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Abstract—Many new specialized hardware components have
been integrated into Android smartphones to improve mobility
and usability, such as touchscreen, Bluetooth module, and NFC
controller. At the system level, the kernel of Android is built
on Linux and inherits its device management mechanisms.
However, the security implications surfaced from the integration
of new hardware components and the tailored Linux kernel
are not fully understood. In this paper, we make the first
attempt to evaluate such implications. As a result, we identify a
critical information leakage channel from the interrupt handling
mechanism, which can be exploited to launch inference attacks
without any permission. On Android, all reported interrupts are
counted by Linux kernel and the statistical information is logged
in a system file /proc/interrupts, which is public to any
process. Such statistical information reveals the running status of
all integrated devices, and could be exploited by attackers to infer
sensitive information passing through them. To assess this new
threat, we propose a general attack approach – interrupt timing
analysis and apply it to interrupt logs. As showcases, we present
two concrete inference attacks against user’s unlock pattern
and foreground app status respectively. Through analyzing the
interrupt time series produced from touchscreen controller,
attacker’s chance of cracking user’s unlock pattern is increased
substantially. The interrupt time series produced from Display
Sub-System reveals unique UI refreshing patterns and could
be leveraged as fingerprints to identify the app running in the
foreground. Such information can serve as the stepping stone for
the subsequent phishing attacks. The experiment results suggest
our inference attacks are highly effective, and the risks should
be mitigated immediately.

Index Terms—hardware interrupt; timing analysis; procfs;

I. INTRODUCTION

Smartphone plays the important role of personal assistant
and data container in people’s daily life. Different from the
traditional desktop platforms, mobile OSes need to suffice
the new requirements of mobility and usability with limited
computing resources. New specialized hardware components,
e.g., touchscreen and NFC transmitter, are manufactured and
integrated to this end.

Previous research investigated the security threats coming
from particular hardware components, like accelerometer [1],
[2] and camera [3], [4]. These attacks are mainly based on
reading data directly generated by the targeted hardware.
However, none of them looked into the threats introduced

by the highly tailored software components, especially from
the angle of kernel. In this paper, we make the first attempt
to evaluate the security implications of the integration of
specialized hardware and tailored kernel on Android.

Hardware Interrupt. As the most popular mobile platform,
Android is built on Linux kernel and enhanced to adapt to the
requirement of mobility. Android also inherits the interrupt
mechanism from Linux, which is designed for the efficient
communication between the CPU and external devices. When
new hardware events (e.g., user touching the screen) come, the
corresponding hardware device (e.g., touchscreen controller)
sends a signal to ask OS for immediate processing. As a
response, the CPU alters the sequence of instructions in
execution to handle this event with high priority.

Our Findings. All reported interrupts are counted by OS,
and the statistical information is stored in a system file
/proc/interrupts (Fig. 2 shows an example), which
is public to any process. Such information reflects the real-
time running status of devices and it could be exploited by
attackers to infer information that passes through, including
user’s sensitive data and interactions with the devices. In
this paper, we propose a novel attack approach – interrupt
timing analysis. Through analyzing the time series of interrupts
occurred for a particular device, user’s associated sensitive
information could be inferred by the attacker without any
permission.

The root cause of this new security threat comes from the
ill-conceived integration of specialized hardware components
and tailored kernel. Unlike the traditional desktop platforms,
smartphone is equipped with many peripheral devices, such
as touchscreen, Bluetooth module, NFC controller. These
newly included devices usually interact with the user directly
and bring new kinds of interrupts, which means new attack
channels. However, Android still uses the built-in method of
Linux kernel for interrupt auditing without any change. The
interrupt information channel was once mentioned in previous
work [5], [6], but they doubted that it could be used for
effective attacks and no concrete attack method or result was
given. On Android, we present two concrete inference attacks



through interrupt timing analysis, against user’s unlock pattern
and foreground app respectively.
Inferring Unlock Pattern. Touchscreen is an indispensable
component for nearly all smartphones. A lot of user’s sensitive
information passes to the system through the movement on
touchscreen. We use the Android graphical password scheme
– unlock pattern as an example to demonstrate the feasibility
of our proposed interrupt timing analysis. We find the finger
movements on the screen correlates to the amount of interrupt
occurred for touchscreen controller. Specific to unlock pattern,
the interrupt amount reflects the length of swipe line indirectly.
After gathering its time series, we leverage Hidden Markov
Model and probabilistic analysis to infer the possible unlock
patterns. Our experimental study shows, even without any
knowledge about the victim (i.e., the user could select any
pattern from all 389,112 combinations), our attack could
reduce more than 90 % search space for just one guess.
Inferring Foreground App. The information about app run-
ning in the foreground is quite sensitive and should be kept
away from unauthorized apps to prevent phishing attacks.
Starting from Android 5.0, Google has enforced a system-
level permission REAL_GET_TASKS [7] to prevent such
information leaking to third-party apps, which nonetheless can
be bypassed by our attack. We observe that, while launching
an app, the foreground UI is continuously refreshed. The
refreshing patterns of apps during launching could be used
to identify this app. Also, in the course of UI refreshing, the
interrupts for Display Sub-System (DSS) occur with the same
frequency. It motivates us to model the UI refreshing process
through interrupt time series and detect the foreground app.
Combined with machine learning techniques, we achieve such
attack without any permission, and the result shows an attacker
has 87 % success rate to identify the foreground app from a
set of 100 candidates within one attempt.
Contributions. We summarize this paper’s contributions as
below:

• New Attack Surface and Approach. We discover that the
interrupt log file (/proc/interrupts) of Android
could leak user’s sensitive information. To exploit such
information, we propose a new general attack approach
– interrupt timing analysis.

• New Inference Attacks. We present two practical inference
attacks to infer user’s unlock pattern and the app running
in the foreground. The attack channels are based on
the interrupt time series for touchscreen controller and
Display Sub-System.

• New Techniques. A set of novel schemes are developed
to model the inference target, including unlock pattern
modeling, gram transition inference, improved time series
similarity calculation, etc.

• Implementation and Evaluation. We implemented the
attack prototype apps and evaluated them under the real-
world settings. Our experimental studies demonstrate that
attacking through interrupt timing side-channel is feasible
and highly effective.

Roadmap. The rest of the paper is organized as follows:
Section II introduces the background of hardware interrupt
and explains why information could be leaked from interrupts
on Android. Section III outlines the high-level ideas of our
two concrete attacks. Section IV shows our attack on inferring
unlock pattern. Inferring the foreground app is introduced in
Section V. In Section VI, we discuss the leaks from other
interrupts and propose some defense solutions. Related works
are reviewed in Section VII. Section VIII concludes this paper.

II. BACKGROUND

Hardware interrupt was introduced as an efficient mech-
anism for the communication between high-speed CPU and
low-speed external devices since the early age of modern
computer. This mechanism is embraced by all mainstream
computing platforms, including the mobile ones like Android.
In this section, we briefly overview the design of hardware
interrupt and Android, and then explain why the leaks from
interrupts on Android could lead to inference attacks.

A. Hardware Interrupt

In modern computing architecture, CPU is responsible for
managing the connected hardware devices and initiating the
handling procedures defined by operating system (OS) for
different hardware events. Hardware interrupt mechanism is
proposed to enable timely event management when one CPU
has to serve many devices (e.g., mouse, keyboard, and network
card). When a device requires immediate attention from OS,
e.g., when the volume key is pressed or keyboard is typed, an
electronic signal will be emitted from the device [8]. Such
electronic signal is called Interrupt Request (IRQ) and is
passed to the corresponding programmable interrupt controller
(PIC) through IRQ lines. PIC is a hardware circuit which
bridges I/O devices and CPU. When it receives an IRQ, it will
notify CPU to process this IRQ immediately. In response, CPU
will halt the current execution thread, preserve the execution
context, and invoke the registered interrupt handler. Such a
process that alters the sequence of instructions executed by
CPU is called interrupt. When the execution of the interrupt
handler is completed, the preserved context is restored and
halted execution is resumed. This interrupt mechanism is
particularly useful for handling hardware I/O events which
are usually urgent but triggered nondeterministically [9].

B. Android Platform

In this work, we investigate the security issues regarding
hardware interrupt on Android platform. Android system is
built on Linux kernel, and new layers are introduced in
addition to suffice the functionality requirements for mobile
devices [10], [11]. The whole architecture can be sliced into
6 layers, which can be further classified into two categories
based on their degrees of dependence on hardware. Fig. 1
illustrates the layers of Android system, and the each layer is
briefly described below:
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Fig. 1. Android layered framework

1) Hardware Dependent Layers:
• Hardware Devices are the physical components of an

Android smartphone, including touchscreen, LCD panel,
camera, etc.

• Linux Kernel is the foundation of Android system.
Compared with the original Linux kernel, a set of “kernel
enhancements” are patched to provide tailored support for
Android system. For instance, an Android-specific mech-
anism Binder is integrated into the kernel to facilitate
interprocess communication [12].

• Hardware Abstraction Layer (HAL) defines the func-
tional interfaces that are required to be implemented by
hardware device drivers. Through this layer, applications
and system libraries can operate hardware devices man-
ufactured by different vendors using unified APIs.

2) Hardware Independent Layers:
• Libraries layer provides libraries written in native code

(C/C++) that directly access Linux kernel and HAL. In
addition, Android Runtime, including the mobile applica-
tion (app) container Dalvik VM, is implemented within
this layer.

• Application Frameworks include a set of system ser-
vices that can be shared and reused by mobile apps. For
example, Content Provider allows data publishing and
sharing between apps.

• Applications layer stacks the mobile apps. It comprises
both system apps which are shipped together with An-
droid OS and third-party apps installed by user.

Under the Android framework, hardware interrupt is raised
from the hardware devices layer and responded by the Linux
kernel layer. The interrupt flows initiated from specific devices
are shown in Section IV-A and V-A.

C. Information Leaks from Interrupts on Android

The framework for interrupt processing and auditing on
Android resembles other Linux-based systems. When an IRQ
is issued and handled by CPU, it is logged by a system
counter and the statistical information is stored in a system file

/proc/interrupts. The access attributes for this file is
-r--r--r--, which means it can be read by any process, no
matter if it belongs to system apps or third-party apps. Fig. 2
shows the partial content of the file dumped from Google
Nexus 6 with Android 5.1.1 installed. The first column lists
the unique IRQ (line) numbers. Each number is reserved by
OS for one type of event and is associated with one interrupt
handler. The following columns show how many interrupts
have been issued to each CPU core since the starting of system
(power on for Android). Since Google Nexus 6 is equipped
with a 4-core CPU (Qualcomm Snapdragon 805), the interrupt
counts are listed in 4 columns. The number of columns varies
depending on the number of active CPU cores. In general,
Linux kernel prefers to handle interrupts on the first CPU core
in order to maximize cache locality [8]. As shown in Fig. 2,
the column CPU0 has the largest interrupt count for most IRQ
numbers. The penultimate column shows the name of PIC
assigned for handling one type of IRQ. One PIC could be
shared by multiple devices for transmitting IRQ. The devices
that send out the specific IRQ are listed in the last column.

Since the statistical information of interrupt reflects the
running status of devices and is also public, it could be abused
by attackers to infer the user’s actions on targeted devices,
causing information leaks. Previous research has mentioned
the potential privacy risks related to interrupt [5], [6], but none
of them presented concrete attacks leveraging this channel.
In particular, Jana et al. [5] stated that “the feasibility of this
attack remains open”. For the traditional desktop environment,
though more than 10 different types of interrupts can be
monitored, most of the associated devices do not directly
interact with users, e.g., system timer. For the remaining ones,
the information leaked is rather limited. As an example, the
interrupt from audio codec could leak whether an earphone
is plugged, which, however, cannot be used to infer more
sensitive information - the played sounds. What’s more, the
interrupt counter is used globally rather than dedicated to a
single process, which makes the sensitive information hard to
be discerned.

The development of modern mobile phones, however, offers
new alternatives to exploit interrupt information for attacks.
The set of integrated peripheral devices on smartphones keeps
growing to meet user’s new expectations, and each new device
brings in new kind of interrupt (e.g., NFC controller). For
the Google Nexus 6 phone we tested, already more than 100
IRQ numbers are reserved by OS. Most of the newly included
devices directly interact with the user, and the potential attack
surface is significantly broadened. Another favorable condition
for attacks is that applications run less parallel in mobile
system than in desktop system. Especially for Android phones,
only one application is allowed to run in the foreground.
Therefore, the signals from user’s actions or applications of
interest are more distinguishable. As shown in our concrete
attacks, inference attack abusing leaks from interrupt is not
only feasible on Android but can also lead to grave security
and privacy issues, i.e., leaks of unlock patterns and applica-
tion running status.



 
           CPU0       CPU1       CPU2       CPU3        
 20:      29825       9674       8921       8102       GIC  arch_timer 
 25:          0          0          0          0       GIC  MSM_L1 
 33:       2258          0          0          0       GIC  bw_hwmon 
 34:          0          0          0          0       GIC  MSM_L2 
 35:          0          0          0          0       GIC  apps_wdog_bark 
 39:       2722       1754       1635       1389       GIC  arch_mem_timer 
 61:         80          0          0          0       GIC  mxhci_hsic_pwr_evt 
 64:       5573          0          0          0       GIC  xhci-hcd:usb1 
 65:       4519          0          0          0       GIC  kgsl-3d0 
 74:          0          0          0          0       GIC  msm_iommu_nonsecure_irq 
 75:          0          0          0          0       GIC  msm_iommu_secure_irq, msm_iommu_secure_irq 
 76:        548          0          0          0       GIC  msm_vidc 
 
... (Omit some lines) 
 
436:          0          0          0          0   msmgpio  bluetooth hostwake 
437:         22          0          0          0  qpnp-int  smb135x_chg_stat_irq 
438:          1          0          0          0   msmgpio  max170xx_battery 
439:        129          0          0          0   msmgpio  atmel_mxt_ts 
440:         48          0          0          0   msmgpio  bcm2079x 
 
... (Omit some lines) 

PIC name Device name 

The amount of interrupts occurred 

IRQ number 

Fig. 2. Example of /proc/interrupts, dumped from Google Nexus 6.

Interrupt on Other Platforms. To fully understand the attack
surface, we also investigate the attack feasibility on other
platforms. In Mac OS X / iOS environment, a similar interrupt
mechanism is implemented, but the statistical information of
interrupts is not exposed to the processes (no public /proc
filesystem is available due to the different kernel-level imple-
mentation derived from BSD) [13]. On Microsoft Windows
platforms (both desktop and mobile), the design principle of
interrupt handling is similar, but the implementation is quite
different. For instance, the Trap Dispatching mechanism [14]
is incorporated to achieve more flexible interrupt processing.
On the other hand, different from Mac OS X / iOS platforms,
the statistics of interrupt are public. Command-line tools such
as Xperf [15] can be used to retrieve such information, which
is usable for the interrupt attacks.
Software Interrupt. Another kind of interrupt is software
interrupt, which is used by programs for immediate com-
munication with CPU. Software interrupt is triggered under
two scenarios [9]: 1) an exception (or trap) which cannot be
handled by the program alone is raised. 2) special instruction
causing interrupt is executed (e.g., to request data from disk
controller). The corresponding statistics are logged in a public
file /proc/softirqs. Yet, whether software interrupt can
be used for inference attacks is unclear, since the information
is more coarse-grained (aggregated from all processes) and
less user-centric. Therefore, we focus on hardware interrupt
in this work.

III. ATTACK OVERVIEW

Through examining the interrupt statistics on Android, we
identified two types of interrupts that are both tied to user’s
behaviors and showing distinguishable patterns according to
different user’s actions. The first type is produced from
touchscreen when pressed and released by the user, while the
second one is generated accompanying with UI refreshing. By

continuously monitoring these interrupt statistics, we show it
is feasible to infer user’s unlock pattern and the app started by
user. In this section, we introduce the mechanisms regarding
unlock pattern and UI refreshing together with the high-level
ideas of our attacks.

A. Inferring Unlock Pattern

Touchscreen becomes an indispensable component for
nearly all smartphones today. A large amount of user’s sen-
sitive information passes through the touchscreen, including
text messages and unlock pattern. The secrets can be indirectly
inferred from the interrupt emitted from touchscreen, and we
use unlock patterns as an attack showcase.
Android Unlock Pattern. Unlock pattern is incorporated into
Android as an alternative to overcome the usability issue
involving traditional authentication schemes, like text-based
password. When a user intends to unlock her phone, a 3× 3
matrix (totally 9 dots) is displayed on the screen, and the user
is required to draw her unlock pattern through a series of lines
which connect the dots in a certain order (we call them swipe
lines). Compared to the traditional authentication schemes,
unlock pattern is easier to remember and input. Therefore,
it is widely adopted by customers [16]. Fig. 3 shows the lock
UI on Android 5.1.1 (AOSP) and one unlock pattern.

Each dot in the lock UI is mapped to a number (see Fig. 4),
and the number sequence for an unlock pattern is called
pattern password. For instance, the pattern password of the
unlock pattern illustrated in Fig. 3 is 41235789. For the
same geometric shape of unlock pattern, drawing in different
directions (e.g., 14789 v.s. 98741) results in different pattern
passwords.

A valid pattern lock should satisfy 4 requirements below:
1) At least 4 dots must be used.
2) At most 9 dots can be used.



Fig. 3. UI for inputting unlock
pattern on AOSP Android 5.1.1.
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Fig. 4. Unlock pattern modeling.

3) No dot can be used more than once.
4) Only straight line is allowed and the dots not visited

before cannot be jumped over.

Even after the above restrictions are applied, there still
exist 389,112 valid combinations [17], making the chance for
successful brute-force attacks very low. Android also enforces
strong protection mechanisms to keep the pattern password out
of the reach of adversary. The pattern password is stored at
/data/system/gesture.key and is only accessible to
the OS itself (file attribute: -rw-------). The raw data of
user’s touch traces are recorded in /dev/input/deviceX
(X is an integer and varies for different phones). This file is
only open to system-level processes belonging to the input
user group. Therefore, it is impossible to directly steal the
password unless the root privilege is obtained. Instead, our
attack aims to infer the user’s unlock pattern through a zero-
permission third-party app which is much stealthier.
Unlock Pattern and Interrupt. When user’s finger touches
and swipes on the screen, a sequence of interrupts will be
produced, which is similar to moving the mouse on desktop.
Particularly, in this case, different lines could result in different
interrupt sequences and a gap could be observed between
lines’ interrupts. As an example illustrated in Fig. 5, when
drawing the pattern 41235789, the amount of interrupts
observed from the line 3 to 7 is more than other lines, and
gaps occur at dot 1, 3 and 7.

The correlation between interrupts and finger movement
motivates us to model unlock pattern through interrupt timing
analysis. When the interrupt time series is gathered, we first
seek to segment it into sequences of incessant interrupts. For
each sequence, we look into the observed amount of interrupts
and map it to one type of swipe line (e.g., short v.s. long). By
combining the inferred swipe lines, we are able to recover the
pattern password with decent probabilities.

B. Inferring foreground app

The information about the app running in the foreground
(or foreground app) should be kept away from unauthorized
apps to prevent phishing attacks. However, the name of the
foreground app can be speculated through interrupt timing
analysis. Furthermore, we found certain app’s activity exhibits
distinctive interrupt pattern, causing privacy leaks.
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Fig. 5. Interrupt time series for pattern 41235789 inputted by a participant.
Within 1 ms, at most 1 interrupt can be observed.

Foreground App Detection. The information of foreground
app is considered sensitive. If leaked, malicious apps can
exploit it for phishing attacks. For example, when a ma-
licious app identifies that an e-banking app is started, it
can immediately pop up a phishing window covering the
foreground with the same UI as the login page of the e-
banking app and fool the user to type her credentials in the
fake UI [18], [19]. To mitigate this threat, Google mediated
the access to such information through permissions. For the
early versions of Android, an app with GET_TASKS permis-
sion granted can invoke the getRunningTasks() API to
learn the foreground app. Since Android 5.0, Google replaced
the GET_TASKS permission with a nonpublic system-level
permission REAL_GET_TASKS [7], which blocks the access
from third-party apps.
UI Refreshing and Interrupts. When an app is launched
by the user, a system service ActivityManagerService
will start the default main activity of this app and then the
functions onCreate(), OnStart(), and OnResume()
are executed sequentially for app loading. The process also
happens for Activity transition after running. At the low
level, the foreground UI is continuously refreshed during these
processes. An app could choose the way UI is refreshed, and
we elaborate three popular UI refreshing related techniques
below:
• Splash Screen. It is usually shown when an app is started

by the user. In most cases, a splash screen displays the
promotion information (e.g., logo) or running status (e.g.,
network connectivity or data loading progress).

• Asynchronous Loading. When large data is being loaded
from remote servers or internal storage during UI transi-
tion, asynchronous loading technique is leveraged, which
separates UI rendering and data loading into isolated
threads. Therefore, UI is continuously updated instead
of being blocked during data loading process.

• Animation. App developers can choose animation ef-
fects during activity switching. Popular effects include
fading in, zooming, wiping, etc. Besides, the anima-
tion is also used for rendering control objects such as
ImageButton.

Fig. 6 shows the launching process of a popular file sharing
app SHAREit [20]. The app first displays a splash screen and



Fig. 6. The launching process of SHAREit. The interrupt time series is shown
in the left top of Fig. 7.

the gradually transit the UI to the main Activity with fading
animation effect.

In the course of UI refreshing, Display Sub-System (DSS)
keeps notifying Android system through sending IRQs, and
our observation suggests the UI layout and refreshing strate-
gies usually yield distinct interrupt time series. One example
is splash screen, for which showing static image will generate
much fewer interrupts than showing animation. An app doing
asynchronous loading usually refreshes UI more frequently,
which leads to continuous occurrences of interrupts.

Fig. 7 shows the interrupts patterns for 6 apps during
loading (including e-banking, anti-virus, system pre-installed
apps, etc.). The x-axis is the time sequence with 50ms as the
interval. The y-axis is the aggregated amount of interrupts
observed during the 50ms interval. Their patterns can be
told apart even just through human eyes. This phenomenon
motivates us to model the UI refreshing process through
interrupt time series and detect the foreground app.

C. Adversary Model

We assume the adversary here has tricked the victim to
install the malicious app targeting secret unlock pattern or app
UI information. The malicious app requires “zero permission”
from system for the inference attacks, as reading interrupt
statistics is unfettered. Such app is difficult to be detected by
mobile anti-virus software or the user during installation time.
In addition, our later evaluation on performance shows battery
and time consumption is negligible. Thus, it is also hard to be
observed by the user at runtime.

For the first attack, either the raw data of interrupts or the
inferred unlock pattern is sent out to the remote server of
adversary, based on where the analysis happens. Normally,
this requires the INTERNET permission to be granted. But as
discovered by previous works [21], certain covert channels can
be exploited (e.g., URI loading by browser) and the permission
requirement can be ignored. For the second attack, the UI
information can be used locally for subsequent attacks, like
phishing.

IV. UNLOCK PATTERN INFERENCE ATTACK

In this section, we present the attack inferring user’s An-
droid unlock pattern. We first elaborate the internal mecha-
nisms of event processing on touchscreen. Then, we introduce
our approach in unlock pattern modeling and data processing.

In the end, we evaluate the effectiveness and performance of
our approach.

A. Touchscreen Controller and Interrupt

A set of mechanisms have been implemented in Android
system and the underlying devices to support the process from
electrical signal generation from user’s finger touching to event
dispatching to the receiving app. The complete touch event
processing flow is introduced in Appendix VIII-A, and here
we only describe mechanism regarding interrupt.
IRQ from Touchscreen. Currently, most touchscreens use the
capacitive touch techniques to detect the change of electro-
static field from human’s finger in order to capture its move-
ment. Typically, capacitive touchscreens consist of glass as
the insulator. The human body is also an electrical conductor,
so when the human body comes into contact with the touch-
screen, its electrostatic field becomes distorted [22]. When the
finger keeps stationary on the screen, the electrostatic field
stays unchanged. An IRQ is triggered by the touchscreen
hardware when a change happens on the electrostatic field.
Therefore, a finger touching or leaving the screen will both
trigger one IRQ [23]. When user’s finger swipes upon the
touchscreen, a sequence of IRQ sequence will be produced as
the electrostatic field keeps changing (consider the movement
as continuous touching and leaving screen). The amount and
frequency of IRQ fired depend on the distance and speed
of finger’s movement. When the finger moves faster, more
IRQs will be generated, but the frequency can not exceed the
processing capability (about 135 Hz on Google Nexus 6).
Though some kinds of IRQs can be ignored by CPU, this
never happens to touchscreen due to its high priority in the
processing queue.

B. Attack Methodology

The correlation between finger’s movement on touchscreen
and IRQ inspires us to infer the unlock pattern through
monitoring the interrupt counter. As described in Section III-B,
an unlock pattern is composed of a set of swipe lines. Usually,
more interrupts can be observed from long swipe lines than
short ones. The finger usually pauses at the joint point between
two swipe lines, leading to a gap of interrupts. Therefore, by
analyzing interrupt data stream, at least partial information
on swipe lines (i.e., number and length) can be inferred.
Although the exact password pattern is not recovered, the
search space is significantly reduced, and enumerating the
possible combinations only takes dozens of attempts and
minutes of unlocking and waiting time, as shown in our later
analysis.

We divide the attack method into the following stages. 1)
The public interrupt log file is regularly sampled, and the
stream of interrupt counts are preprocessed and divided into
grams (a segment of ever-changing interrupt counts). 2) We
model the unlock pattern into the transition of states (a state
is a cluster of the swipe lines with the same length) with
probabilities. 3) The candidate combinations of states ranked
with probabilities are produced for a testing unlock pattern.
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360 Security 
[com.qihoo.security]

Fig. 7. Interrupt time series of 6 apps’ launching processes. The number of interrupts is aggregated in 50ms interval.

TABLE I
SUMMARY OF DEVICE NAMES FOR TOUCHSCREEN CONTROLLER

Phone Model PIC Name Device Name Device Vendor

Google Nexus 6 msmgpio atmel mxt ts Ateml
Moto Droid Turbo msmgpio atmel mxt ts Ateml
Moto Milestone 2 GPIO qtouch ts int Quantum
Sony Xperia Z3 msmgpio clearpad Synaptics
Sony Xperia ion msmgpio clearpad Synaptics
Samsung Galaxy A5 msm tlmm

v4 irq
mms300-ts Melfas

Samsung Galaxy S3 s5p gpioint melfas-ts Melfas
Samsung Galaxy S
Advance

Nomadik-
GPIO

mxt224 ts Ateml

We model and test the unlock pattern using Google Nexus
6 with AOSP Android 5.1.1 only, but the attack method also
applies to other smartphones.

Reading Interrupt Count. The interrupt time series for
touchscreen controller could be captured through monitoring
/proc/interrupts. The first issue we need to address is
to find the right entry regarding touchscreen interrupts from
the log file. Searching by IRQ number is not a viable solution,
as the IRQ number is customized by Android version or
manufacturer. Instead, we use device name to identify the entry
as it is fixed for the same phone model (atmel_mxt_ts
for Google Nexus 6). In addition, we surveyed a number
of phones and found the device name for touchscreen either
contains substring “ts” or “pad” uniquely, as summarized in
Table I. Therefore, we can use the substring pattern to find the
touchscreen log entry on new phone models. The aggregated
interrupt amount since the phone is booted can be read from
the column CPU0, as shown in Fig. 2, and we sample it at a
regular interval.

The sampling frequency of our implementation could reach
1675 Hz, which is much higher than the maximum frequency
of touchscreen IRQs (135 Hz on Google Nexus 6) to minimize
the odds of missing interrupt updates. In fact, we optimize the
data collection stage by only monitoring the interrupts during
the unlocking operation. The malicious app we built can stay
in the sleeping mode in the background and be activated only
when the screen is turned on, which can be detected by reg-
istering Android broadcast channel ACTION_SCREEN_ON.
When the broadcast ACTION_USER_PRESENT is observed,
the unlocking operation is supposed to be finished, and the
app can turn itself back into the sleeping mode.

Data Pre-processing. The sampled interrupt data stream needs
to be preprocessed before feeding to the subsequent stages for
unlock pattern inference. The steps are elaborated below:

• Data Deduplication. We split the interrupt data stream
by 1 ms interval. Since our sampling rate (1675 Hz)
is higher than 1000 Hz (1 sample per 1 ms), multiple
samples could be collected within 1 ms interval. For such
case, we keep the first data point within the 1ms interval.

• Data Interpolation. Although we use a high sampling
rate, occasionally, some changes of interrupts are still
missed, especially when heavy computing tasks are run
by CPU (around 1.8 % 1-ms intervals have no sample
data as observed from the experiments). To fill the
missing data points, we use the linear interpolation [24]
method, which has been extensively used in the area of
signal processing.

• Interrupt Increment Computation. The interrupt data ob-
tained are the aggregated values since the bootstrap of the
phone. We compute the difference of interrupts counts to
get the increment value.



TABLE II
5 STATES OF SWIPE LINES

State Length Swipe Line Examples % of appearance in
all state sequences

L1 1 1→2, 1→4 33.81 %
L2

√
2 1→5, 2→4 24.45 %

L3 2 1→2→3, 3→6→9 10.92 %
L4

√
5 1→6, 6→7 26.64 %

L5 2
√

2 1→5→9, 3→5→7 4.18 %

• Gram Segmentation. We segment a long interrupt time
series to several grams through searching interrupt gap
which is actually the turning points between swipe lines.
According to our experiments and empirical analysis, if
the amount of interrupts in 60 ms is less than 5, we
consider it as a gap. Then we label the gram using
the accumulated interrupts increments within the time
window. For example, the interrupt time series in Fig. 5
is converted to 4-grams {28, 58, 77, 45}.

Unlock Pattern Modeling. A gram is labeled by the number
of observed interrupts, and we need to find the mapping from
it to the corresponding swipe lines. Since the length of a swipe
line is proportional to the number of interrupts, we cluster the
swipe lines by the length and the grams by the interrupt count
and build the correlation. It turns out there are 5 types of swipe
lines, associated with 5 types of grams.

For explanation, we model the unlock pattern in 2-
dimensional Cartesian coordinate system and set dot 7 as
origin point with coordinate as (0, 0), as shown in Fig. 4.
Therefore, the swipe line from dot 7 (0, 0) to dot 8 (0, 1) is
represented by a vector [0, 1] with length 1. Under this model,
all swipe lines can be clustered into 5 categories (or states),
labeled as Li, i ∈ [1, 5], which are listed in Table II. Based on
such model, every unlock pattern could be represented by a
state sequence. For example, the pattern 41235789 could be
translated to L1L3L5L3. A long swipe line can be represented
by one or two states (e.g., 147 corresponds to L1L1 or L3).
To make sure that the mapping from swipe line to state is
unique, we always use the state with the longest length (so
147 is mapped to L3). On the contrary, the mapping from
state to swipe line is one-to-many (see Table II). The number
of unlock patterns associated with one state sequence is yet
limited, due to the restrictions of valid unlock pattern. On
average, one state sequence corresponds to 20.37 patterns.

Single State Analysis. Our goal is to infer the state sequence
from the grams. As the first step, we need to derive the correct
state from a single gram. This task looks trivial at first sight:
one simple approach is to correlate the state with the range
of interrupt count and classify a gram into a state if it falls
within the range. Unfortunately, this approach easily failed
due to the big variance of people’s drawing actions. Even for
a single user, the way of swiping a line is different from time
to time. This forces us to find a model which can handle the
variances, instead of a simple linear equation.
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To uncover the relationship, we carried out a user study
and recruited 5 users to join our experiments1. We asked each
user to draw lines belonging to each state for 100 times on
the unlock pattern UI of Google Nexus 6. At the same time,
a self-developed app runs in the background and samples
the interrupt count. Fig. 8 shows the interrupt accumulation
histogram of these 5 states.

As shown in the histograms, the amount of interrupts across
different swipes forms Gaussian-like unimodal distribution
(normal distribution), for all 5 states. Such observation inspires
us to compute the probabilities of 5 states derived from a
gram, using the Gaussian model trained from real-user data.
In particular, we use probability density function (PDF):

f(x|µ, σ) = 1

σ
√
2π

exp(− (x− µ)2

2σ2
) (1)

In our case, f(x|µ, σ) is the probability of state, x is
the amount of interrupts, σ is the expectation, and µ is the
standard deviation. Leveraging the curve fitting functionality
of MATLAB [25], σ and µ could be obtained from the same
set of data collected from the 5 volunteers (also shown in
Fig. 8). Given an interrupt amount x, we calculate probabilities
of states Li, i ∈ [1, 5] it belongs to as:

Pr(y|Li) =


f(y|37.43, 6.439), i = 1
f(y|40.79, 7.611), i = 2
f(y|51.38, 8.555), i = 3
f(y|52.62, 8.399), i = 4
f(y|58.84, 8.665), i = 5

(2)

It turns out the distribution of the 5 states can be separated
in most cases, as plotted in Fig. 9. The only exception is for
L3 and L4. This can be explained by their length. In fact, the
geometric length of L3 and L4 is 2 and

√
5, and the difference

is only 0.23, much less than other pairs.
In order to evaluate the accuracy of our Gaussian model, we

designed a simulation experiment. According to the percent-
ages of every state (listed in Table II) and distribution features
(shown in Fig. 8), we generated 1,000,000 simulated interrupt
amount observation values with state label, (y, Li). Based on
these simulated data, the probability of correct guessing for

1We have got the IRB approval from the authors’ institutes before perform-
ing any experiment related to human subjects.
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Fig. 8. The distribution of interrupt amounts for 5 states.
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Fig. 11. Using HMM to infer state sequence. {Lx1Lx2Lx3 . . . LxT } can
be inferred using {y1y2y3 . . . yT }.

1 to 5 times using our Gaussian model is calculated and the
result is shown in Fig. 10. The success rate is substantially
increased: even for one-time guessing, the success rate is 42.45
%, doubled from that of random model.
State Sequence Analysis. After the probability of a single
state is computed, the next step is to derive the state sequence.
Within one unlock pattern, states are not independent and
the probability of one state is affected by previous ones.
For instance, when a user swipes a line of L5 (1→5→9 or
3→5→7), she can not swipe L5 for next. Therefore, we treat
the problem of finding state sequence as a process of solving
Hidden Markov Model (HMM) [26], that is to find the correct
(hidden) state sequence from the observed sequence (grams),
as shown in Fig. 11.
Viterbi Algorithm. Viterbi algorithm [27], [28] is a classic re-
cursive optimal solution for searching the most likely sequence
of hidden states, which is particularly suited for solving HMM.
We formalize this algorithm for our settings: suppose the state
space of HMM is S = Li, i ∈ [1, 5], the probability of initial
state Li is πLi

and the transition probability from Li to Lj

is TrLi,Lj . If the observation sequence is {y1, y2, . . . , yT }
(every element is the interrupt amount of a gram), the most
likely state sequence {Lx1, Lx2, . . . , LxT } could be calculated
through:

V1,Lk
= Pr(y1|Lk) · πLk

(3)

Vt,Lk
= max

Lx∈S
{Vt−1,Lx · TrLx,Lk

· Pr(yt|Lk)} (4)

where Vt,Lk
is the probability of the most likely state sequence

with the first t observations and Lk as the final state. Pr(yt|Lk)
is the emission probability of showing observation yt in the
hidden state Lk. So, to apply Viterbi algorithm, we need a

way to represent emission probability Pr(yt|Li), i ∈ [1, 5] and
transition probability TrLi,Lj

, i, j ∈ [1, 5].
Emission Probability. Since the probability for each state Li

for a gram has been calculated in the previous step using
Equation 2, we assign the emission probability Pr(yt|Li) with
these values.
Transition Probability. We build set M containing the map-
pings between all the 389,112 pattern passwords and state
sequences (e.g., [41235789−→L1L3L5L3]), and use it to
infer the probability per state sequence. Different from the
standard Viterbi algorithm, the transition probability at step t
in our case does not only rely on the one state ahead, but all
previously encountered states (the sequence of previous states
is defined as Lseq(t−1)). Thus, we customize the formula of
transition probability as below:

TrLseq(t−1),Lj
=

∑
M [s].start with(Lseq(t−1)‖Lj

)∑
M [s].start with(Lseq(t−1))

(5)

where
∑
M [s].start with(Lseq(t−1)) is the amount of state

sequences that start with seq(t− 1) and contain s states (the
target unlock pattern is s-gram, which is determined during
the previous data pre-processing stage).
Top-N Result. The output of Viterbi algorithm is the most
likely state sequence, which may be incorrect sometimes.
Therefore, we could provide N most likely state sequences
ranked by the overall probabilities to increase the chances of
successful attacks. The algorithm is shown in Algorithm 1.

Algorithm 1: Top N state sequences calculation
1 for i=1 to N do
2 StateSeq = Viterbi(ObservedSeq);

result.add(StateSeq) ; // record Top X result
3 M .remove(StateSeq) ; // adjust M to change Tr
4 end
5 output result;

Pattern Password Recovery. A state sequence inferred in the
last step could be shared by multiple pattern passwords (e.g.,
both 1235789 and 7415963 can be described by L3L5L3).
The concrete pattern password could be obtained by attempt-
ing the combinations of digits corresponding to the state



TABLE III
SEARCH SPACE AFTER SUCCESSFUL STATE SEQUENCE INFERENCE

Pattern 2-gram 3-gram 4-gram 5-gram

# of Patterns 12.9 25.7 29.2 29.9
Space Reduction 99.997 % 99.993 % 99.992 % 99.992 %

sequence. It turns out the search space is significantly reduced
when starting from state sequences, as shown in Table III. If
the phone is grabbed by an attacker, only dozens of attempts
are needed for a correctly interred state sequence. Take 3-gram
pattern as an example, 99.993 % patterns have been excluded
already and on average only 25.7 pattern passwords need to be
tested. If we assume drawing one pattern takes 4 s, an attacker
could unlock victim’s phone in d25.7e × 4 + 4× 30 = 224 s
(every 5 wrong attempts lead to 30 s punitive wait, which is
the default setting in AOSP). This process can even be fully
automated by plugging in a signal simulator to the victim’s
phone [29].

C. Evaluation

We evaluate the effectiveness of our attack against the pat-
tern passwords inputted by real users. Different from previous
works [2], [30], which only attack a very limited number of
patterns (50 for [2] and 1 for [30]), our attack targets all
389,112 patterns. In particular, we first evaluate the accuracy
of gram segmentation during the data pre-processing stage.
Then, we examine the success rate of the state sequence
inference. As a comparison, we also run the attack under the
same setting of [2].
Attack App. Two modules, interrupt sampling module and
data analysis module, are developed and included in the attack
app. For the first module, we wrote it in native C using
Android NDK [31]. The second module is written in Java.
For the optimal performance, we implemented the HMM and
Viterbi algorithm (around 750 lines of code) instead of using
other general libraries.
Experimental Setup. The Gaussian model for single state
needs to be trained before the actual attack, and we reuse
the data collected from the 5 users. For testing, we invited 2
users and none of them participated in the training step. The
experiment device is the same Google Nexus 6 phone with
our attack app installed.

We only consider 2-gram, 3-gram, 4-gram and 5-gram
patterns, because too long gram patterns are rarely used
in practice [17], [32]. Besides, it is difficult to require the
users during our test to remember all long pattern passwords.
We randomly generated 20 password patterns for each x-
gram (x ∈ [2, 5]) from 389,112 pattern passwords (listed in
the Appendix VIII-D) and asked these two users to draw
each generated pattern two times. In total, we obtained 160
password patterns from each user.
Gram Segmentation Result. In this part, we examine whether
the interrupt time series could be segmented correctly and the
result is shown in Table IV. The success rate turns out to be

TABLE IV
SUCCESS RATE FOR GRAM SEGMENTING

Pattern Success Rate Search Space Reduction

2-gram 98.75 % 99.96 % (from 389,112 to 168)
3-gram 92.5 % 99.35 % (from 389,112 to 2,544)
4-gram 97.5 % 97.16 % (from 389,112 to 11,048)
5-gram 97.5 % 90.45 % (from 389,112 to 37,160)

TABLE V
SUCCESS RATE FOR STATE SEQUENCE INFERENCE

User # Top N 2-gram 3-gram 4-gram 5-gram Popular

User 1

Top 3 50 % 25 % 7.5 % 0 47.2 %
Top 5 80 % 27.5 % 10 % 0 52.8 %
Top 10 97.5 % 40 % 20 % 2.5 % 61.1 %
Top 20 97.5 % 60 % 37.5 % 12.5 % 72.2 %
Top 40 97.5 % 90 % 52.5 % 17.5 % 83.3 %

User 2

Top 3 45 % 20 % 15 % 2.5 % 50 %
Top 5 62.4 % 22.5 % 22.5 % 5 % 61.1 %
Top 10 95 % 35 % 25 % 10 % 63.9 %
Top 20 100 % 50 % 40 % 20 % 75 %
Top 40 100 % 70 % 57.5 % 22.5 % 77.8 %

very high (more than 95 % on average), which also suggests
the interrupt gap between different swipe lines is prominent.
From the perspective of computation complexity, even if the
attacker’s knowledge is only the number of grams, the search
space can be substantially reduced.
State Sequence Inference Result. We tested the effectiveness
of the output of state sequence inference and the result is
listed in Table V. In the case of 3-gram, random guessing
only reaches 0.0157 % success rate (guessing 3 times) while
our attack could improve the success rate to thousands of
times – 20 % at least. Given that exhausting passwords for
a 3-gram pattern is only 25.7 times (see Table III), for 20%
such patterns, the attack time is acceptable. The success rate
decreases with the increase of the number of grams since more
errors would be introduced.
Popular Patterns. Recent studies [17], [32], [33] on usable
security discovered that the pattern used by a user is not a
random selection. In fact, several patterns are extensively used,
and we could leverage this insight to remove unpopular pat-
terns from search space. We studied the 6 popular patterns [32]
(ranging from 2-gram to 5-gram) and removed any pattern
from the 389,112 patterns if it contains a L4 line or starting
dot is {5, 6, 8, 9}. L4 line is hard to be drawn by user, and
none of the starting dot is used by popular patterns.

To test our attack against popular patterns, we use the 6
patterns as the initial set and extend it through clock-wise
rotations (90, 180 degrees separately), totally 18 patterns. The
shapes of the original 6 patterns and the list of all 18 patterns
are shown in Appendix VIII-D. We asked the same 2 users to
input the 18 patterns twice. The result shows our success rate
is improved noticeably (see the last column in Table V).
Password Pattern Inference with Prior Knowledge. The
previous experiments consider all valid password patterns



TABLE VI
SUCCESSFUL RATE FOR PATTERN PASSWORD INFERENCE

User # Top N 50
patterns

100
patterns

200
patterns

500
patterns

User 1

Top 1 38 % 29 % 23.8 % 11.5 %
Top 2 56.5 % 40.3 % 28.5 % 16.7 %
Top 3 60 % 46.3 % 29.5 % 18.7 %
Top 5 60 % 49.7 % 32.3 % 20.4 %

User 2

Top 1 38.5 % 31.1 % 22.3 % 12.2 %
Top 2 61.1 % 42 % 27.5 % 17 %
Top 3 64 % 47.1 % 29 % 18.6 %
Top 5 64 % 51.5 % 32.3 % 19.6 %

as targets. For this experiment, we adopt the same setting
of previous works [2], that user’s password choices can be
confined based on the prior knowledge. We assume the victim
selects her secret pattern passwords from a pre-defined set.
Also in this experiment, we evaluate the success rate of
breaking the password pattern instead of state sequence.

We asked the two users each to select one pattern from the
80 patterns (4 × 20) provided in the previous experimental
setup and draw it on the testing phone twice. This process
was repeated 20 times. The selected pattern is then mixed with
randomly generated password patterns to build the pre-defined
set. Four different set sizes are considered here: 50, 100, 200
and 500 and the password inference success rate is listed in
Table VI. When the set size is 50, we have more than half
a chance to unlock victim’s phone by just 2 attempts. This
result is comparable to [2] exploiting the side-channel from
accelerometer, which was able to crack a password pattern
within 5 attempts with 73 % accuracy when user’s sitting and
40 % accuracy when user’s walking. In addition, our attack
removes the two restrictions of [2]: 1) the body movement
has to be small (the accuracy is much worse when the user
walks than sits). 2) the mobile phone has to be held at hand
(accelerometer produces no usable data when the phone is
placed on the desk).
Battery and Time Consumption. Most of the battery con-
sumption is cost by the interrupt sampling module. Since this
module only runs when the screen is lighted and ends before
the phone is unlocked (generally, the sampling period <30 s),
the battery consumption is very slim and hard to be observed
(<1 %). To infer one unlock pattern, the computation time
of data analysis module is less than 0.3 s, which is also
negligible.

V. FOREGROUND APP INFERENCE ATTACK

In this section, we present the attack on inferring the app
running in the foreground. We start from introducing Display
Sub-System and interrupts. We then elaborate how we leverage
the interrupt side-channel for attacks and the evaluation result.

A. Display Sub-System and Interrupt

Display Sub-System (DSS) takes in charge of controlling the
actual display and governing the FrameBuffer driver. It keeps
refreshing the screen using the content from FrameBuffer
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Fig. 12. VSync signal that keeps refreshing rate fixed.

(/dev/graphics/fbX) when the content is updated till
all the changes are rendered. The complete workflow of
Android display system is provided in Appendix VIII-B as
supplementary.
IRQ from DSS. The design of screen refreshing is changed
drastically since Android 4.1, and our attack targets the DSS
under this setting. In Android 4.1, Project Butter is launched
by Google to improve UI display smoothness. As one of
the main visual performance improvements, the VSync (ver-
tical synchronization) mechanism is integrated [34] to keep
the refresh rate fixed at 60 Hz, or 60 frames per second
(FPS). Specifically, the refresh requests will be queued and
synchronized at regular interval. Fig. 12 illustrates this VSync
mechanism, in which the drawing operations of CPU and GPU
always start with the VSync signal [35].

A VSync IRQ will be issued by DSS after one full-
screen refresh is completed [36], announcing the end of one
frame interval and the beginning of the next. As shown in
Section III-B, the IRQ time series is distinctive for each app’s
launching process, depending on the content loaded by the
app and its refreshing strategy. Since only one app is allowed
to run in the foreground, we could infer the foreground app
through observed interrupt time series from DSS.
Remarks. For some phones under VSync mechanism, the
frequency of interrupts issued from DSS can be 120 Hz,
due to VSync signal virtualization [37], a new enhancement
by Google since Android 4.4. This technique is proposed
for more efficient synchronization. Two virtual VSync signals
(one is used for app UI data preparation, and another is
for SurfaceFlinger) will be sprung from one physical VSync
signal.

B. Attack Methodology

Different from the unlock pattern inference attack, where
the interrupt time series can be segmented and the amount of
interrupts within each segment can be mapped to a limited set
of states, the interrupt time series of app launching is more
random and it is impractical to map the foreground app to
an arbitrary one. Therefore, we build app fingerprints using
interrupt time series for popular apps a priori and attempt to
find a matching app for a foreground app running on victim’s
phone. We first elaborate our techniques for reading interrupt
data, data pre-processing and similarity calculation. Then we
describe the training process for building fingerprint base and
testing process for detecting foreground app.



TABLE VII
SUMMARY OF DEVICE NAMES FOR DSS

Phone Model PIC Name Device Name Device Vendor

Google Nexus 6 GIC MDSS Qualcomm
Moto Droid Turbo GIC MDSS Qualcomm
Moto Milestone 2 INTC OMAP DSS TI
Sony Xperia Z3 GIC MDSS Qualcomm
Sony Xperia ion GIC MDP Qualcomm
Samsung Galaxy A5 GIC MDSS Qualcomm
Samsung Galaxy S3 COMBINER s3cfb Samsung
Samsung Galaxy S
Advance

GIC nmk-i2c
(non-unique)

ST-Ericsson

The training and testing are also done on Google Nexus 6.
We believe our techniques could be applied without modifica-
tion on other devices with Android 4.1 above installed.
Reading Interrupt Count. The interrupt time series for DSS
could be captured through monitoring /proc/interrupts
as well. Following the similar method as Section IV-B, we
use the device name to identify the entry for DSS. We look
for MDSS2 on Google Nexus 6. The device names of DSS
on several other phones are summarized in Table VII. All
interrupts for DSS are logged under CPU0, so we only need
to monitor that column.

The sampling frequency of our implementation could reach
4899 Hz3, which is much higher than the frequency of
IRQ from DSS (60 Hz or 120 Hz). High sampling rate
would lead to more power consumption, but as described in
Section V-C), the performance impact to the phone is still
limited. For power saving, we could instruct the malicious
app to run only when the screen is turned on (register-
ing ACTION_SCREEN_ON) and to sleep when the screen
is locked (registering ACTION_SCREEN_OFF). The start-
ing point of sampling (i.e., app launching) could be de-
termined through combing the knowledge of targeted app
and our previous interrupt channel for touchscreen in Sec-
tion IV. For instance, after the malicious app finds the
user presses the Home Key (through the system broadcast
ACTION_CLOSE_SYSTEM_DIALOGS) and two successive
interrupts for touchscreen are detected, it can learn that the
user clicks an app icon on the home screen. The sampling
period could be set according to the launching time duration
of the targeted apps.
Data Pre-processing. Similar to the unlock pattern inference
attack, deduplication and interpolation are applied in the same
way (see Section IV-B). An additional noise filtering step is
introduced to removed the background noise on interrupts. The
interrupts from DSS are not only caused by the app running
in the foreground. The system UI events (status bar showing
time, signal strength, battery, etc.) also cause screen refreshing,

2The name of MDSS is used by Qualcomm CPU series and stands for
Mobile Display Sub-System.

3Compared with the interrupt sampling module for unlock pattern inference,
the reason for different frequencies stems from the API fgets which is used
to read /proc/interrupts. The sampling rate is affected by the location
of interrupt log entry in the file.
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Fig. 13. The curves of interrupt time series are similar for the same app.

incurring noises. By inspecting the interrupt sequence caused
by system UI events, we found all the noises are segments
of consecutive 50 ms intervals with less than 30 interrupts
in total and less than 6 interrupts per 50 ms interval. They
are nominal comparing to the interrupts from the foreground
app, and we search the interrupt time series to remove all such
noises.
App Similarity Calculation. We consider the interrupt time
series after pre-processing as app’s fingerprint, which is used
to determine whether two apps are the same one. Exact
matching is not a viable solution here. Even for the same app,
the screen refreshing during app launching is not the same,
because of the background processes and different network
connection status. We use sequence similarity as the metric to
adapt to such unstable situations. Fig. 13 shows an example in
which we could find, for the two interrupt time series coming
from the same app, their curves are quite similar, but not
coincide at every timestamp.

For calculating the sequence similarity, several difficulties
must be overcome: the lengths of two interrupt time series
may be different, and there may exist displacements along the
timeline. After examining different matching algorithms, we
found Dynamic Time Warping (DTW) algorithm [38] achieves
the optimal result. DTW is designed to calculate intuitive
distances between time series by ignoring shifts in the time
dimension. Its basic idea is to find a minimum-distance warp
path of which length is treated as the measured distance. We
formalize it like [39] in our settings: given two interrupt time
series

X = {x1, x2, . . . , xi, . . . , x|X|}

and

Y = {y1, y2, . . . , yi, . . . , y|Y |}

, a warp path

W = {w1, w2, . . . , wK}, max(|X|, |Y |) ≤ K ≤ |X|+ |Y |

is constructed where K is the length of the warp path and the
k-th element of the warp path is wk = (i, j) where i is an
index from X and j is an index from Y .
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Fig. 14. Warp paths of time series. Left: the same app. Right: different apps.

The optimal warp path is the one leading to minimum warp
distance, where the distance of a warp path W can be defined
as

Dist(W ) =

k=K∑
k=1

Dist(wki, wkj) (6)

where Dist(wki, wkj) is the distance between the two data
point indexes in the k-th element of the warp path.

The DTW distance could be used as the measurement of
the similarity between two interrupt time series. Fig. 14 gives
two warp path examples in which the background is the cost
matrices of distances (the deeper gray, the higher cost and the
farther distance). The warp path based on the same app (the
same two series as Fig. 13) in the left figure is nearly a straight
line from (0, 0) to (100, 100). However, the path in the right
figure based on different apps has several significant turnings.
Training Phase. In this phase, we profile apps of our interest
and build the fingerprint database. We automate the training
process by using monkeyrunner [40] which can repeatedly
open and close apps following the scripted instructions. While
deciding when to open an app is easy (the time after the exit
of the prior app), it is not clear when to close the app. Based
on empirical observations and experiments, we found 4.5 s is
enough for an app to finish loading. Therefore, monkeyrunner
will close the app after 4.5 s since starting. For every app,
monkeyrunner triggers the launching operations for N times,
and the derived N fingerprints are all stored in the fingerprint
database. N can be adjusted by the adversary. While a small
N could lead to mismatch for the same app, big N will incur
large overhead in comparing. We set N to 10 by default.
Testing Phase. This phase is to test whether an app running
in the foreground matches one in the training dataset. The two
steps included in this phase are described below:
• Pre-filtering. Computing DTW distance is costly. To

reduce the overhead, we use the total amount of interrupts
as a condition for pre-filtering. Specifically, we obtain
the upper-bound and lower-bound of the total amount of
interrupts for all apps in the training dataset. If the amount
falls out of the range from training dataset, which is
extended from the upper- and lower-bound by 25 % (see
Section V-C for how 25 is decided), the app is considered
irrelevant and not proceeded to the next stage.

• Classification. DTW distance is supposed to be calculated
between the fingerprint of the testing app and all finger-
prints in the training set. For optimization, we apply the
same heuristic in pre-filtering stage and skip the distance
calculation if the interrupts total amount greatly differs.
When DTW distance needs to be calculated, we employ
FastDTW algorithm [39] to accelerate the computation.
After the fingerprint distances between the testing app and
training apps are computed, we use k-nearest neighbors
(k-NN) algorithm [41] to classify the app, that is a
majority vote by its neighbors. For instance, assuming
k = 5, if the testing fingerprint matches 3 fingerprints
from appa and 2 fingerprints from appb, we consider
appa is running in the foreground. Since the result of
majority vote may be incorrect and several fingerprints
in the training set may have the same distances as the
testing fingerprint, we also consider the top-N results. In
addition, to avoid identifying an app not in the training
set, we could customize the training set based on the list
of installed apps on the victim’s phone. Such list could
be easily obtained by invoking PackageManager and
PackageInfo classes without permission.

C. Evaluation

We evaluate the effectiveness of our attack using interrupt
data collected by running popular apps. In addition, we mea-
sure the statistics of the interrupt amount per app and justify
how the pre-filtering threshold is determined. The performance
overhead is tested using variant sampling rate and in the end,
we show an advanced version of this attack in sniffing the
foreground Activity in Appendix VIII-C.
Attack App. The attack app contains two modules – interrupt
sampling module (built with Android NDK) and data analysis
module (about 700 Java lines of code). Our implementation of
DTW distance calculation is based on Java-ML library [42].
Experimental Setup. We select 100 popular apps from
Google Play to build the training set, as listed in the Ap-
pendix VIII-E. These apps all stay in the foreground when
launched, and the apps always running in the background, like
instant messaging apps, are not included. Each app is launched
10 times, and 1,000 fingerprints are recorded in total. For some
apps, an introduction or user agreement page is displayed at
the first launching after installation and never shown afterward.
The fingerprints, in this case, are discarded by us manually.
To build the testing set, we randomly select 10 apps (as shown
in Table IX) from these 100 apps in the training set, run each
one 10 times, and record 100 fingerprints in total.
Interrupt Amount Threshold. We use the range of interrupt
amount to pre-filter apps and optimize similarity calculation.
The threshold θ for separating fingerprints needs to be de-
termined before testing. For this purpose, we look into the
distribution of interrupt amount across different apps and
within one app. For every app in the training set, we count
the mean interrupt amount of its 10 fingerprints, as shown
in Fig. 15 in ascending order. The maximum value is 635.7
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Fig. 15. Mean interrupt amount.

TABLE VIII
SUCCESS RATE OF APP IDENTIFICATION UNDER DIFFERENT K

k k=3 k=5 k=7 k=9

Top 1 77 % 87 % 83 % 82 %
Top 2 85 % 91 % 88 % 90 %
Top 5 93 % 95 % 94 % 93 %
Top 10 94 % 96 % 96 % 98 %

coming from Microsoft Hyperlapse Mobile: during launching,
its UI is always refreshing and even the background of main
Activity is dynamic. The minimal value is 38.5 coming from
Google Search App: its launching process is very fast and no
animation is used, which is reasonable for a search engine
app. The average and standard deviation of interrupt amount
are 237.3 and 114 respectively.

For a single app, the interrupt amount has much less varia-
tion. Among the 10 samples of every app in the training set,
the average fluctuation is 20.8 %. Thus, we set the threshold
θ to 25 % to accommodate some redundancy.
App Inference Result. We apply k-NN algorithm to classify
a testing app, and the selection of k affects the classification
precision. Table VIII lists the result under different k. When k
= 5, the success rate is the highest. Even for a one-time test, on
average, there is 87 % chance for the adversary to know which
app runs in the foreground. Also, we can perfectly identify
some tested apps, such as com.cleanmaster.mguard
(Table IX).

We notice the launching patterns of some apps with similar
names can not be distinguished, like:

com.google.android.apps.docs.editors.docs

TABLE IX
SUCCESS RATE OF APP IDENTIFICATION, K = 5

App Name Top 1 Top 2 Top 5

tv.danmaku.bili 100 % 100 % 100 %
com.baidu.search 80 % 90 % 90 %
com.icoolme.android.weather 90 % 90 % 90 %
com.scb.breezebanking.hk 80 % 90 % 100 %
ctrip.android.view 50 % 50 % 60 %
com.lenovo.anyshare.gps 100 % 100 % 100 %
com.sometimeswefly.littlealchemy 100 % 100 % 100 %
io.silvrr.silvrrwallet.hk 90 % 100 % 100 %
com.cleanmaster.mguard 100 % 100 % 100 %
com.ted.android 80 % 90 % 100 %
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Fig. 16. The result under varying sampling frequency.

com.google.android.apps.docs.editors.sheets
com.google.android.apps.docs.editors.slides

The main reason for such misclassification is code reusing.
Clearly, a vendor or a developer prefers to keep the uniform UI
style for a series of apps. The number of such apps, however,
are limited among the most popular apps.
Battery and Time Consumption. We mainly consider the
battery usage for interrupt sampling module, which reads
/proc/interrupts periodically. When it is running in the
background, 13 % CPU resources will be occupied and 1 %
battery is consumed per 6 min.

In the above settings, one time DTW distance calculation
costs about 15.8 ms. However, this time consumption is not a
stable value and affected by the number of non-zero interrupt
count. One complete app identification (classification) costs
4.1 s, which depends on the size of the training set. This value
is not a simple multiple of overhead from distance calculation,
as the times required for distance calculation depends on the
result from the pre-filtering stage.

In order to reduce the battery and time consumption, one
solution is to reduce the sampling frequency of interrupt
sampling module, which may impact the inference accuracy.
To quantify such relationship, we carried out experiments
under different sampling frequencies. The result is illustrated
in Fig. 16 and the time overhead decreases rapidly without
significantly impacting the successful rate. For instance, 1/10
sampling frequency of the default value (4899 Hz) could still
guarantee 71 % successfully rate and the time overhead drops
to only 0.25 s. Under this configuration, the adversary could
sneak the malicious activity into the screen more timely.
Discussion. In the experiments above, the testing phone is not
running many background apps. We repeated the experiments
under a heavy workload running environment to see if the
attack result is stable under different environment, i.e., the
available memory is less than 30 % when too many processes
are running. Such run-time environment affects the app launch-



ing process and the sampling frequency of our attack app at
the same time. The result shows the average identification rate
for the 10 testing apps could still reach 72 % for one guess
(77 % for top 2 and 84 % for top 5).

VI. DISCUSSION

Our attacks successfully exploit the leaks from touchscreen
and display interrupts, while whether other interrupts can be
exploited is unclear. We first discuss the potential threats from
other interrupts and then suggest several defenses.

A. Leaks from Other Interrupts

A lot of peripheral devices have been introduced to Android,
among which a large portion has access to private information,
as described in Section II. We believe the attack surface on
interrupt is not exhausted, and new attacks may be sprung from
other interrupt sources. For example, we can acquire the inter-
rupt information from Bluetooth device (named bluetooth
hostwake) and NFC Controller device (named bcm2079x)
in the interrupt logs on Google Nexus 6 to infer when the
devices are running or sleeping. Furthermore, the size/timing
of the file/packet transmitted through these communication
channels can be inferred potentially. These could give the
attacker a big lift in information stealing. As an example, since
NFC is largely leveraged for in-store payment, an adversary
can do targeted phishing to steal user’s credit card number
when knowing the status of NFC device. What’s more, it is
also a reasonable speculation that such information leakage
exists on other operating system platforms and can be ex-
ploited. It is necessary to fully explore the attack surface via
interrupts, but the effort is, however, considerable. We believe
an approach based on automated testing can greatly reduce the
overhead and increase the chances of discovering new interrupt
leaks, and we leave it as the next step.

B. Defense

The attacks presented in our work belong to a big category
of side-channel attacks. It is known by the community that
side-channel attacks are hard to detect and mitigate, due
to their stealthy nature. Recent work by Zhang et al. [43]
proposed a new detection system against runtime side-channel
attacks on Android and also released an app on Google Play.
We tested this app against our attacks but found none of our
attacks were detected or prevented.

On the other hand, we believe Android needs to be for-
tified at the system level. Since the interrupt statistics leak
from proc filesystem (/proc/interrupts), the natural
idea is to remove the proc filesystem or make it invis-
ible to processes. However, these simple remedies would
cause big usability and compatibility issues as many utilities
rely on /proc to gain access to Linux kernel informa-
tion [44]. For example, the Linux command ps relies on
the /proc/<pid>/ to obtain process status [45], and the
irqbalance service [46] uses interrupt statistics informa-
tion for balancing CPU load on a multiprocessor system.
Instead, we suggest two alternative defenses below:

Fine-grained Access Control on procfs. The access to
proc filesystem should be mediated. Linux has been moving
towards this direction and access to some files under proc
filesystem is restricted. For example, /proc/vmallocinfo
is not world-readable. Still, not all proc files are protected,
including the one we identified. In the long run, we believe
all files under proc filesystem should be scrutinized and
protected at different levels (accessed by system process only,
accessed based on granted permission, or open to public). Yet,
the decision should be made after measuring the impact on
legacy apps and OS components to ensure their functionalities
are not largely disrupted.
Decreasing the Resolution of Interrupt Data. Similar to the
defense proposed by Zhou et al. [21] which foils the attack by
rounding up or down the data value from exploitable sources
(e.g., the volume of network traffic logged in public statistics),
we could reduce the resolution of logged interrupt data as
mitigation. Noise injection, proposed by Xiao et al. [47], is
also an alternative solution in the same direction.

As one option, /proc/interrupts can present the
hardware interrupt information grouped by PIC (it connects
to multiple devices) instead of a single device. Another option
is to update the interrupt count after a number of interrupts
have been collected. Since the precision is degraded, different
touch movements or UI refreshes may share the same delta
of interrupts count, reducing the chance of finding the right
unlock pattern or the foreground app by attackers.

VII. RELATED WORK

A. Side-channel Attacks

Linux procfs. Zhang and Wang [6] were the first to present
a side-channel attack by exploiting Linux proc filesystem,
which allows a malicious user to eavesdrop other users’
keystrokes. By tracking changes in the application’s memory
footprint (/proc/<pid>/statm), Jana et al. [5] showed
that how a malicious Android app can infer which page
a user is browsing. Zhou et al. [21] demonstrated several
attacks to infer user’s identity, location using such side channel
information (e.g., /proc/uid_stat/). UI state can also be
read from proc filesystem, as described by Chen et al. [18].
Moreover, Lin et al. [48] exploited /proc/<pid>/stat
to detect target apps activities. The TCP sequence number
inference attack of Qian et al. [49] and the ret2dir attacks
of Kemerlis et al. [50] exploited /proc information as
well. Compared with previous works, our work is the first
one exploiting /proc/interrupts to implement inference
attacks and we proposed a new approach for general interrupt
timing analysis. In addition, our work makes the first step to
investigate the security issues coming from the integration of
the emerging hardware components and the legacy kernel on
mobile platforms.
Leaks from Sensors. In addition to Linux procfs, the
reading from sensors can also be exploited by malicious
apps for side-channel attacks. As demonstrated by previous
works [1], [2], [51], [52], [53], the data stream from the



accelerometer can be leveraged by malicious apps to infer
mobile phone user’s tapping locations on screens or even
password. Michalevsky et al. [54] demonstrated an attack
which is able to identify the speaker information and parse the
speech through reading phone gyroscopes. More recently, the
leaks from the sensors on smartwatch were investigated. Wang
et al. [55] demonstrated that user’s keypresses on QWERTY
keyboard can be inferred using accelerometer and gyroscope
data. Liu et al. [56] showed that side-channel information
from accelerometer and microphone can be leveraged to infer
PIN typed on numeric keypad and text typed on QWERTY
keyboard.

B. Timing Analysis

Techniques for timing analysis have been extensively used
for inference attacks. Kocher et al. [57] showed that secret keys
used by DES algorithm can be decoded through analyzing
sequences of power consumption signals. Michalevsky et
al. [58] described an attack that allows a malicious app on
Android to learn information about the user’s location by
reading the phone’s aggregated power consumption over a
period of a few minutes. By measuring the intervals between
keystrokes, Song et al. [59] showed it is possible to recover
the password or other sensitive information typed by a victim
during SSH sessions. Hund et al. [60] implemented a practical
timing side channel attack against ASLR to infer information
about the protected address space layout. Andrysco et al. [61]
identified a timing channel in the floating point instructions
of modern x86 processors, which can be used to break the
isolation guarantees of Web browsers.

VIII. CONCLUSION

In this paper, we describe our finding of a new information
leakage channel on Android – interrupt statistical information
(/proc/interrupts). This channel could leak the running
status of devices and be exploited by attackers to infer private
information. We propose the interrupt timing analysis as a
general approach and demonstrate the practicality with two
inference attacks which can infer user’s unlock pattern and
the app running in the foreground. We implemented attack
prototype apps and evaluated them using the real-world data.
Our experimental studies show that indeed interrupt statistics
could lead to leaks of user’s sensitive information or actions.
We believe such security threat from the ill-conceived integra-
tion of hardware components and tailored kernel is not just an
isolated incident and call for the attention from the security
community.
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APPENDIX

A. Android Touch Event Processing Flow

Fig. 17 illustrates the touch event processing flow on
Android and the implementation of each layer is described
below:
• Hardware Device Layer: Touchscreen can sense the

movement of user’s finger on the surface and release an
IRQ when detected.

• Linux Kernel Layer: CPU responds to the IRQ by calling
the handler registered by the input device driver. In this
case, touchscreen controller driver decodes the physical
signals about the touch action (down / up) to touch loca-
tion on the screen (Cartesian coordinates) and other useful
information. Next, the Linux input event driver – evdev
translates device-specific signals into Linux input events
and pass them to the character devices (single characters
are transmitted) defined in the /dev/input/eventX
directory [62].

• Hardware Abstraction Layer: The EventHub component
provided by Android receives the raw input events re-
ported by the kernel and converts them to Android events.

• Hardware Independent Layers: Finally, after event de-
coding (by InputReader) and dispatching (by InputDis-
pacher), the events are delivered to the app taking focus
at foreground as MotionEvent objects.

B. Android Display Work Flow

Below, we describe the work flow of DSS through different
layers, as shown in Fig. 18. For simplicity, we focus on the
flow for 2D frame refreshing [63]:
• Hardware Independent Layers: Every window that is

created on the Android platform is backed by a Surface,
which is used for drawing display content. A Surface
could overlap or even override another one and updating
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Surface object would cause the screen refresh. Multiple
Surfaces may be active concurrently and they are com-
posited by SurfaceFlinger onto the display.

• Hardware Abstraction Layer: Hardware Composer is the
central point for all Android graphics rendering, which
is used by SurfaceFlinger to composite Surfaces to the
screen. The graphics memory allocator Gralloc is respon-
sible for allocating memory that is requested by image
producers.

• Linux Kernel Layer: Gralloc operates the Frame-
Buffer in this layer defined as a character device
/dev/graphics/fbX (fb0 for the main monitor)
with the UI content. Once the FrameBuffer geometry
is programmed, the DSS starts pulling the pixels from
memory and sending them to the display device [36],
which will be refreshed constantly.

• Hardware Device Layer: When a screen refresh is com-
pleted, an IRQ will be released by DSS.

C. App Activity Detection

Our attack mainly focuses on identifying the launching
pattern of an app. This attack could be extended to identify
which Activity of a targeted app is running in the foreground
through similar methods. With such information at disposal,
an attacker can hijack Activities at any time during the lifetime
of victim app. The Activities with unique UI refreshing pattern
among all the Activities initiated by one app are more likely
to be successfully inferred, due to the nature of our attack.
The bar for such attack is, however, higher since the loading
time of an Activity is usually shorter than the time of app
launching.

We find two types of Activities, camera and login, usually
have unique UI refreshing patterns and can be reliably inferred.
Activity for camera always refreshes its UI for image preview-
ing, so continuous and large amount of interrupts could be
observed. A login Activity is often quite different from other
Activities as unique third-party modules for SSO (Single Sign
On), like Facebook and Google+ SSO modules, are included.

We examined several apps and found indeed these two
types of Activities can be attacked. For example, the login
Activity of a popular traveling app Expedia can be inferred.
We analyzed the Activity transition flow of this app and
discovered that the main Activity leads to any one of 9
Activities based on user’s choice. Among them, some Activi-
ties are indistinguishable, like PreferenceActivity and
AboutActivity, because their UIs are very concise and
contain no dynamic data. However, AccountLibActivity
(for login) is quite different from other 8 Activities. We col-
lected the interrupt time series for all 9 Activities and applied
the same training and testing methodologies. It turns out
AccountLibActivity could be detected by our method
with 100 % success rate. Therefore, an attacker targeting the
credentials of Expedia users can achieve her goal leveraging
the information provided by our inference attack.

Previous work on shared-memory side-channel by Chen
et al. [18] studied the problem of UI hijacking on Android
as well. Their work combines other data sources like CPU
utilization time, network statistics to reach high accuracy. Our
initial result shows interrupt patterns itself could be used to
construct fingerprint. We believe our attack would also benefit
from using these sources as well.

D. Experimental Dataset for Unlock Pattern Inference Attack
2-gram Patterns.

1852 2584 2586 2963 3216
3576 3692 4951 5147 6547
6741 7456 78951 7896 8524
8529 8753 95147 9635 98741

3-gram Patterns.
123456 29516 36947 3854 4153
4983 5214 5491 5693 5729
65481 6745 6849 7234 7486
7594 81476 8549 9213 951234

4-gram Patterns.
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Fig. 19. Popular patterns.

124567 18579 275389 278945 29587
35918 389514 51897 52146 549637
635742 63894 6741258 743218 76941
78365 841596 87253 94571 78963214

5-gram Patterns.
1258469 1485263 1598436 186347 2586793
3269514 3572814 418365 451823 36214789
451863 452871 4571238 5283147 543689
576483 6753291 749568 7534921 74168523

Popular Patterns.
1235789 1235987 1236987 12369 1475963
14789 1478963 3214789 3215987 36987
123654789 12369874 147852369 14789632
321456987 36987412 7415369 7415963

E. Training Dataset for Foreground App Inference Attack
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