
Evading Android Runtime Analysis Through Detecting
Programmed Interactions

Wenrui Diao
The Chinese University of Hong Kong

dw013@ie.cuhk.edu.hk

Xiangyu Liu
The Chinese University of Hong Kong

lx012@ie.cuhk.edu.hk

Zhou Li
ACM Member

lzcarl@gmail.com

Kehuan Zhang
The Chinese University of Hong Kong

khzhang@ie.cuhk.edu.hk

ABSTRACT
Dynamic analysis technique has been widely used in Android
malware detection. Previous works on evading dynamic analysis
focus on discovering the fingerprints of emulators. However, such
method has been challenged since the introduction of real devices
in recent works. In this paper, we propose a new approach to
evade automated runtime analysis through detecting programmed
interactions. This approach, in essence, tries to tell the identity of
the current app controller (human user or automated exploration
tool), by finding intrinsic differences between human user and
machine tester in interaction patterns. The effectiveness of our
approach has been demonstrated through evaluation against 11
real-world online dynamic analysis services.

Keywords
Android malware; dynamic analysis; programmed interaction

1. INTRODUCTION
With the evolution of mobile computing technology, smartphone

has experienced enormous growth in consumer market, among
which Android devices have taken the lion’s share. Unfortunately,
Android’s open ecosystem also turns itself into a playground for
malware. According to a recent report [9], on average, 8,240 new
Android malware samples were discovered in a single day.

To combat the massive volume of Android malware newly
emerged, automated detection techniques (static and dynamic)
were proposed and have become the mainstream solutions. Dy-
namic analysis frameworks monitor the behaviors of the app sam-
ples executed in a controlled environment under different stimuli.
Compared with static analysis, dynamic analysis does not have to
understand the complicated logic in malicious code and is immune
to code obfuscation and packing. Moreover, less noticeable run-
time malicious behaviors could be discovered.

The traditional dynamic analysis platforms were largely built
upon emulators to enable fast and economic malware analysis.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WiSec’16, July 18–20, 2016, Darmstadt, Germany.
© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ISBN 978-1-4503-4270-4/16/07. . . $15.00

DOI: http://dx.doi.org/10.1145/2939918.2939926

To evade dynamic analysis, a broad spectrum of anti-emulation
techniques have been proposed [21, 28, 14, 17] and adopted by
malware authors. In general, these techniques were designed to
fingerprint the runtime environment and look for artifacts that can
tell physical device and emulator apart. Though effective at first,
countermeasures have been developed by the security community
to diminish the efficacy of anti-emulation. Recently, researchers
proposed to use physical devices [19] and morph artifacts unique
to emulators [12, 11, 13]. These methods wrecked the base of
anti-emulation techniques, but we believe the arms race between
dynamic analysis and evasion has not yet ended.
Automated Exploration. Different from the traditional desktop
malware, Android malware are event-driven, meaning that mali-
cious behaviors are usually triggered after certain combinations of
user actions or system events. Therefore, the simple install-then-
execute analysis model is not effective to trigger malware’s runtime
behaviors. To solve this issue, automated exploration techniques
are integrated into dynamic analysis frameworks, including event
injection, UI element identification, etc. The ultimate goal of them
is to achieve good coverage of app’s execution paths in a limited
period.
New Evading Techniques. In this paper, we propose a new
approach to evade Android automated runtime analysis through
detecting programmed interactions. The core idea of this approach
is to determine the identity of the party operating the app (a
human user or an automated exploration tool) by monitoring the
interaction patterns. To malware analysis, the goal of interaction is
different from that of a real user. For efficiency, exploration tool
injects simulated user events and avoids accessing the underlying
devices. Such simulated events and hardware generated ones
are inconsistent in most cases. Also, to achieve high coverage
of execution paths, exploration tool tends to trigger all valid
controls, among which some are not supposed to be triggered by
human. We leverage these insights and built an evasive component
PIDetector, which monitors the event stream and identifies the
events unlikely coming from a real user. The malicious payload
will be held from execution if a dynamic analyzer is identified.

Compared with the previous anti-emulation techniques, our
approach exploits the gap between human and machine in run-
time behaviors, instead of relying on features regarding execution
environment. One prominent advantage of our approach is its
robustness against any testing platform, even one composed of
physical devices.

We implemented a proof-of-concept app and submitted it to
11 online dynamic analysis services screening samples submitted

http://dx.doi.org/10.1145/2939918.2939926

from all sorts of sources. The preliminary results have already
demonstrated the effectiveness of our approach: nearly all (avail-
able) surveyed services exhibit at least one pre-defined pattern of
programmed interactions. As a recommendation, the design of the
current dynamic analysis platforms should be revisited to defend
against such new type of evasion.
Contributions. We summarize this paper’s contributions as below:

• New Technique and Attack Surface. We propose a new ap-
proach to evade Android runtime analysis: programmed in-
teraction detection, which provides a new venue for evading
dynamic analysis other than existing anti-emulation works.

• Implementation and Evaluation. We implemented a proof-
of-concept app and tested it on several real-world Android
dynamic analysis platforms. The experimental results demon-
strate our approach is highly effective.

2. RELATED WORK
Most Android dynamic analysis frameworks are built upon em-

ulators [20], which is easier to be deployed and more economical,
as the cost of purchasing mobile devices is exempted. Besides,
the app behaviors on emulators are easier to be monitored and
controlled. Such frameworks, however, are not robust against
evasive malware, and anti-emulation techniques have been widely
discussed. In this section, we review these techniques and describe
the countermeasures proposed by security community.

2.1 Anti-Emulation
Nearly all previous anti-emulation techniques [21, 28, 14, 17]

exploit the unique features of the virtualized environment and
refrain from executing the core malicious payload (e.g., sending
SMS to premium number) when the host is found as an emulator.
The features that differentiate emulators from real mobile devices
and are leveraged for anti-emulation are listed below:
Firmware Features. The mobile devices manufactured by vendors
are assembled from distinctive firmware, which embeds unique
ID or information reflecting the hardware specification. On the
contrary, emulators tend to use fixed dummy values to fill firmware
features. For example, null and android-test are fed to
firmware-query APIs like Build.SERIAL and Build.HOST by
emulators.
Device Features. A lot of peripheral devices, especially sensors,
have been integrated into mobile devices, like accelerometer and
gyroscope. Not all the sensors are supported by emulators, which
can be exploited for emulator identification. For the sensors
simulated by emulators, the data stream produced differs signifi-
cantly (usually constant) from what is generated from real devices
(randomly distributed) [28].
Performance Features. Performance, particularly processing speed,
is a disadvantage for emulators. Though modern desktop PC has
more processing power, such improvement is overwhelmed by
penalty from instruction translation. As shown in [28], adversary
could measure CPU and graphical performance, and then determine
the existence of emulator.

It also turns out that there exists a huge number of heuristics
can be employed for emulator detection. Jing et al. [14] proposed
a framework which can automatically detect the discrepancies
between Android emulators and real devices, and more than 10,000
heuristics have been discovered. Fixing these discrepancies on
emulators needs tremendous efforts by all means.

2.2 Countermeasures
The anti-emulation techniques surveyed above are quite effective

but not impeccable. They all look for observable artifacts produced
from virtualization, which turns out to be the Achilles’ heel.
We describe two types of countermeasures for obscuring running
platform below:
Using Physical Devices. Building analysis platform on physical
devices could thwart anti-emulation behaviors naturally. Vidas et
al. [29] proposed a hybrid system named A5, which combines both
virtual and physical pools of Android devices. More recently, Mutti
et al. [19] proposed BareDroid, which runs bare-metal analysis
on Android apps. The system is built solely upon off-the-shelf
Android devices and applies several novel techniques like fast
restoration to reduce the performance cost. The evaluation results
of these works prove that malware are not able to discern the
analysis platform with users’ devices.
Changing Artifacts. Another direction is to change the observable
artifacts to masquerade the emulators as real devices. Hu et al. [13],
Dietzel [11] and Gajrani et al. [12] followed this trail. They
customized the emulator framework and hooked runtime APIs (in
both Java and Linux layer) to feed fake values to the probing
functions of malware. The malicious behaviors could be revealed
when the checks for real devices are all passed.

3. BACKGROUND AND MOTIVATION
From the perspective of the adversary, pursuing the direction

of fingerprinting execution environment would lead to a dead-end
in the trend that more and more analysis platforms are driven by
real devices or tailored emulators. In this work, we explore a
new direction: instead of sensing what environment runs the app,
we inspect the behaviors of dynamic analyzer and focus on how
it interacts with the app. We first briefly overview the current
dynamic analysis techniques and then introduce the concept of
programmed interaction to motivate our research.

3.1 Dynamic Analysis
Different from static analysis tools, which scrutinize the source

code or binary code of the program to identify the malicious
payload, dynamic analysis frameworks execute the program to
capture the malicious behaviors in the runtime. In particular, the
execution environment for dynamic analysis is instrumented, and
various system or user inputs (e.g., clicking UI buttons) are injected
to trigger all sorts of app’s behaviors. If certain malicious I/O
patterns or behaviors are identified (e.g., sending SMS to premium
numbers), the app is considered as malware. Though static analysis
avoids the cost of running app and is usually more efficient, it could
be thwarted when obfuscation or packing techniques are employed.
As shown in the work by Rastogi et al. [23], common malware
transformation techniques could make malicious apps evade pop-
ular static analysis tools at high success rate. On the other hand,
dynamic analysis is robust against code-level evading techniques
and is suitable for processing apps with complicated program
logics. A corpus of frameworks have been developed and proved
to be effective, including DroidScope [31], AppsPlayground [22],
CopperDroid [26], etc. Google also developed its dynamic analysis
framework, Bouncer [16], to check every app submitted to Google
Play.

3.1.1 Input Generation and Automated Exploration
Since app’s runtime behaviors often depend on the inputs from

the user or system, the effectiveness of the dynamic analysis
framework highly depends on the strategy of input generation.

Comparing to the traditional PC malware, which tend to take
malicious actions (e.g., controlling the system) once executed,
mobile malware tend to delay the malicious actions till a sequence
of events are observed (e.g., hijacking the legitimate app and
stealing the received messages). Therefore, the testing platform
should be able to generate the input in a context-aware manner and
explore the execution paths automatically. Below, we describe two
widely adopted strategies in automated path exploration:
Fuzzing-based Exploration. Fuzzing is a black-box testing
technique in which the system under test is stressed with invalid,
unexpected or random inputs transmitted from external interfaces
to identify the bugs in programs [25]. On the Android platform,
Google provides an official fuzzer Monkey [8], which generates
pseudo-random streams of user events such as clicks, touches, or
gestures, as well as a number of system-level events and injects
them into the framework through Android Debug Bridge (ADB).
Several dynamic analysis frameworks have incorporated Monkey
as the exploration engine, such as VetDroid [32] and Andrubis [15].
Model-based Exploration. On the contrary, model-based testing
aims at injecting events aligning with a specific pattern or model
which could be derived by analyzing the app’s code or UI. The
test cases generated are usually more effective and efficient in dis-
covering malicious activities. To support this testing mode, Google
has developed an exploration tool named MonkeyRunner [5] which
allows testing platform to interact with an app in pre-defined event
sequences. MonkeyRunner has been adopted by several testing
platforms including Mobile-Sandbox [24], CopperDroid [26], etc.

In the course of automated UI interactions, a large number of
invalid actions could be triggered if the properties of UI structure
is disregarded. As a solution, Google developed UI Automator [7],
which inspects the layout hierarchy and device status to decide the
meaningful UI actions. Besides, AppsPlayground [22] leveraged
a number of heuristics to customize inputs for certain UI controls
(e.g., login box). CuriousDroid [10] decomposes the on-screen lay-
out and creates context-based model on-the-fly. SmartDroid [33]
uses a hybrid model which extracts call graphs through static
analysis and initiates actions leading to sensitive APIs.

3.2 Motivation: Programmed Interaction
The main design goal of the above frameworks is to explore

all potential paths leading to malicious behaviors efficiently. As
such, the input events they generated are usually predictable, fired
at regular and short interval, and massive for good coverage, which
significantly differ from what are produced by human users. Hence,
leveraging this insight, we design a new mechanism to capture such
programmed interactions and distinguish human users from testing
platforms. We envision our approach could be implemented as a
component (we call it PIDetector), embedded within Android
malware and monitoring the system events of its interests. Before
the execution of malicious payload, the collected event sequence
will be analyzed by PIDetector, and the execution only pro-
ceeds when the event sequence is determined to be produced by
human user.

Compared with anti-emulation techniques, our approach offers
another layer of protection to malware even analyzed on bare-metal
platforms. It is also robust against the upgrades which alter the
observable artifacts by analysis frameworks. At the high level,
our approach can be considered as a variant of CAPTCHA [30]
– humans can pass, but computer programs can’t pass. In fact, the
state-of-art text or image based CAPTCHA schemes may achieve
the same or even better accuracy in distinguishing human and
computer. However, asking user to solve CAPTCHA before using

the app would drive away many users and reduce the infection rate.
In contrast, such issues are not embodied in our approach.

3.3 Assumptions
Our approach intends to evade the detection by dynamic anal-

ysis. Evading static analysis is out of the scope of our work. In
fact, such task could be fulfilled by off-the-shelf obfuscators and
packers.

We also assume the dynamic analysis platforms interact with the
testing app through events injection, and the execution logic of the
app cannot be forcefully altered, i.e., bypassing PIDetector and
directly invoking malicious payloads. This strategy is in theory
possible but requires precise analysis on app’s code to identify the
critical branches, which is quite challenging and again vulnerable
to obfuscation and packing techniques. This setting is also adopted
by all previous works on evading dynamic analysis [21, 28, 14, 17].

4. ATTACK VECTORS
In this section, we elaborate several attack vectors that can be

leveraged to detect programmed interactions. Overall, the qualified
attack vectors should fulfill the three requirements below:

• Reverse Turing Test – humans can pass, but current explo-
ration tools can’t pass.

• Passive – hard to be discovered by end-users.

• Lightweight – easy to be built and deployed.

Given these constraints, we design two classes of attack vectors
targeting the vulnerabilities underlying event injections and UI
element identification in dynamic analysis. To notice, some testing
platforms built upon Monkey can be trivially identified through
invoking the isUserAMonkey() API [3] and inspecting the
returned value. We do not include it into the attack vectors as the re-
turned value can be easily manipulated (e.g., it can be bypassed by
UI Automator through calling setRunAsMonkey(false) [18]).
We elaborate each attack vector in the following subsections.

4.1 Detecting Simulated Event Injections
We found the data attached to two types of user events, Mo-

tionEvent [6] for touchscreen tapping and KeyEvent [4] for key
pressing, can be leveraged for detection. It turns out the both
individual event and event sequence reveal distinguishable patterns.

4.1.1 Single Event
When a user operates a mobile device, the events are initiated by

the onboard hardware and the information regarding the hardware
is attached. To the opposite, the events injected by dynamic testing
tools, like Monkey, are passed from external interfaces and most of
the parameters are filled with dummy values. Specifically, while
the core parameters (e.g., coordinates of input location) are filled
with real values, the auxiliary parameters (e.g., keyboard type) are
not filled similarly.

Table 1 and Table 2 list differences between the values generated
from real-world usage and Monkey testing for MotionEvent and
KeyEvent. Clearly, Monkey fills the values in a distinctive pattern
that can be identified. For example, the ToolType parameter of
KeyEvent generated by Monkey is always TOOL_TYPE_UNKNOWN,
which cannot be used if this event is produced by hardware.

4.1.2 Event Sequence
To reach the high coverage of app behaviors in limited time,

dynamic analyzers tend to inject events at high frequency which

Table 1: MotionEvent: real vs. simulated (by Monkey)
Parameter Real Simulated

ToolType 1: TOOL_TYPE_FINGER 0: TOOL_TYPE_UNKNOWN
DeviceId [non-zero value] 0
Device valid null

Remarks: 1) DeviceId: zero indicates that the event does not come from a
physical device and maps to the default keymap.

Table 2: KeyEvent: real vs. simulated (by Monkey)
Parameter Real Simulated

ScanCode [non-fixed value] 0
DeviceId [non-fixed value] -1
Device.Name [non-fixed value] Virtual
Device.Generation [non-fixed value] 2
Device.Descriptor [non-fixed value] af4d26ea4cdc857cc0f1

ed1ed51996db77be1e4d
Device.KeyboardType 1: non-alphabetic 2: alphabetic
Device.Source [non-fixed value] 0x301: keyboard dpad

Remarks: 1) ScanCode: the hardware key id of the key event; 2)
Generation: the number is incremented whenever the device is reconfigured
and therefore not constant; 3) Descriptor: the unique identifier for the input
device; 4) KeyboadType: the value is “non-alphabetic” as the nowadays
smartphone models do not integrate hardware keyboards.

cannot be performed by human users. Therefore, by measuring the
frequency of the events the dynamic analyzers could be identified.
Also, the distribution of events along time series is also unique for
dynamic analyzers, and we show how this observation could be
leveraged for our purposes. Besides, the key presses are usually
issued at changing speed when a user types text in EditText while
the interval is fixed for dynamic analyzers. IME partially causes
this: an IME will show up when a user taps EditText and due to the
variance of the distances between characters on IME, the interval
between key presses fluctuates.

From the aspect of MotionEvent series, Android provides stan-
dard APIs for an app to recognize touch gestures inputted by user.
At the same time, a series of screen touching events (MotionEvent)
can be observed, and the events are issued much more regular if
from dynamic analyzers. As an example, we asked a participant to
swipe the touch screen on Samsung Galaxy S III from far left to
far right and directed MonkeyRunner for the same action. The test
was ran 10 times and we draw the tap locations in x-axis (float x
field of MotionEvent) against 20 sample points at the same interval
in Figure 1. The trajectories of the swipes from the user are rather
dispersed, and displacements at the start and end of the action
are smaller. In contrast, Monkey’s swipes are highly similar and
are moved at constant speed. Such difference could be modeled
through time series similarity measure related algorithms.

4.2 Implanting UI Traps
To increase the chance of triggering malicious activities, espe-

cially the ones associated with user behaviors, dynamic analyzers
have to explore and interact with as many UI elements as possible.
Such design, however, leads to a dilemma that can be exploited:
the adversary could implant UI traps that are inaccessible to human
users and unable to be distinguished by dynamic analyzers. Below
we elaborate the designs of two such attack vectors:

4.2.1 Isolated Activity
An Android app defines the UI interface and routines for event

processing in Activity component, which is also declared in the

0 5 10 15 20
Sampling point

0

100

200

300

400

500

600

700

Lo
ca

tio
n

(x
-a

xi
s

pi
xe

l)

Real user

0 5 10 15 20
Sampling point

0

100

200

300

400

500

600

700

Lo
ca

tio
n

(x
-a

xi
s

pi
xe

l)

MonkeyRunner

Figure 1: Swiping trajectory: real user vs. exploration tool

MainActivity

Activity4

android:exported="true"

Activity1

Activity2 Activity3

Activity5…...…...

…...

Figure 2: Example of isolated Activity

Manifest file. An app usually contains one main Activity and
subsequent Activities that can be transitioned to, as shown in
Figure 2. In addition, developers could export an Activity that
can be launched by other apps (Activity4 in Figure 2), through
setting android:exported="true". Common dynamic an-
alyzers tend to parse the Manifest file and visit Activities in both
cases while the users follow the defined interaction logic to visit
Activities. This motivates us to create an isolated Activity which
could not be reached through interaction as a trap: if an unused and
exported Activity is invoked, the party behind should be dynamic
analyzer. Such trap is hard to be detected ahead, as the interaction
logic is defined in app’s code and can be obfuscated.

4.2.2 Invisible UI Elements
We demonstrate another attack vector here which manipulates

the visual effects of UI elements. A human user normally taps
the UI elements she can see to input information. On the other
hand, dynamic analyzers could invoke system APIs (such as
parseViewHierarchy under DeviceBridge class) to iden-
tify valid elements and simulate the interaction. Therefore, we
could leave a valid but “invisible” control in Activity as a trap,
and use it to detect the dynamic analyzer falling in.

In fact, Android UI library provides a set of highly customiz-
able UI controls for developers, including Button, TextView,
Switch, etc. and they can be easily configured to be invisible.
One such control is ImageButton that displays image as a button
and accepts clicks. If the image is filled with the same color as the
nearby pixels of background, it would not be discovered by the
human user. Moreover, we could change the layout and location of
the controls for the same purpose. For instances, we could set the
control to be tiny (e.g., 1 pixel) or fall out of the screen.

Figure 3 explains this idea. From human’s view, only a button
(Test) and a sentence (Hello World) can be identified. Actually, 5 UI
controls are embedded in the layout: ¶ text view, · image button,
¸ switch, ¹ image button, and º button. They are all valid to
dynamic analyzers. For example, we ran Google UI Automator to
parse the UI layout and it recognizes all controls and extracts the
information listed below:

❶

❷

❸

❹
❺

(a) Real laylout (b) Human’s view

Figure 3: Invisible UI elements: real layout vs. human’s view

(0) FrameLayout[0,0][720,1280]
(0) View[0,50][720,146]
(1) TextView:Hello World[32,178][178,216]
(2) ImageButton[176,178][178,180]
(3) Switch:ON[408,124][614,180]
(4) ImageButton[32,318][132,418]
(5) Button:Test[560,318][688,414]

All these controls will be exercised by dynamic analyzers, but
only ¶ and º could be noticed by human. Therefore, events
fired on other controls could indicate the existence of dynamic
analyzers. To escape from this type of traps, dynamic analyzers
have to accurately determine the visibility of UI controls (to human
eyes), which remains an open problem.

5. EVALUATION
In this section, we present the experimental results on the effec-

tiveness of PIDetector. The testing methodology is introduced
first, and the results are discussed after.
Testing Methodology. We developed a testing app integrating
PIDetector as an internal component. Our goal is to examine
whether PIDetector can correctly detect dynamic analyzers
through one or more attack vectors. Therefore, the testing app
only has basic UI and functionalities, and we did not include
malicious payload into the testing app to reduce the impact to the
operationalized platforms. When the app is loaded, PIDetector
starts to collect raw logs regarding fired events (details are provided
below). The raw logs were sent to an HTTP server set up on
Amazon Elastic Beanstalk [1] and analyzed through the models
implemented by us. We decide to exfiltrate the event data to gain
a better understanding of the behaviors of testing platforms. All
analysis can be done locally when adopted by adversary’s real app.
Raw Logs. The collected raw logs include the following informa-
tion: the parameters of captured MotionEvent and KeyEvent objects,
invoked Activities, visited UI elements. Every returned log is
padded with a unique ID to distinguish different testing platforms
and times of running. Only the first 100 logs are transmitted to the
server to obtain enough data and avoid excessive network connec-
tions, which might be considered as anomaly activities by testing
platforms. We also collected the configuration information of every
tested service, such as Android ID, IMEI, Build.SERIAL and
Build.MANUFACTURER, to see if countermeasures against anti-
emulation are deployed.
Testing Platforms. We tested 10 dynamic analysis services built
for malware analysis, among which four come from the academia
while the others come from the security companies. In addition, we
upload our testing app to Google Play to test its official dynamic

analyzer, Google Bouncer. These 11 services are listed in Table 3.
The experiments were conducted in January and March 2016.

We were able to obtain valid raw logs from 7 services, and the
final results are summarized in Table 3. Among the remaining
ones, A5 and CopperDroid refused to analyze our app, since
the processing queue has been fully occupied. No raw logs or
informative messages are returned for Payload Security and Malwr,
and we speculate the causes are: 1) they only launch static analysis
on our app; 2) The outbound network connections from app are
blocked.
Finding 1. Nearly all (available) analysis services are vulnerable
to at least one attack vector. Most of them could be identified by
analyzing single event parameter, except TraceDroid for lacking
enough parameters and Google Bouncer for filling valid values.
For example, the Input Device parameter of the KeyEvent from
SandDroid was always "-1". Isolated Activity feature is also quite
effective, and half of these online services fell into this trap. On the
other hand, only Tecent Habo hit invisible elements, and no service
was found to generate continuous event sequence (e.g., swipe).
We suspect that these interactions are missed because complex UI
analysis and interactions are not performed.
Finding 2. Emulator camouflaging or physical device has been
deployed by online analysis systems. For example, we found the
platform configuration of Google Bouncer is quite like physical
device – Google Nexus 5 or 6, as showing below:

Version: 6.0.1 SDK_INT: 23
MODEL: Nexus 6 BRAND: google
BOARD: shamu DEVICE: shamu
HARDWARE: shamu SERIAL: ZX1G22HMB3
ID: MMB29K PRODUCT: shamu
DISPLAY: MMB29K MANUFACTURER: motorola
HOST: wped2.hot.corp.google.com
BOOTLOADER: moto-apq8084-71.15
FINGERPRINT: google/shamu/shamu:6.0.1/MMB29K

/2419427:user/release-keys

To notice, emulator camouflage has been used for other purposes
on Android platform. BlueStacks [2], a popular emulator designed
for running Android games on Windows and Mac platforms,
camouflages itself as certain models of Samsung devices to evade
emulator detection performed by apps. Hence, we believe our
techniques for programmed interaction detection is meaningful
even in the short term to attackers.

6. DISCUSSION
Limitations. As countermeasures, the developers of dynamic
analyzers could change the UI interaction pattern and make the
testing process closer to human beings. For example, the dummy
parameter values of the injected MotionEvent and KeyEvent could
be changed to use real data. On the other hand, how to hide
against the more complicated attack vectors we devised (e.g., event
sequence) is unclear. Though user’s interactions on App UI can be
recorded and replayed, challenges have to be addressed on how to
automatically adjust the recorded actions to different apps.

7. CONCLUSION
In this work, we propose a new approach to evade Android

runtime analysis. This approach focuses on detecting programmed
interactions to determine whether an app is under analysis, instead
of relying on the traditional emulator detection. The preliminary
experimental results have demonstrated the effectiveness of our
methods. We believe the evasive techniques leveraging subtleties
of human-computer interaction should be seriously considered by

Table 3: Experimental results for online dynamic analysis services
Service Name URL Simulated Events UI Traps

MotionEvent
Paramters

KeyEvent
Parameters

Event
Sequence

Isolated
Activity

Invisible UI
Elements

NVISO ApkScan https://apkscan.nviso.be
√ √

− − −
SandDroid http://sanddroid.xjtu.edu.cn

√ √
−

√
−

TraceDroid [27] http://tracedroid.few.vu.nl × × −
√

−
Anubis [15] http://anubis.iseclab.org ×

√
−

√
−

Tecent Habo https://habo.qq.com/
√ √

− −
√

VisualThreat https://www.visualthreat.com
√ √

− − −
Google Bouncer N/A – no public link × − − − ?

A5 [29] http://dogo.ece.cmu.edu/a5/ The upload process always reported error.
CopperDroid [26] http://copperdroid.isg.rhul.ac.uk Too many submitted samples were queued.
Malwr https://malwr.com No raw log was returned.
Payload Security https://www.hybrid-analysis.com No raw log was returned.

Remarks: 1) "
√

": Judged as programmed interaction. 2) "×": Judged as human interaction. 3) "−": Not triggered or found. 4) "?": Google Bouncer clicked
all buttons on the main Activity but ignored the image button which was camouflaged as a normal button by us. We speculate Bouncer only triggers the UI
controls with the Button property by design. Since this is indirect evidence, so we label it as "?".

security community and call for further research on closing the gap
between machine and human in runtime behaviors.

8. ACKNOWLEDGEMENTS
We thank anonymous reviewers for their insightful comments.

This work was partially supported by NSFC (Grant No. 61572415),
as well as the Direct Grant (Project No. CUHK 4055047) and Early
Career Scheme (Project No. 24207815) established under the Uni-
versity Grant Committee of the Hong Kong Special Administrative
Region, China.

9. REFERENCES
[1] AWS Elastic Beanstalk. http://aws.amazon.com/elasticbeanstalk/.
[2] BlueStacks. http://www.bluestacks.com/.
[3] isUserAMonkey(). http://developer.android.com/reference/android/app/

ActivityManager.html#isUserAMonkey().
[4] KeyEvent.

http://developer.android.com/reference/android/view/KeyEvent.html.
[5] MonkeyRunner.

http://developer.android.com/tools/help/monkeyrunner_concepts.html.
[6] MotionEvent.

https://developer.android.com/reference/android/view/MotionEvent.html.
[7] Testing Support Library.

https://developer.android.com/tools/testing-support-library/index.html.
[8] UI/Application Exerciser Monkey.

http://developer.android.com/tools/help/monkey.html.
[9] G DATA Mobile Malware Report - Threat Report: Q4/2015.

https://secure.gd/dl-us-mmwr201504, 2016.
[10] P. Carter, C. Mulliner, M. Lindorfer, W. Robertson, and E. Kirda. CuriousDroid:

Automated User Interface Interaction for Android Application Analysis
Sandboxes. In Financial Cryptography and Data Security - 20th International
Conference, FC 2016, Revised Selected Papers, 2016.

[11] C. Dietzel. Porting and Improving an Android Sandbox for Automated
Assessment of Malware. Master’s thesis, Hochschule Darmstadt, 2014.

[12] J. Gajrani, J. Sarswat, M. Tripathi, V. Laxmi, M. S. Gaur, and M. Conti. A
Robust Dynamic Analysis System Preventing SandBox Detection by Android.
In Proceedings of the 8th International Conference on Security of Information
and Networks (SIN), 2015.

[13] W. Hu and Z. Xiao. Guess Where I am: Detection and Prevention of Emulator
Evading on Android. XFocus Information Security Conference (XCon), 2014.

[14] Y. Jing, Z. Zhao, G. Ahn, and H. Hu. Morpheus: Automatically Generating
Heuristics to Detect Android Emulators. In Proceedings of the 30th Annual
Computer Security Applications Conference (ACSAC), 2014.

[15] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio,
V. van der Veen, and C. Platzer. ANDRUBIS-1,000,000 Apps Later: A View on
Current Android Malware Behaviors. In Proceedings of the 3rd International
Workshop on Building Analysis Datasets and Gathering Experience Returns for
Security (BADGERS), 2014.

[16] H. Lockheimer. Android and Security.
http://googlemobile.blogspot.com/2012/02/android-and-security.html, 2012.

[17] D. Maier, M. Protsenko, and T. Müller. A Game of Droid and Mouse: The
Threat of Split-Personality Malware on Android. Computers & Security,
54:2–15, 2015.

[18] A. Momtaz. Allow for setting test type as a monkey.
https://android.googlesource.com/platform/frameworks/base/+/8f6f1f4%5E!/,
2013.

[19] S. Mutti, Y. Fratantonio, A. Bianchi, L. Invernizzi, J. Corbetta, D. Kirat,
C. Kruegel, and G. Vigna. Baredroid: Large-scale Analysis of Android Apps on
Real Devices. In Proceedings of the 31st Annual Computer Security
Applications Conference (ACSAC), 2015.

[20] S. Neuner, V. van der Veen, M. Lindorfer, M. Huber, G. Merzdovnik,
M. Mulazzani, and E. R. Weippl. Enter Sandbox: Android Sandbox
Comparison. In Proceedings of the 2014 IEEE Mobile Security Technologies
Workshop (MoST), 2014.

[21] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and S. Ioannidis.
Rage Against the Virtual Machine: Hindering Dynamic Analysis of Android
Malware. In Proceedings of the Seventh European Workshop on System
Security (EuroSec), 2014.

[22] V. Rastogi, Y. Chen, and W. Enck. AppsPlayground: Automatic Security
Analysis of Smartphone Applications. In Proceedings of the Third ACM
Conference on Data and Application Security and Privacy (CODASPY), 2013.

[23] V. Rastogi, Y. Chen, and X. Jiang. Catch Me If You Can: Evaluating Android
Anti-Malware Against Transformation Attacks. IEEE Transactions on
Information Forensics and Security (TIFS), 9(1):99–108, 2014.

[24] M. Spreitzenbarth, F. C. Freiling, F. Echtler, T. Schreck, and J. Hoffmann.
Mobile-Sandbox: Having a Deeper Look into Android Applications. In
Proceedings of the 28th Annual ACM Symposium on Applied Computing (SAC),
2013.

[25] A. Takanen, J. DeMott, and C. Miller. Fuzzing Overview. In Fuzzing for
Software Security Testing and Quality Assurance. Artech House, 2008.

[26] K. Tam, S. J. Khan, A. Fattori, and L. Cavallaro. CopperDroid: Automatic
Reconstruction of Android Malware Behaviors. In Proceedings of the 22nd
Annual Network and Distributed System Security Symposium (NDSS), 2015.

[27] V. van der Veen. Dynamic Analysis of Android Malware. Master’s thesis, VU
University Amsterdam, 2013.

[28] T. Vidas and N. Christin. Evading Android Runtime Analysis via Sandbox
Detection. In Proceedings of the 9th ACM Symposium on Information,
Computer and Communications Security (ASIACCS), 2014.

[29] T. Vidas, J. Tan, J. Nahata, C. L. Tan, N. Christin, and P. Tague. A5: Automated
Analysis of Adversarial Android Applications. In Proceedings of the 4th ACM
Workshop on Security and Privacy in Smartphones & Mobile Devices (SPSM),
2014.

[30] L. von Ahn, M. Blum, N. J. Hopper, and J. Langford. CAPTCHA: Using Hard
AI Problems for Security. In Advances in Cryptology - EUROCRYPT 2003,
International Conference on the Theory and Applications of Cryptographic
Techniques, Proceedings, 2003.

[31] L. Yan and H. Yin. DroidScope: Seamlessly Reconstructing the OS and Dalvik
Semantic Views for Dynamic Android Malware Analysis. In Proceedings of the
21st USENIX Security Symposium, 2012.

[32] Y. Zhang, M. Yang, B. Xu, Z. Yang, G. Gu, P. Ning, X. S. Wang, and B. Zang.
Vetting Undesirable Behaviors in Android Apps with Permission Use Analysis.
In Proceedings of the 2013 ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2013.

[33] C. Zheng, S. Zhu, S. Dai, G. Gu, X. Gong, X. Han, and W. Zou. SmartDroid: an
Automatic System for Revealing UI-based Trigger Conditions in Android

https://apkscan.nviso.be
http://sanddroid.xjtu.edu.cn
http://tracedroid.few.vu.nl
http://anubis.iseclab.org
https://habo.qq.com/
https://www.visualthreat.com
http://dogo.ece.cmu.edu/a5/
http://copperdroid.isg.rhul.ac.uk
https://malwr.com
https://www.hybrid-analysis.com
http://aws.amazon.com/elasticbeanstalk/
http://www.bluestacks.com/
http://developer.android.com/reference/android/app/ActivityManager.html#isUserAMonkey()
http://developer.android.com/reference/android/app/ActivityManager.html#isUserAMonkey()
http://developer.android.com/reference/android/view/KeyEvent.html
http://developer.android.com/tools/help/monkeyrunner_concepts.html
https://developer.android.com/reference/android/view/MotionEvent.html
https://developer.android.com/tools/testing-support-library/index.html
http://developer.android.com/tools/help/monkey.html
https://secure.gd/dl-us-mmwr201504
http://googlemobile.blogspot.com/2012/02/android-and-security.html
https://android.googlesource.com/platform/frameworks/base/+/8f6f1f4%5E!/

Applications. In Proceedings of the 2012 ACM Workshop on Security and
Privacy in Smartphones and Mobile Devices (SPSM), 2012.

	Introduction
	Related Work
	Anti-Emulation
	Countermeasures

	Background and Motivation
	Dynamic Analysis
	Input Generation and Automated Exploration

	Motivation: Programmed Interaction
	Assumptions

	Attack Vectors
	Detecting Simulated Event Injections
	Single Event
	Event Sequence

	Implanting UI Traps
	Isolated Activity
	Invisible UI Elements

	Evaluation
	Discussion
	Conclusion
	Acknowledgements
	References

