
An Empirical Study on Android for Saving Non-shared
Data on Public Storage ?

Xiangyu Liu1, Zhe Zhou1, Wenrui Diao1, Zhou Li2, Kehuan Zhang1

1 The Chinese University of Hong Kong, Hong Kong
2 RSA Laboratories, United States

Abstract. With millions of apps provided from official and third-party markets,
Android has become one of the most active mobile platforms in recent years.
These apps facilitate people’s lives in a broad spectrum of ways but at the same
time touch numerous users’ information, raising huge privacy concerns. To pre-
vent leaks of sensitive information, especially from legitimate apps to malicious
ones, developers are encouraged to store users’ sensitive data into private folders
which are isolated and securely protected. But for non-sensitive data, there is no
specific guideline on how to manage them, and in many cases, they are simply
stored on public storage which lacks fine-grained access control and is almost
open to all apps.
Such storage model appears to be capable of preventing privacy leaks, as long
as the sensitive data are correctly identified and kept in private folders by app
developers. Unfortunately, this is not true in reality. In this paper, we carry out
a thorough study over a number of Android apps to examine how the sensitive
data are handled, and the results turn out to be pretty alarming: most of the apps
we surveyed fail to handle the data correctly, including extremely popular apps.
Among these problematic apps, some directly store the sensitive data into public
storage, while others leave non-sensitive data on public storage which could give
out users’ private information when being combined with data from other sources.
An adversary can exploit these leaks to infer users’ location, friends and other
information without requiring any critical permission. We refer to both types of
data as “non-shared” data, and argue that Android’s storage model should be
refined to protect the non-shared data if they are saved to public storage. In the
end, we propose several approaches to mitigate such privacy leaks.

1 Introduction

The last decade has seen the immense evolution of smartphone technologies. Today’s
smartphones carry much more functionalities than plain phones, including email pro-
cessing, social networking, online shopping, etc. These emerging functionalities are
largely supported by mobile applications (apps). As reported by [1], the number of
Android apps on Google Play is hitting 1.55 million.

Most of the apps need to access some kind of users’ data, like emails, contacts, pho-
tos, service accounts, etc. Among them, some data are to be shared with other apps by

? All vulnerabilities described in this paper have been reported to corresponding companies. We
have got the IRB approval before all experiments related to human subjects.



nature, like photos from camera apps, while others are not to be shared (which is called
“app-private data” in this paper), like temporary files, user account information, etc. To
protect these app-private data, Android has provided multiple security mechanisms. A
private folder is assigned in internal storage that can only be accessed by the owner app.

App developers tend to further divide app-private data into sensitive and non-sensitive
ones (the reasons are discussed in Section 7). The sensitive data, like user authentication
information, are saved to internal storage, while the data deemed as non-sensitive are
saved to public storage (including external SD card and shared partition in built-in Flash
memory) which lacks fine-grained access control and is open to almost all other apps 3.
At first glance, it seems reasonable and secure to differentiate and save those “non-
sensitive” data to public storage. However, this is a dangerous practice for two reasons.
First, app developers prone to make mistakes on identifying sensitive data, especially
when the data are massive and complicated. Second, some data could be turned into
sensitive when combined with data from other apps or publicly available information,
even though they are non-sensitive when being examined individually.

In this paper, we investigated a large number of apps, and the results show that
many app developers indeed have failed to make right decisions and app-private data
that are originally thought as “non-sensitive” could actually leak lots of user privacy
(more details are described in Section 4). We also demonstrate one concrete attack
example on inferring user’s location by exploiting those “non-sensitive” information in
Section 5, which further proves the seriousness of the problem.

We argue that the problem identified in this paper is distinct from previous works.
It reveals the gap between the assumptions of Android security design (i.e., the secu-
rity relies on the knowledge of app developers and permissions) and the limitations in
real-world (i.e., apps always need to be compatible with all Android versions and all
devices and app developers are not security experts). Our study suggests a vast number
of Android apps fall into the trap due to this gap, which is much more serious than
people’s thought before and needs to be addressed urgently. However, such problem
neither originates from system vulnerability nor is introduced when user is fooled, and
the existing protection mechanisms are therefore ineffective. To bridge the gap, we be-
lieve that app developers should scrutinize their code and avoid saving any non-shared
data to public storage, no matter if they are identified as sensitive or not. In other words,
“public storage” can only be used to save data to be publicly shared with other apps.
Another less painful approach requires the update of Android infrastructure by bringing
fine-grained access control to current public storage model, which essentially converts
shared public storage to non-shared storage.

Our Contributions. We summarize our contributions as follows:

– We revisit Android’s public storage model, including its evolution and access con-
trol mechanism.

– Our study is the first to examine the privacy leakage on public storage by investi-
gating real-world apps. Some discovered issues are critical and should be fixed as

3 Although an app needs the corresponding permissions (like READ EXTERNAL STORAGE or
WRITE EXTERNAL STORAGE, READ and WRITE for short) to access public storage, these
permissions are very common and are usually granted by users without any hesitation since
they are requested by most apps.



soon as possible. We manually checked the most popular Android apps on whether
they store the data correctly, and the results show that most of them (with billions of
installations in total) leave user’s private information on public storage. Our large-
scale automated analysis further indicates that such a problem exists in a large
number of apps. We also show it is possible to harvest sensitive information from
very popular apps through a showcase.

– We suggest several approaches to protect app-private data on public storage.

2 Adversary Model

The adversary studied in this paper is interested in stealing or inferring device owners’
sensitive information by exploiting the app-private data located at public storage. In
order to acquire app-private data, it is assumed that a malicious app with the ability to
read data on public storage (by requiring the READ or WRITE permission) and access
the Internet (by requiring INTERNET permission) has been successfully installed on
an Android device. The app will read certain app-private folders selectively on public
storage, extract data that can be used for privacy attacks, and then upload them to a
malicious server where the data are analyzed to infer victim’s sensitive information.

The above assumptions are easy to be satisfied. Firstly, the app requires only two
very common permissions. A statistical analysis on 34369 apps (crawled by us) shows
that about 94% of apps request INTERNET permission, and about 85% of apps request
the permission to access public storage, ranking No.1 and No.3 respectively. This mali-
cious app should hardly raise alarm to the device owners during installation. Secondly,
it only uploads data when Wi-Fi is available and therefore it is hard to be detected by
looking into data usage statistics. Finally, the app does not exhibit obvious malicious
behaviors, like sending out message to premium number or manipulating the device like
bot-client, and could easily stay under the radar of anti-virus software.

3 Background of Android Public Storage

Android provides 5 options for an app to store data, including shared preferences, inter-
nal storage, external storage (“public storage” referred in this paper), SQLite databases
and remote storage. In this paper, we focus on public storage since the protection en-
forced is weaker than the other options.
Evolution. Before Android 3.0, external storage only includes real external SD card.
Since the size of built-in Flash memory is limited in the early stage of Android, exter-
nal storage is a preferable option for app developers, especially to store large files, like
audio files and images. In recent years, we have seen a significant growth of the size of
built-in Flash memory (e.g., 64GB), and it turns out internal storage can also hold large
files. However, app developers still prefer to consider external storage to hold app’s
data for two reasons: First, the Android devices with limited built-in Flash memory are
still popular, especially in less developed countries or areas; second, the external and
internal storage run with different model and are operated with different APIs, which
forces the developers to make unneglectable changes if switching to internal storage.



To maximize the use of its storage without incurring additional overhead to develop-
ers, Android adopts FUSE [4] to emulate a sdcard daemon (mounted as /data/media)
inside userdata partition (/data). File operations on this partition resembles the ones on
external SD card and we consider both as public storage.
Access control model on external storage. Access to external storage is protected
by various Android permissions, however, our attack aims to retrieve users’ private
information and hence we only elaborate the details of read access. Before Android 4.1,
there is no permission restricting read operations on public storage. READ permission is
added to Android since then, and an app has to be granted with such permission to read
files on public storage. This permission is supported through attaching a Linux GID
sdcard r to all the files on public storage and an app (corresponding to a process in
Linux) has to be granted with GID sdcard r as well before visiting any file there.
A fundamental issue with this model is that there is no finer-grained control over what
files are accessible to one app if sdcard r is granted, which exposes one app’s private
data to all other apps. It is worth noting that the permission WRITE MEDIA STORAGE
introduced from Android 4.4 enforces finer-grained control over write operations, but
nothing has been changed for read operations.

4 Survey on information leaks from public storage

It is true that some app-private data is not sensitive. However, the model of letting
apps write their private data to public storage relies on a strong assumption that app
developers can make right decisions to tell sensitive data from non-sensitive ones. In
this section, we present a survey of the information leaks through app-private data stored
on public storage, which shows that such an assumption is problematic. The survey
includes two parts: the first is a detailed examination on 17 most popular apps, and the
other is a more general and large scale study.

4.1 Investigation on popular apps

What apps have been surveyed. According to our adversary model, the attackers are
interested in privacy attacks over app-private data, so we have selected 17 most pop-
ular apps from three categories: “social networking”, “instant messaging” and “online
shopping&payment”, which are believed to be more likely to touch users’ sensitive in-
formation. The categories, versions and total users of these apps are shown in Table 1.
How to check app-private data. These apps are installed on three Samsung Galaxy
S3 mobile phones. Then we manually simulate three different users on three phones,
including account registration, adding good friends, sending message, and etc. Finally,
we check the public storage, search sensitive data for each app and classify them.
How the information is leaked. By studying the popular apps, we found 10 of them
leak various sensitive information through app-private data on public storage, as shown
in Table 2. Such information is leaked in different forms which are discussed as below,
and the details are elaborated in Appendix A.
Leak through text files. Some apps store user’s profile into a text file. For example,
Viber directly saves user’s name, phone number into a plain text file without any



Table 1. The categories, versions and total users of the popular apps

Category App Name Installed Version Total Users
(Millions)

Social networks

Facebook 13.0.0.13.14 900M
Instagram 6.2.2 100M
Twitter 5.18.1 310M
Linkedin 3.3.5 300M
Vine 2.1.0 40M
Weibo 4.4.1 500M
Renren 7.3.0 194M
Momo 4.9 100M

Instant messaging

WhatsApp 2.11.186 450M
Viber 4.3.3.67 300M
Skype 4.9.0.45564 300M
Line 4.5.4 350M
KakaoTalk 4.5.3 100M
Tencent QQ 4.7.0 816M
WeChat 5.2.1 450M
EasyChat 2.1.0 60M

Online shopping
&payment Alipay 8.0.3.0320 300M

Table 2. Sensitive information acquired from the popular apps

Sensitive Information App Name Content/Remarks

User Identity Weibo, Renren UID
Linkedin User’s profile photo

Phone Number Viber, Alipay, EasyChat User’s phone number
Email Weibo, Renren Registered email

Account Tencent QQ,Viber,Renren,Momo,Weibo UID
WeChat QQ UID / Phone number

Connection

EasyChat Call records
Linkedin Profile photos of friends
KakaoTalk Chatting buddies
Renren Friends’ UIDs
WhatsApp Phone numbers of friends

encryption. User’s username, email address4 are stored by Weibo in a file named by
the user’s UID. Some apps also keep text logs which reveal quite rich information, i.e.,
EasyChat keeps call records in a file, so caller’s number, callee’s number and call
duration can be easily recovered by simply parsing each record.

Leak through file names. We found several apps organize data related to the user or her
friends into a dedicated file named with sensitive or non-obvious sensitive information.
For example, a file created by Weibo is named as user’s UID, WhatsApp stores user’s
friends photos with that friend’s phone number as file name. They seem meaningless
but could have significant privacy implications when combined with other public infor-
mation, i.e., the owners of the phone numbers acquired from WhatsApp can be found
by comparing these acquired portraits with photos from user’s social networks.

4 If the user uses her email to register Weibo account. The user also can use phone number to
register an account.



Fig. 1. The result of searching a user’s Linkedin profile photo.

Leak through folder names. Some apps use account name as folder name directly, like
Renren and Momo. While KakaoTalkwill create folders with the same name in both
two users’ phones if they chat with each other, files (i.e., photos) sent to each other will
be saved in the folder and also with the same name. Such a naming convention reveals
the connections among people, and even can be leveraged to infer user’s chat history.
Leak through photos. The social networking apps usually cache user’s profile photos in
public storage, like LinkedIn in our study. The photo itself is non-sensitive if without
knowing who is in the photo, however, our study shows that user’s LinkedIn profile
photo can be linked to her identity by Google image search, as shown in Fig. 1.
Leak through specific patterns. We could use the command /system/bin/sh -c grep -r
@xxx.com path to match and extract email addresses from files in public storage. If the
files are stored by apps, the corresponding emails are very likely belong to the phone’s
owner. It is worth noting that the email found by grep command in Table 2 is from a
log.txt file left by Renren old version (5.9.4).

What information has been leaked. As shown in Table 2, there is indeed some impor-
tant sensitive information leaked through the app-private data. To better understand the
privacy implication of such leaks, we use Personal Identifiable Information (PII) [11], a
well-known definition for private data, to classify and evaluate the leaked information.
We defined two categories of sensitive data, Obvious sensitive data and Non-obvious
sensitive data, by refining the concept of PII as below:

– Obvious sensitive data. It contains identifiers in PII related to user’s real-world
identity, including full name, phone numbers, addresses, date of birth, social secu-
rity number, driver’s license id, credit card numbers, and etc.

– Non-obvious sensitive data. It contains identifiers in PII related to user’s virtual-
world identity and also her friends’ information. The virtual-world identifiers in-
clude email addresses, account name, profile photos, and etc.

How to infer user’s identity. As shown in Table 2, attackers can exploit the sensitive
data left by several apps to infer user’s identity information. For example, A user’s



Table 3. Privacy protection level of the 17 popular apps

Privacy Level App Name Issues
FFF Facebook, Twitter, Instagram, Skype -
FF Line, Vine, WeChat Audio files without encryption

F
WhatsApp, Linkedin, Viber, KakaoTalk, Momo
Tencent QQ, Alipay, Renren, Weibo, EasyChat

Detailed problems are
shown in Appendix A

identity can be acquired from her personal homepage by using her Renren UID, Weibo
Username/UID, Linkedin profile photo. Moreover, We could find someone on Facebook
with a high probability by the email addresses extracted from public storage and also
the usernames acquired from other apps, since people prefer to use the same username
and email address among their various social networking apps [5].

We divided the apps into three categories with privacy protection level from high to
low, and shown in Table 3. Apparently, leaking obvious sensitive data should be prohib-
ited and requires immediate actions from the app developers and Android development
team. While our study also demonstrates the feasibility to infer obvious sensitive data
from non-obvious ones, therefore the latter should also be well protected.

4.2 Investigation on apps with a large scale

Our study on the popular apps indicates that the sensitive information of device owners
could be leaked even from very popular apps. To understand the scale of this prob-
lem, we launched a large-scale study on more apps through a customized static anal-
ysis tool. Specifically, we first decompile app’s apk to smali code using Apktool [2]
and then search for APIs or strings which indicate storing private data to public stor-
age. Our analysis is conducted on smali code instead of decompiled Java code (done
by [10,8]) since information could be lost during the code transformation of latter ap-
proach. Dynamic analysis, though usually producing more accurate results, is not used
here, because it takes long time for even one app to reach proper states (e.g., registra-
tion, sending messages, etc.). Again, we focus on the categories described in Table 1
and totally select 1648 different apps from our app repository (34369 apps) for analysis.

Ultimately, our tool should be able to classify the information kept on public stor-
age as sensitive or not, which turns out to be very challenging or nearly impossible
without intensive efforts from human. Whether a piece of data is truly sensitive to
the device owner depends on the context. We therefore simplifies this task and only
checks whether an app intends to store sensitive information on public storage. Par-
ticularly, if the names of the private folders or files on public storage created by an
app contain specific keywords, it is considered as suspicious. Our keywords list include
log, files, file, temp, tmp, account, meta, uid, history, tmfs, cookie,
token, profile, cache, data, and etc., which are learned from the problematic
apps and are usually associated with sensitive content. Some keywords (e.g., cache
and data) appear to be unrelated to sensitive information, but they turn out to be good
indicators based on our study, as shown in Appendix A.

For each app, we build a control flow graph (CFG) based on its smali code to
confirm whether the “sensitive” data is truly written to public storage. We demonstrate



Table 4. Methods of accessing public storage

Category Methods

API Call
getExternalFilesDir(), getExternalFilesDirs()
getExternalCacheDir(), getExternalCacheDirs()
getExternalStorageDirectory(), getExternalStoragePublicDirectory()

Hardcoded Path “/sdcard”, “/sdcard0”, “/sdcard1”

our approach as follows: we start from extracting the method block in smali code by
finding the texts between keywords .method and .end method. Next, we select instruc-
tions beginning with keywords invoke-static, invoke-direct, invoke-virtual to construct
CFG for the method. Then, we check if the methods listed in Table 4 are used to access
public storage and whether files or folders are created there (by inspecting methods
like mkdir and FileOutputStream). Finally, we check whether the strings sent to
these methods contain keywords in our list. Each function f in the CFG will be marked
based on the three criteria. To notice, we do not consider special methods like touch
as they are also used for other purposes by developers.

We implemented Algorithm 1 on the marked CFG, the depth parameter of the DFS
procedure was set as 3 empirically, since it resulted in reasonable resources consump-
tion and also yielded high accuracies when examining the known problematic apps.
The results show that 497 apps from the 1648 apps being analyzed intend to write some
“sensitive” app-private data on public storage, which indicate that the privacy leakage
problem revealed in this paper is widely exist among apps. However, this method may
lead to false positives when an app stores “sensitive” data in other places. To have a ver-
ification, we randomly chose 30 apps from the suspicious apps, and manually checked
them. We found that as large as 27 apps truly wrote “sensitive” app-private data on pub-
lic storage, suggesting this simple static method is valid. This result also suggests there
are common patterns among app developers on dealing with sensitive data.

5 Inferring user’s location

In this section, we present an example attack based on the non-obvious sensitive infor-
mation extracted from app-private data. We begin with a brief introduction to the design
of a malicious Android app called SAPD (“Smuggle App-Private Data”), followed by
detailed description of the attack.

5.1 Attack preparation

The weakest part of the malicious app might be the potential outstanding network traffic
footprint, especially for users with limited 3G plan. We implemented two optimizations
in our app prototype SAPD to get around this limitation. First, try to minimize the up-
loaded data since it is reasonable to assume that attackers have already studied the vul-
nerable apps. Another optimization is to upload data only when Wi-Fi network is avail-
able. Instead of using WiFiManager which needs to require ACCESS WIFI STATE
permission, SAPD is able to know whether a WiFi network is connected or not by



Algorithm 1 : Detecting suspicious apps
Input: Class set C, Keyword Patterns set KS, Path set PA, Write set WA
Output: bool sensitive
1: for class c in C do
2: for function f in c do B Each f has been marked following the rules
3: condition.clear();
4: DFS(f, depth);
5: if condition == Union(KS, PA, WA) then B All the criteria are met
6: return true; BMarked as suspicious app
7: end if
8: end for
9: end for

10: return false;
11:
12: procedure DFS(function f, int depth)
13: if depth == 0 then
14: return;
15: end if
16: for all element e in f.mark do
17: condition(e) = true;
18: end for
19: for all callee ce of f do
20: DFS(ce, depth− 1);
21: end for
22: end procedure

reading public files (procfs), since Android puts the parameters of ARP in the file
/proc/net/arp and other wireless activities in /proc/net/wireless. In ad-
dition, to minimize the possibilities of being caught due to suspicious CPU usage or
abnormal battery consumptions, SAPD will only reads and uploads filtered useful data,
and it will never perform any kind of intensive computations.

5.2 Attack framework

Location of a phone user is considered as sensitive from the very beginning and there are
already a lot of research works on inference attacks and also protections [15,16,17]. In
recent years, location-based social discovery (LBSD) is becoming popular and widely
adopted by mobile apps, i.e., WeChat and Momo investigated in this paper. Though
apps adopt some protection mechanisms, i.e., only distance between the user and the
viewer is revealed, such location inference attacks are still feasible. Our attack also
aims to infer user’s location from LBSD networks, but we make improvements since
the profile information is extracted from victim’s phone, thus leads to a realistic threat.
As a showcase, we demonstrate our attack on WeChat app.

The LBSD module in WeChat is called “People Nearby”, through which, the user
can view information of other users within a certain distance, including nick name, pro-
file photo, posts (called What’s Up), region (city-level) and gender. Though WeChat
UID is not stored on public storage, QQ UID and phone number are stored instead,
they are bound to WeChat account and has to be unique for each user. As described in
section 4.1, this information has been collected by SAPD and sent to one of our servers
(denoted as S1). These servers are installed with emulated Android environment for
running WeChat app. S1 will first create a database by querying the server of Tencent



Region? Nickname? What’s Up?
Yes

No

Yes Yes

No

NoNo

Same Person

What’s Up? Update our 
database

No

Yes Nickname &
What’s Up?

Yes

Different Person

Fig. 2. The diagram of profile information comparison.

(the company operating WeChat) for profile information. Then, the attacker needs to
instruct another server (denoted as S2) to run WeChat using fake geolocations, to check
People Nearby and to download all the profile information and their corresponding dis-
tances. The profile information stored on S1 is then compared with the grabbed profile
information (downloaded by S2) in another server (denoted as S3) followed the steps
shown in Fig. 2. If a match happens, S2 will continue to query People Nearby for two
more times using different geolocations (faked) to get two new distances. Finally, the
target’s location can be calculated using the three point positioning method. We elabo-
rate the details of two key steps as below:
Getting Users’ Profile Information. The attacker uses QQ userid or phone number to
query Tencent server for user’s profile information. The returned profile consists of 5
fields: nick name, profile photo, posts (What’s Up), region and gender. Our task is to
assign the location information for each profile. Unfortunately, this profile is updated
according to the user’s location. What we do here is to frequently retrieve profiles and
distances information by faking to different locations. A challenge here is to extract
the profiles and distances from WeChat, as there is no interface exposed from WeChat
to export this information. After we decompile its code, we found the app invokes an
Android API setText from android.widget.TextView to render the text on
screen whenever a profile is viewed. We therefore instrument this API and dump all the
texts related to profiles into log files. This helps us to extract three fields of a profile,
including Region, Nickname and What’s Up and also its corresponding distance.
Comparing process. The comparison processes performed in S3 are shown in Fig. 2,
which is based on such an observation: People can be distinguished from each other by
the three fields (Region, Nickname and What’s Up). Note that we ignore the special case
that different people have the same values of the three fields, since such a possibility is
very low due to we require that any of the three fields should not be blank. To avoid the
situation that people may have changed her Nickname or What’s Up information before
our comparison, we will update her profile by querying Tencent server if only one of
them is matched with the data stored in our database.

An app called “Fake GPS location” [3] is leveraged to fake server’s GPS to different
places. For the densely populated places, we added several more anchor points, since
People Nearby only display limited amount of users (about 100). In addition, we use a
monkeyrunner script to automatically refresh People Nearby. For each point, to load all
the people’s profile information, the script will scan people’s profile one-by-one through



triggering event KEYCODE DPAD DOWN until loading the last one’s information. This
process has to request data from Tencent. To avoid raising alarm from Tencent, the
script sleeps a while before changing to a new anchor point.
Attack evaluation. We evaluate our attack on 20 participants. Each participant has
installed WeChat with People Nearby turned on (so their profiles will be open to view).
Our attack successfully revealed the live locations for 17 participants and have been
verified by them. Note that some of the inferred locations are not exact where the user
stays, but they are all within the acceptable range, i.e., in a specific residential district.

6 Mitigations

We demonstrate the feasibility of our attacks through the examples above. Without
probable countermeasures, more devastating consequences would be caused. Hence,
we suggest two approaches enforced by app developers and Android system. The de-
tails are described below:
Fixing by app developers. The first suggestion is to ask developers to write ALL app-
private data to internal storage, which can only be accessed by the folder owner. Though
the threat is mitigated, app’s functionality could be interrupted when running on devices
with limited capacity of internal storage. Moreover, millions of developers are expected
to make such change and it is hard to be achieved in the near future.
Patching Android system. On the contrary, modifying the Android system and pushing
the upgrades to users’ devices would be a more practical way to mitigate the security
issues. For this purpose, we propose to augment the existing security framework on
public storage by instrumenting the API checkPermission(), the framework is
described as below:
Architecture. We design a new module named ownership checker, which works on An-
droid Middleware layer and can achieve mandatory access control (MAC) for app-
private data. Specifically, when the targets are public resources, like music directory,
the access is permitted. When the target files are placed under app’s private folder, the
access is only permitted when the calling app matches the owner. Otherwise, ownership
checker will return PERMISSION DENIED even if the app has been granted READ
or WRITE permission. To enforce such rule, we create a system file owner checker.xml
storing the mapping between apps and resources, similar to Access Control Lists (ACL)
of Ext4 file system. The system code within checkPermission() is modified to
read the mapping and check the ownership before actual file operations happen. An
exception will be thrown if mismatch happens. Alternatively, we could leverage other
frameworks like SEAndroid [6] to enforce MAC and protect app-private data.
Ownership inference. The ownership mappings between apps and resources need to
be established. This task turns out be non-trivial, since we have to deal with the case
that the public storage has already stored apps’ data before our module is installed
and the owner of data is not tracked therefore. To fix the missing links, we exploit the
naming convention: an app usually saves data to a folder whose name is similar to its
package name, which can be acquired from packages.xml under /data/system).
As a starting point, we initialize the mappings by scanning all the resources. For a
given resource, we assign the owner app if the resource location and app package name



share a non-trivial portion. To notice, this initialization step could not construct the
mapping when an app stores the data in a folder whose name is irrelevant. The access
to such resources will be blocked, and we provide an interface for users to manage the
ownerships. A new mapping will be added if the ownership is assigned by the user.
To reduce hassles to users, user-driven access control model [13] can be integrated to
automatically assign ownership based on user’s actions.

7 Discussion

Why does the problem persist? In the early stage, Android phone has limited on-board
Flash memory (only 256MB for the first android phone, HTC Dream). On the other
hand, its storage can be expanded through large volume external SD card, which is usu-
ally shipped together. This storage model forces app developers to differentiate sensitive
data from non-sensitive data and save the latter (most of the data) to public storage. App
developers follow this practice even after recent changes on Android’s storage model
which offers more flexible storage options (i.e., the sdcard dameon (fused) and userdata
/data share the same partition dynamically).
Limitations of app study. We built a tool running static analysis on app’s smali code
and use a set of heuristics to determine if the app saves “sensitive” app-private data
to unprotected public storage. This simple tool identifies a large number of potentially
vulnerable apps and shows reasonable accuracy from our sampling result. However, it is
inevitably suffers from false negatives (e.g., the file name does not contain the keywords
we used) and false positives (e.g., the information saved is not sensitive). We leave the
task of building a more accurate detector as future work.

8 Related Work

Attacks like stealing users’ chat history [7] have been proved feasible in the real world.
However, these attacks usually depend on certain vulnerabilities identified from the
victim apps, while our attacks exploit a more general problem related to Android’s
storage model. In addition to steal user’s sensitive information directly, a lot of research
focused on inferring user’s location. The authors of [15] showed a set of location traces
can be de-anonymized through correlating their contact graph with the graph of a social
network in spite of the data has been obfuscated. Based on a large-scale data set of call
records, Zang et al. [16] proposed an approach to infer the “top N” locations for each
user. A recent work [17] by Zhou et al. targeted to infer information of users from more
perspectives, including identities, locations and health information.

To defend against the existing or potential attacks tampering user’s privacy, a bunch
of defense mechanisms have been proposed. Ongtang et al. proposed a finer-grained
access control model (named Saint) over installed apps [12]. FireDroid [14], proposed
by Russello et. al., was a policy-based framework for enforcing security policies on An-
droid. Roesner et al. proposed user-driven access control to manage the access to private
resources while minimizing user’s actions [13]. Besides, efforts have also been paid on
code analysis to block the information leakage. Enck et al. developed TaintDroid [9] to
prevent users’ private data from being abused by third party apps.



9 Conclusion

It is known that public storage on Android is insecure, due to its coarse-grained access
model. Therefore, it is highly recommended that the sensitive data should be avoided
from saving there. In this paper, we carry out a large-scale study on existing apps on
whether app developers follow this rule and the result turns out to be glooming: a sig-
nificant number of apps save sensitive data into the insecure storage, some of the prob-
lematic apps are even ranked top in Android market. By exploiting these leaked data,
it is possible to infer a lot of information about the users, drastically violating users’
privacy. We urge app developers to fix the vulnerabilities. Besides, we also propose an
approach to patch Android system with MAC support and envision it could mitigate the
threat in the short term.

Acknowledgments. We would like to thank the anonymous reviewers for their valuable
comments. This work was supported by the Direct Grant of The Chinese University of
Hong Kong with project number C001-4055006.

References

1. Android apps on google play. http://www.appbrain.com/stats/number-of-
android-apps.

2. Apktool. http://code.google.com/p/android-apktool/.
3. Fake gps location. https://play.google.com/store/apps/details?id=

com.lexa.fakegps.
4. Filesystem in userspace. http://fuse.sourceforge.net/.
5. ’like’ it or not, sharing tools spur privacy concerns. http://usatoday30.usatoday.

com/tech/news/2011-07-05-social-media-privacy-concerns_n.htm.
6. Seandroid. http://seandroid.bitbucket.org/.
7. Whatsapp user chats on android liable to theft due to file system flaw. http:

//www.theguardian.com/technology/2014/mar/12/whatsapp-
android-users-chats-theft.

8. K. W. Y. Au, Y. F. Zhou, Z. Huang, and D. Lie. Pscout: analyzing the android permission
specification. In Proceedings of the 2012 ACM conference on Computer and communications
security, pages 217–228. ACM, 2012.

9. W. Enck, P. Gilbert, B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and A. Sheth. Taintdroid:
An information-flow tracking system for realtime privacy monitoring on smartphones. In
OSDI, volume 10, pages 1–6, 2010.

10. C. Gibler, J. Crussell, J. Erickson, and H. Chen. AndroidLeaks: automatically detecting
potential privacy leaks in android applications on a large scale. 2012.

11. E. McCallister. Guide to protecting the confidentiality of personally identifiable information.
Diane Publishing, 2010.

12. M. Ongtang, S. McLaughlin, W. Enck, and P. McDaniel. Semantically rich application-
centric security in android. Security and Communication Networks, 5(6):658–673, 2012.

13. F. Roesner, T. Kohno, A. Moshchuk, B. Parno, H. J. Wang, and C. Cowan. User-driven
access control: Rethinking permission granting in modern operating systems. In Security
and Privacy (SP), 2012 IEEE Symposium on.

14. G. Russello and et.al. Firedroid: hardening security in almost-stock android. In Proceedings
of the 29th Annual Computer Security Applications Conference, pages 319–328. ACM, 2013.

http://www.appbrain.com/stats/number-of-android-apps
http://www.appbrain.com/stats/number-of-android-apps
http://code.google.com/p/android-apktool/
https://play.google.com/store/apps/details?id=com.lexa.fakegps
https://play.google.com/store/apps/details?id=com.lexa.fakegps
http://fuse.sourceforge.net/
http://usatoday30.usatoday.com/tech/news/2011-07-05-social-media-privacy-concerns_n.htm
http://usatoday30.usatoday.com/tech/news/2011-07-05-social-media-privacy-concerns_n.htm
http://seandroid.bitbucket.org/
http://www.theguardian.com/technology/2014/mar/12/whatsapp-android-users-chats-theft
http://www.theguardian.com/technology/2014/mar/12/whatsapp-android-users-chats-theft
http://www.theguardian.com/technology/2014/mar/12/whatsapp-android-users-chats-theft


15. M. Srivatsa and M. Hicks. Deanonymizing mobility traces: Using social network as a side-
channel. In Proceedings of the 2012 ACM conference on Computer and communications
security, pages 628–637. ACM, 2012.

16. H. Zang and J. Bolot. Anonymization of location data does not work: A large-scale measure-
ment study. In Proceedings of the 17th annual international conference on Mobile computing
and networking(MobiCom), pages 145–156. ACM, 2011.

17. X. Zhou, Demetriou, and et.al. Identity, location, disease and more: Inferring your secrets
from android public resources. In Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security, pages 1017–1028. ACM, 2013.

A The details of user private data

Viber. The text file .userdata in .../.viber/ 5 reveals lots of user’s information, including
real name, phone number, and the path of user’s profile photo.
WhatsApp. The user’s profile photo is stored in .../.shared/ with file name tmpt. The
profile photos of user’s friends are saved under .../Profile pictures/, and they are named
by profile owners’ phone numbers without any obfuscation.
Linkedin. This app cache the photos into the directory /Android/data/.../li images/. The
user’s profile photo can be distinguished by file size and modified time.
KakaoTalk. If user A has chatted with user B, the app will create a content folder with
the same name in both users’ phones, under the path /Android/data/.../contents/. The
files, i.e., photos, on the two phones also have the same name, size and the same path.
Tencent QQ. User’s account can be got from log files in the path .../mobileqq/.
Weibo. A file named as user’s UID is saved under the path .../page, and we can acquire
the user’s username and her email address. User’s username and UID can be leveraged
to access her homepage by constructing specific URLs, i.e., http://www.weibo.com/UID.
Alipay. User’s phone number can be obtained from the meta file in .../cache/, it also
points out the other file which discloses the user’s phone number.
Renren. A folder named by user’ UID is stored in /Android/data/.../cache/. Even user’
visit histories are also stored in this folder, which contains the name, UID of user’s
friends. The audio files are named as the format UID+hash value. We can find the
user’s personal home page by the URL http://www.renren.com/UID in a browser.
Momo. A folder named as user’s account is saved in .../users/. By the account, we can
not only get her profile information, but also infer her location.
EasyChat. The file pjsip log.txt in /Yixin/log/ contains all the call records information.
Audio files. Instant message apps, like WhatsApp, Line, WeChat, Tencent QQ, and
KakaoTalk, store the audio files into public storage without encryption.

5 We use ... to represent part of the full path since sometimes the full path is too long.


	An Empirical Study on Android for Saving Non-shared Data on Public Storage 
	Xiangyu Liu, Zhe Zhou, Wenrui Diao, Zhou Li, Kehuan Zhang

