both Windows
and Linux platforms. They used IOMMU to defend that
kind of attacks. Still, attacker can modify the hardware-level
data structure or configuration table to bypass the IOMMU
isolation, as stated in [16].

258

9. CONCLUSION
We discovered a new vulnerability in SRIOV NIC. The

root cause is that SR-IOV NIC does not provide sufficiently
fine-grained outbound traffic filtering capability and the hy-
pervisor is bypassed in SRIOV model. Exploiting such vul-
nerability, an attacker can fake OAM packets to break the
connection between the host machine and the switch. As the
result, the network connectivity of all VMs and hypervisor
can be cut off.

The key to the successful attack is to handshake with the
switch through SRIOV NIC. We show one attack scheme
which asks help from MTA in the SRIOV NIC, and another
which could even succeed without the help of MTA. The
result suggests that both attacks are effective and practical.

In the end, we propose an effective defense scheme by
using an implied challenge response. Since SRIOV devices
are largely deployed only in recent years, we urge the com-
munity to thoroughly examine the attack surface against
SRIOV devices and the vendors to actively fix the relevant
security issues.

Acknowledgment
This work was supported in part by National Natural Sci-
ence Foundation of China (NSFC) under Grant No. 61572415
and Hong Kong S.A.R. Research Grants Council (RGC) un-
der Early Career Scheme No. 24207815.

10. REFERENCES
[1] Configuration guide - reliability.

http://support.huawei.com/enterprise/docinforeader.
action?contentId=DOC1000019450&partNo=10062.

[2] Enabling enhanced networking on linux instances in a
vpc. http://docs.aws.amazon.com/AWSEC2/latest/
UserGuide/enhanced-networking.html.

[3] How to: Enable single root i/o virtualization in
exalogic elastic cloud. https://blogs.oracle.com/
opscenter/entry/how to enable single root.

[4] Intel 82576 sr-iov driver: Companion guide.
http://www.intel.com/content/www/us/en/
embedded/products/networking/82576-sr-iov-driver-
companion-guide.html.

[5] Intel 82599 10 gbe controller datasheet.
http://www.intel.com/content/dam/www/public/us/
en/documents/datasheets/82599-10-gbe-controller-
datasheet.pdf.

[6] Intel ethernet controller i350: Datasheet. http://www.
intel.com/content/www/us/en/embedded/products/
networking/ethernet-controller-i350-datasheet.html.

[7] Intel linux based igb driver.
http://www.intel.com/content/www/us/en/support/
network-and-i-o/ethernet-products/000005767.html.

[8] Oam introduction from cisco.
http://www.cisco.com/c/en/us/td/docs/ios/12 2sr/
12 2sra/feature/guide/srethoam.html.

[9] Worldwide ethernet switch market and enterprise and
service provider router market. http://www.idc.com/
getdoc.jsp?containerId=prUS41061316.

[10] A. Bates, B. Mood, J. Pletcher, H. Pruse, M. Valafar,
and K. Butler. Detecting co-residency with active
traffic analysis techniques. In Proceedings of the 2012
ACM Workshop on Cloud Computing Security

Workshop, CCSW ’12, pages 1–12, New York, NY,
USA, 2012. ACM.

[11] M. Ben-Yehuda, J. Mason, J. Xenidis, O. Krieger,
L. Van Doorn, J. Nakajima, A. Mallick, and
E. Wahlig. Utilizing iommus for virtualization in linux
and xen. In OLSâĂŹ06: The 2006 Ottawa Linux
Symposium, pages 71–86. Citeseer, 2006.

[12] Y. Dong, X. Yang, J. Li, G. Liao, K. Tian, and
H. Guan. High performance network virtualization
with sr-iov. Journal of Parallel and Distributed
Computing, 72(11):1471–1480, 2012.

[13] Y. Dong, X. Yang, X. Li, J. Li, K. Tian, and H. Guan.
High performance network virtualization with sr-iov.
In HPCA-16 2010 The Sixteenth International
Symposium on High-Performance Computer
Architecture, pages 1–10, 2010.

[14] Y. Dong, Z. Yu, and G. Rose. Sr-iov networking in
xen: Architecture, design and implementation. In
Workshop on I/O Virtualization, 2008.

[15] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda,
A. Landau, A. Schuster, and D. Tsafrir. Eli:
bare-metal performance for i/o virtualization. ACM
SIGPLAN Notices, 47(4):411–422, 2012.

[16] O. Isfort, K. Müller, D. Münch, and M. Paulitsch.
Decreasing system availability on an avionic multicore
processor using directly assigned pci express devices.
In European Workshop on System Security
(EUROSEC2013). Czech Republic Prague, 2013.

[17] P. Kutch. Pci-sig sr-iov primer: An introduction to
sr-iov technology. Intel application note, pages
321211–002, 2011.

[18] J. Liu. Evaluating standard-based self-virtualizing
devices: A performance study on 10 gbe nics with
sr-iov support. In Parallel & Distributed Processing
(IPDPS), 2010 IEEE International Symposium on,
pages 1–12. IEEE, 2010.

[19] G. Pék, A. Lanzi, A. Srivastava, D. Balzarotti,
A. Francillon, and C. Neumann. On the feasibility of
software attacks on commodity virtual machine
monitors via direct device assignment. In Proceedings
of the 9th ACM symposium on Information, computer
and communications security, pages 305–316. ACM,
2014.

[20] H. Raj and K. Schwan. High performance and scalable
i/o virtualization via self-virtualized devices. In
Proceedings of the 16th international symposium on
High performance distributed computing, pages
179–188. ACM, 2007.

[21] K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox, and
S. Rixner. Achieving 10 gb/s using safe and
transparent network interface virtualization. In
Proceedings of the 2009 ACM SIGPLAN/SIGOPS
international conference on Virtual execution
environments, pages 61–70. ACM, 2009.

[22] A. Richter, C. Herber, T. Wild, and A. Herkersdorf.
Denial-of-service attacks on pci passthrough devices:
Demonstrating the impact on network-and storage-i/o
performance. Journal of Systems Architecture,
61(10):592–599, 2015.

[23] R. Shea and J. Liu. Network interface virtualization:
challenges and solutions. Network, IEEE, 26(5):28–34,
2012.

259

[24] I. Smolyar, M. Ben-Yehuda, and D. Tsafrir. Securing
self-virtualizing ethernet devices. In Proceedings of the
24th USENIX Conference on Security Symposium,
pages 335–350. USENIX Association, 2015.

[25] P. Stewin and I. Bystrov. Understanding dma
malware. In Detection of Intrusions and Malware, and
Vulnerability Assessment, pages 21–41. Springer, 2013.

[26] J. L. V. U. J. Stoess and S. Götz. Unmodified device
driver reuse and improved system dependability via
virtual machines. In Proceedings of the 6th conference
on Symposium on Opearting Systems Design &
Implementation, 2004.

[27] J. Sugerman, G. Venkitachalam, and B.-H. Lim.
Virtualizing i/o devices on vmware workstation’s
hosted virtual machine monitor. In USENIX Annual
Technical Conference, General Track, pages 1–14,
2001.

[28] P. Willmann, J. Shafer, D. Carr, S. Rixner, A. L. Cox,
and W. Zwaenepoel. Concurrent direct network access

for virtual machine monitors. In High Performance
Computer Architecture, 2007. HPCA 2007. IEEE 13th
International Symposium on, pages 306–317. IEEE,
2007.

[29] R. Wojtczuk and J. Rutkowska. Following the white
rabbit: Software attacks against intel vt-d technology.
ITL: http:// invisiblethingslab.com/ resources/ 2011/
Software\%20Attacks\%20on\%20Intel\%20VT-d.pdf ,
2011.

[30] X. Xu and B. Davda. Srvm: Hypervisor support for
live migration with passthrough sr-iov network
devices. In Proceedings of the12th ACM
SIGPLAN/SIGOPS International Conference on
Virtual Execution Environments, pages 65–77. ACM,
2016.

[31] B.-A. Yassour, M. Ben-Yehuda, and O. Wasserman.
Direct device assignment for untrusted
fully-virtualized virtual machines. Technical report,
Technical Report H-0263, IBM Research, 2008.

260

