
Mind-Reading: Privacy Attacks Exploiting
Cross-App KeyEvent Injections? ??

Wenrui Diao1, Xiangyu Liu1, Zhe Zhou1, Kehuan Zhang1, and Zhou Li2

1 Department of Information Engineering,
The Chinese University of Hong Kong, Hong Kong
{dw013,lx012,zz113,khzhang}@ie.cuhk.edu.hk

2 IEEE Member, Boston, MA, USA
lzcarl@gmail.com

Abstract. Input Method Editor (IME) has been widely installed on
mobile devices to help user type non-Latin characters and reduce the
number of key presses. To improve the user experience, popular IMEs
integrate personalized features like reordering suggestion list of words
based on user’s input history, which inevitably turn them into the vaults
of user’s secret. In this paper, we make the first attempt to evaluate the
security implications of IME personalization and the back-end infrastruc-
ture on Android devices. In the end, we identify a critical vulnerability
lying under the Android KeyEvent processing framework, which can be
exploited to launch cross-app KeyEvent injection (CAKI) attack and
bypass the app-isolation mechanism. By abusing such design flaw, an
adversary is able to harvest entries from the personalized user dictionary
of IME through an ostensibly innocuous app only asking for common
permissions. Our evaluation over a broad spectrum of Android OSes,
devices, and IMEs suggests such issue should be fixed immediately. All
Android versions and most IME apps are vulnerable and private infor-
mation, like contact names, location, etc., can be easily exfiltrated. Up
to hundreds of millions of mobile users are under this threat. To miti-
gate this security issue, we propose a practical defense mechanism which
augments the existing KeyEvent processing framework without forcing
any change to IME apps.

Keywords: Mobile security · Smart IME · Privacy leakage · System
flaw

1 Introduction

Smartphone is becoming the major device for handling people’s daily tasks like
making calls, sending/receiving messages and surfing the Internet. Of partic-
ular importance in supporting these features are input devices. Among them,

? Responsible disclosure: We have reported the CAKI vulnerability and the corre-
sponding exploiting schemes to the Android Security Team on January 7th, 2015.

?? The video demos can be found at https://sites.google.com/site/imedemo/.

https://sites.google.com/site/imedemo/

Client Application
(SMS)

Suggestion List

IME (Swype)
Soft Keyboard

User Input
(keystrokes)

Fig. 1. Smart IME on Android Fig. 2. Warning Message

keyboard, either hardware keyboard integrated within mobile phone or soft key-
board displayed on touch screen, receives a significant volume of users’ input.
These keyboards are mostly tailored to users speaking Latin languages. Users
in other regions like Chinese and Japanese have to use Input Method Editor (or
IME) to type non-Latin characters. In fact, a large number of IME apps3 have
emerged since the advent of smartphone and been installed by enormous pop-
ulation. The capabilities of IME are continuously extended to optimize users’
typing experience. The present IME (see Fig. 1) is able to learn the words a user
has inputted, customize the suggested words, and predict the words the user
plans to type. These user-friendly features help the IME gain popularity even
among Latin-language users.

The wide adoption of IME, however, does not come without cost. Previous
research has raised the privacy concerns with shady IMEs which illegally spy
on users’ input [30,35,38,34]. Indeed, they could cause security and privacy issues
if installed by common users, but their impact is limited as the majority of IMEs
are well-behaved and there have been efforts in warning the risk of enabling a
new IME (see Fig. 2). The question not yet answered is whether legitimate
IMEs are bullet-proof. If the answer is negative, they can be exploited by ad-
versary as stepping stones to breach the privacy of mobile users. In this work, we
examine smart IMEs (the ones supporting optimization features) and the back-
end framework in an attempt to verify their security implications. We choose
Android as a target platform given its popularity and openness.

KeyEvent processing. We first look into the underlying framework which
handles input processing. In short, each key press on hardware keyboard trig-
gers a sequence of KeyEvents [11] on Android. As for the purpose of auto-
mated testing, a mobile app can also simulate key presses by directly injecting

3 We use IME and IME app interchangeably in this paper.

KeyEvents. Without a doubt, such behavior should be confined to prevent a ma-
licious app from illegally injecting KeyEvents to another victim app. Android
consolidates KeyEvent dispatching by ensuring that either the KeyEvent sender
app and receiver app are identical or sender app has a system-level permission
(INJECT EVENTS) which cannot be possessed by third-party apps. Failing to pass
such check will cause KeyEvent being discarded and an exception thrown.

Our findings. Unfortunately, this seemingly invulnerable framework can be
cracked. If a malicious app injects KeyEvents to its owned EditText widget
with IME turning on, the KeyEvents will be redirected to the IME, resulting in
cross-app KeyEvent injection (CAKI) attack. Following this trail, attacker
can peep into IME dictionary (usually stored in the internal storage protected
by app-isolation mechanisms) and know user’s favorite words or even the words
taken from other sensitive sources, like phone contact. The root cause of this
vulnerability is that Android only performs security checks before KeyEvent is
dispatched but misses such when KeyEvent is delivered. For this special case,
because of the discrepancy between the point of checking and the point of deliv-
ering, IME is turned into the final receiver on the fly when KeyEvent is delivered,
therefore the security check at the beginning is bypassed. Since this issue exists
in the system layer, all IMEs are potentially under threat.

Attack against IME. Even knowing this vulnerability, a successful attack
against IME is not trivial. The challenges include how to efficiently extract
words related to personal information or interest and how to hide the mali-
cious activities from user. Towards solving the first challenge, we devise new
technique to automatically enumerate the combinations of prefix letters and use
differential analysis to infer the words private to user. This technique can be
adapted to different language models and all achieve good results. To address
the second challenge, we combine several well-founded techniques to make the
attack context-aware and executed till user is absent.

We implemented a proof-of-concept malicious app named DicThief and eval-
uated it against 11 very popular IMEs and 7 Android OS versions. The result is
quite alarming: all the Android versions we examined are vulnerable and most
of the IMEs we surveyed are not immune. The population under threat is at
a scale of hundreds of millions (see IME popularity in Table 3). Towards
mitigating this urgent issue, we propose an origin-checking mechanism which
augments the existing Android system without forcing any change to IME apps.

Contributions. We summarize this paper’s contributions as below:

• New vulnerability. We discovered a fundamental vulnerability in the Android
KeyEvent processing framework leading to CAKI attack.

• New attack surface. We show by launching CAKI attack, an attacker can steal
a variety of private information from IME dictionary. Differing with previous
IME-based attacks, our attack is the first to exploit the innocent IMEs.

• Implementation, evaluation, and defense. We implemented the attack app Dic-
Thief and demonstrated the severeness of this problem by testing under different
real-world settings. We also propose a defense scheme as a remedy.

2 Background and Adversary Model

2.1 IME and Personalized User Dictionary

IMEs have emerged to support users speaking different languages like English
and Chinese. A smartphone is usually shipped with pre-installed IMEs, but
alternatively, users could download and use other IME apps. IME have gained
massive popularity: top IMEs like Sogou Mobile IME [16,17] has more than 200
million active users.

The IMEs used today have been evolved from solely soft keyboard to versatile
input assistant with many new features to improve users’ typing experience. The
goals of these new features are to reduce the number of keys a user needs to type.
For instance, current mainstream IMEs (such as SwiftKey [18], TouchPal [21],
Sogou Mobile IME, etc.) implement features like dynamic suggestions order ad-
justment, contact names suggestions, next-word prediction and new word saving
to provide suggestions for current or subsequent words. Hence, a user could se-
lect a word among them without typing the complete text. These features are
called “optimization features” and we elaborate them below:

Fig. 3. Dynamic Order Adjustment

– Dynamic order adjustment. This
feature adjusts the order of suggested
words dynamically according to user’s
input history. For example, as shown
in Fig. 3, two typed characters “ba”
lead to different lists of suggested words.
“bankruptcy” is the first suggestion in the
upper picture while “banquet” is the first
suggestion in the lower one.
– Contact names suggestion. IME can suggest a name from user’s phone
contact when part of the name is typed. In addition, suggestions also pop up
when an unknown name is typed for correction. The READ CONTACTS permission
needs to be granted to support this feature.

Fig. 4. Next-word Prediction

– Next-word prediction. IME at-
tempts to predict the next word user
wants to input based on the previous
words typed. Fig. 4 shows an example that
IME gives a prediction “Newcastle” based
on the previous input “Fly to”.
– New word saving. When a word not existing in the dictionary is typed, IME
automatically adds this word to its dictionary.

To summarize, all the above features are driven by user’s personalized infor-
mation, like user’s input history. Furthermore, when the permissions shielding
user’s sensitive data are granted, IMEs can customize their dictionaries using
various data sources, including SMS, Emails, and even social network data. It
is very likely that the names of user’s family members and friends and nearby
locations are recorded by the IME after using for a while. We manually examined
the settings and permissions of several IMEs and summarizes the data sources

Table 1. Data Sources of Mainstream IMEs for Optimization Features

Production Name Version Input
History

Contacts Emails
/ SMS

Social
Network

Location

Go Keyboard [7] 2.18
√ √

TouchPal [21] 5.6
√ √ √ √

Adaptxt - Trial [1] 3.1
√ √ √ √ √

Google Keyboard [8] 4.0
√ √ √ √

SwiftKey Keyboard [18] 5.0
√ √ √ √

Swype Keyboard Free [19] 1.6
√ √ √

Fleksy Keyboard Free [5] 3.3
√ √ √ √

Google Pinyin Input [9] 4.0
√ √

Sogou Mobile IME [16] 7.1
√ √ √

Baidu IME [3] 5.1
√ √

QQ IME [14] 4.7
√ √

of mainstream IMEs (each of them has over 1 million installations) in Table 1.
Apparently, the personalized dictionary should be considered private assets and
protected in the safe vault. In fact, most of the IME apps we surveyed keep their
dictionaries in the internal storage of mobile phone which is only accessible to
the owner app.

2.2 Adversary Model

The adversary we envision here is interested in the dictionary entries of IME
deemed private to the user, like contact names, and aims to steal and exfil-
trate them to her side. We assume the user has installed a victim IME which is
“benign” and “smart”.

1. “Benign” means this IME exercises due diligence in protecting user’s private
data. The measures taken include keeping its dictionary in app’s private
folder (internal storage). This assumption differs fundamentally from previ-
ous IME-based attacks which assume IME itself is malicious.

2. “Smart” means this IME can learn unique word-using habits and build a
personalized user dictionary based on user’s input history, contacts, etc.

At the same time, we assume this user has downloaded and installed a ma-
licious app named DicThief aiming to steal entries from victim IME. The de-
fault (enabled) IME on the device could be identified through the system class
Settings.Secure [15]. This malware only claims two permissions: INTERNET and
WAKE LOCK. Both permissions are widely claimed by legitimate apps and unlikely
to be rejected by users: nearly all apps declare the INTERNET permission, and
WAKE LOCK is also widely claimed by apps like alarm, instant messenger (e.g.,
WhatsApp and Facebook Messenger), etc. With the WAKE LOCK permission, our
attack can be launched when the phone is in sleep mode and locked with
password.

3 Vulnerability Analysis

While direct access to the dictionary of IME is prohibited if coming from a dif-
ferent and non-system app, our study shows this security guarantee can be vio-
lated. By revisiting the keystroke processing framework of Android, we discover

InputReader

view

IME

NotifyKeyArgs

KeyEvent Injection

KeyEvent

No

Yes

System Process
Application Process

Exist IME?

RootViewImpl

Built-in Hard
Keyboard, Raw Input

Permission
Checking

InputDispatcher

Message Queue
(EventEntry)

Pass

Deny
Exception:

Permission deny

WindowInputEventReceiver

Time of Check

Time of Use
InputChannel

Fig. 5. Android KeyEvent Processing Framework and CAKI Vulnerability

a new vulnerability lying under Android OS, allowing us to launch Cross-App
KeyEvent Injection (CAKI) attack. In essence, by exploiting such vulnerability,
a malicious app can simulate user keystrokes on an IME, and read the suggested
words. Below we describe the mechanism of keystroke processing in Android and
the new vulnerability we identified.

3.1 Android KeyEvent Processing Flow

The internal mechanism of input processing in Android is quite sophisticated
and here we only overview how KeyEvents4 are processed. At a high level, when
a key is pressed on hardware (built-in) keyboard, a sequence of KeyEvents will
be generated by wrapping the raw input, and then sent to the corresponding
handlers (e.g., IME). These two steps are called KeyEvent pre-processing and
KeyEvent dispatching. We illustrate the process in Fig. 5 and then elaborate the
details below5:

KeyEvent pre-processing. As soon as a hardware key (e.g., built-in key-
board) is pressed, a raw input event is sent to a system thread InputReader

(initiated by WindowManagerService) and encapsulated into an object of type
NotifyKeyArgs. Then, this object is passed to thread InputDispacher (also ini-
tiated by WindowManagerService) and a KeyEntry object is generated. Lastly,
this object is converted to EventEntry object and posted to the message queue
(InboundQueue) of InputDispacher to be distributed to right handlers. If a key
press is simulated by an app, the corresponding KeyEvents are initiated directly
and finally sent to the message queue (in the format of EventEntry).

KeyEvent dispatching. Before event dispatching, there is a permission check-
ing process on the corresponding EventEntry to ensure its legitimacy. The code

4 IME accepts another kind of input event – MotionEvent [12], coming from soft
keyboard (see Fig. 1). Its processing flow is different and not covered in this paper.

5 Our descriptions are based on Android 4.4.4 r2.0.1 [2]. For other versions, the flows
are mostly the same. Only the paths of source code could be different.

undertaking such check is shown below (excerpted from the Android code repos-
itory [24]):

1 bool checkInjectionPermission (...) {

2 if (injectionState

3 && (windowHandle == NULL

4 || windowHandle ->getInfo ()->ownerUid !=

injectionState ->injectorUid)

5 && !hasInjectionPermission(injectionState ->

injectorPid , injectionState ->injectorUid)) {

6 ... // Code omitted due to space limit

7 return false; // Permission denied

8 }

9 return true; // Pass checking

10 }

This routine first verifies whether the event is generated by a hardware device
(checking injectionState). If injectionState is NULL, the check is passed and
the event is directly sent to handlers. Otherwise (the event is generated by an
app), this routine verifies whether the sender app owns the required permission
or if it is identical to the receiver app (we fill in the details in Section 3.2).

An input event passing the above check will be dispatched via a system IPC
mechanism InputChannel to the receiver app, which should run in the fore-
ground and take the input focus. In particular, the WindowInputEventReceiver
component belonging to the receiver app process will be notified and then for-
ward the received KeyEvent to other components of ViewRootImpl, a native OS
class handling GUI updates and input event processing, for further processing.
When an IME is activated and also brought to the foreground (see Fig. 1), there
exists a special policy: ViewRootImpl will redirect the KeyEvent to the IME,
which absorbs the event and renders the resulting text (suggested word or the
raw character) on the client app’s view. This policy guarantees the KeyEvents
are processed by IME with high priority.

3.2 Cross-App KeyEvent Injection Vulnerability

Since the simulated key-presses could come from a malicious app, Android en-
forces much stricter checking. Still, the checking routine is not flawless. Below,
we elaborate a critical vulnerability in this routine:

KeyEvent injection. An app can simulate various input events using the
APIs provided by Android instrumentation library [10]. This is supposed to
support automated app testing. For example, an app can invoke the function
Instrumentation.sendKeyDownUpSync() to simulate user’s keystrokes, such as
“d”, “7”, “!”, and the corresponding KeyEvents will be injected into the message
queue subsequently.

Verification. Injected KeyEvent needs to be vetted. Otherwise, one app can
easily manipulate the input to the app taking focus. If a KeyEvent is not orig-

inated from hardware keyboard, at least one of the security checks has to be
passed (see the code block of checkInjectionPermission in Section 3.1):

1. The KeyEvent injector and receiver are the same.
2. The KeyEvent injector is granted with the INJECT EVENTS permission.

As INJECT EVENTS is a system-level permission, a non-system-level app (in-
stalled by user) simulating key-press has to meet the other requirement: the
receiver app is itself.

CAKI vulnerability. At first glance, the above verification process is sound.
However, it fails when IME is in the picture, and as such, a malicious app can
launch Cross-App KeyEvent Injection (CAKI) attack.

A non-system-level malicious app (named appx) running in the foreground
first activates IME (named IMEy) set as default by user, which could be achieved
by setting the focus on an EditText widget [4] in appx’s window. After IMEy

is ready and its virtual keyboard is displayed, appx injects a KeyEvent to the
message queue. At this point (Time of Check), the KeyEvent receiver is also
appx as it takes input focus (another party, IME, cannot take focus by design).
The projected event flow turns out to be {appx → system→ appx} and clearly
passes the check of routine checkInjectionPermission. Then (Time of Use),
the KeyEvent is sent to RootViewImpl of appx . Given IMEy is activated at
this moment, this KeyEvent is redirected to IMEy (see Section 3.1), turning the
actual event flow into {appx → system → RootViewImpl of appx → IMEy}.
In this stage, no additional checks are enforced and IMEy will respond to the
KeyEvent. Obviously, the security guarantee is violated because appx and IMEy

are not identical. This vulnerability allows a malicious app to send arbitrary
KeyEvents to IME.

This CAKI vulnerability can be attributed to a big class of software bugs,
namely time-of-check to time-of-use (TOCTTOU) [31,44,41,39]. However,
we are among the first to report such bugs in Android platform6 and our ex-
ploitation showcase indicates this CAKI vulnerability could cause serious conse-
quences.

4 Attack

In this section, we describe the design and implementation of the proof-of-
concept app DicThief, which exploits the CAKI vulnerability and steals dic-
tionary entries.

After DicThief is run by the victim user, it starts to flood KeyEvents to an
EditText widget which pops up the default IME when the owner app DicThief is
in the foreground. IME will commit words to the EditText and they are captured
by DicThief. When the number of stolen entries hit the threshold, DicThief will
stop flooding KeyEvents and exfiltrate the result (compressed if necessary) to

6 We found only one vulnerability disclosure by Palo Alto Networks’ researchers [42]
regarding TOCTTOU in Android, which was reported in March 2015.

attacker’s server. Since KeyEvent injection has been discussed in the previous
section, here we elaborate how to harvest meaningful entries from the dictionary
and our context inference technique in making the attack stealthy.

4.1 Enumerating Entries from Dictionary

Given the huge size of IME dictionary (hundreds of thousands of words), the
biggest challenge is how to identify the entries comprehending user’s private
information efficiently. These entries could be added from user’s typed words,
imported from user’s private data (e.g., contact names) or reordered according to
user’s type-in history. We refer to such entries as private entries here. Through
manually testing several popular IME apps, we observed one important insight
regarding these private entries: they usually show up after 2 or 3 letters/words
typed and they are placed in 1st or 2nd position in the suggestion list. In other
words, by enumerating a small number of letter/word combinations, a large
number of private entries can be obtained. We design two attack modes based
on such insight:

– Attack mode 1 – word completion: For each round, DicThief injects
2 or 3 letters and then injects the space key or number “1” to obtain the
first word from the suggestion list of IME, which is then appended to the
list of collected results. After all the valid combinations are exhausted or
the threshold is reached, the list is sent to attacker’s server. This attack
works based on the dynamic order adjustment feature of IME: e.g., if a user
frequently chooses “bankruptcy” from suggestion list, when she types “ba”,
the suggestion list will become {bankruptcy | ban | bank | bad}, and the
private entry can be easily determined.

– Attack mode 2 – next-word prediction: This time, DicThief injects a
complete word (or several words) for each round and selects the first word
prompted by IME. Similarly, the space key or number “1” is used to obtain
the first suggestion, and the attack ends when a certain number of rounds is
reached. This attack exploits IME’s next-word prediction feature: e.g., the
injected words “fly to” will trigger the list {Newcastle | the | be | get} if IME
concludes that “Newcastle” is user’s favorite choice.

The generated list comprehends both private entries and the entries irrelevant
to customization. We need to filter out the latter ones. To this end, we carry
out a differential analysis. We run DicThief against a freshly installed IME app
which has not been used by anyone and compile all the first words in two modes.
Next, we find the different words between the list collected from victim’s phone
with ours. The words left are deemed private entries. This procedure runs on
attacker’s server, but it can be executed on victim’s phone instead to save the
bandwidth.

4.2 Attack in Stealthy Mode

When DicThief is launched, it has to be displayed and run in the foreground in
order to turn on IME. If user is using the phone at the same time, the malicious

activities will be noticed easily. In this section, we propose several techniques to
reduce the risks of notice.

Context inference. DicThief is designed to run when user falls asleep. At that
time, the phone should be placed on a flat platform (no acceleration observed),
the screen should be dimmed, and the time should be at night. All of these
information can be retrieved using APIs from system classes (SensorManager
for accelerator metrics, PowerManager for screen status and Calendar for current
time respectively) without any permission. These techniques are also exploited
by other works [28,36] to make their attacks stealthy.

When DicThief is opened by user, it stays in the background and is period-
ically awakened to infer the running context. DicThief will not start to inject
key-presses until the current context meets the attack criteria.

Circumventing lock screen. Our attack has to be executed even if the phone
is asleep and locked with password. To proceed the attack, DicThief requires
the WAKE LOCK permission being granted first. As discussed in Section 2.2, user
will not reject such request in most cases. Besides, DicThief needs to add the
FLAG SHOW WHEN LOCKED flag in its window setting, making it take precedence
over other lock screens [22].

Yet, common apps will not be brought to the top of foreground when phone is
locked. Each app has a corresponding object WindowState, which stores Z-order
regarding its order of layer in display. The window with the bigger Z-order will be
shown in a higher layer. A general app window is set to 2 while key guard window
(lock screen) is set to 13, therefore, key guard window will always display in front
of other general apps. WindowState is managed by WindowManagerService and
Z-order cannot be tweaked by app. Nevertheless, when an app invokes an IME,
it will be brought to the top of the client app disregarding its assigned Z-order
due to one policy of Android [25]. Hence, our attack can succeed even when the
screen is securely locked with password.

4.3 Case Study of IMEs for Non-Latin Languages

Not only is our attack effective against IMEs for English, IMEs for non-Latin
languages are vulnerable as well. Apart from English users, the users who type in
non-Latin words have to rely on alternative IMEs since the language characters
are not directly mapped to English keys. In this section, we demonstrate a case
study on attacking Chinese IMEs. It turns out just a few adjustments need to
be applied to the enumeration algorithm and private entries can be effectively
obtained, albeit the complexity of such language.

Chinese and Pinyin. Pinyin is the official phonetic system for transcribing
the Mandarin pronunciations of Chinese characters into the Latin alphabet [13].
Pinyin-based IMEs are, in fact, the most popular IMEs used by Chinese users.
Except for some special cases, every Chinese syllable can be spelled with exactly
one initial followed by one final [13,23]. In total, there are 23 initials7 and 37
finals. Fig. 6 describes an example.

7 The initial set: {w, y, b, p, m, f , d, t, n, l, g, k, h, j, q, x, zh, ch, sh, r, z, c, s}.

da xue
Initial final

大学

University

In Pinyin:

In Chinese:

In English:

Fig. 6. Example of Chinese Pinyin

机会 (n. chance)

忌讳 (n. taboo)

集会 (n. rally)

寄回 (send back)

击毁 (v. wreck)

jihui

Fig. 7. One-to-many Mapping

Each Chinese character has a unique syllable, but one syllable is associated
with many distinct characters. Each Chinese word is composed of multiple char-
acters (usually two to three). An example is shown in Fig. 7. The character
combination poses a big challenge in harvesting meaningful Chinese entries: a
prefix (e.g., “ji”) might only reveal one Chinese character, far from meaningful
words. On the other side, a prefix in English (e.g., “mis”) can yield the the list
of meaningful words with viable size.

Attack. Fortunately, Pinyin-based IME optimizes the input experience. By pro-
viding several syllable initials, the suggestion list of words with the same initials
will be produced. For instance, typing “j’h” (initial j plus initial h) will yield the
list of 5 Chinese words shown in Fig. 7. It motivates us to enumerate the combina-
tion of initials instead of the leading Pinyin letters. Here, we show the algorithm
of attacking word-completion mode of Pinyin-based IME in Algorithm 1.

Algorithm 1: Enumerating 2-character words of Pinyin-based IMEs

1 for Key 1=InitialSet.first; Key 1<=InitialSet.last; Key 1=Key 1.next() do
2 for Key 2=InitialSet.first; Key 2<=InitialSet.last; Key 2=Key 2.next() do
3 injectKeyEvent(Key 1) ; // initial of the first character

4 injectKeyEvent(APOSTROPHE) ; // divide two characters

5 injectKeyEvent(Key 2) ; // initial of the second character

6 injectKeyEvent(KEYCODE SPACE) ; // commit the suggestion

7 end

8 end

5 Evaluation

We analyzed the scope of attacks (the vulnerable Android versions and IMEs)
and evaluated the effectiveness of the two attack modes described in Section 4.1.

5.1 Scope of Attack

The CAKI vulnerability discovered in this paper derives from the design flaw
of Android framework. Thus, in theory, all Android devices should suffer from
this vulnerability. We examined 7 different versions of Android OS on 4 physical
Android phones and 2 Android images on an emulator, and it turns out all

Table 3. Evaluation against IMEs

Production Name Version Language(s) Vulnerable Installations
Go Keyboard [7] 2.18 Multi-language Yes 50,000,000+
TouchPal [21] 5.6 Multi-language Yes 10,000,000+
SwiftKey Keyboard [18] 5.0 Multi-language Yes 10,000,000+
Adaptxt - Trial [1] 3.1 Multi-language Yes 1,000,000+
Google Pinyin Input [9] 4.0 Chinese, English Yes 10,000,000+
Sogou Mobile IME [16,17] 7.1 Chinese, English Yes 200,000,000+
Baidu IME [3] 5.1 Chinese, English Yes 1,000,000+
QQ IME [14] 4.7 Chinese, English Yes 1,000,000+
Swype Keyboard Free [19] 1.6 Multi-language No 1,000,000+
Fleksy Keyboard Free [5] 3.3 Multi-language No 1,000,000+
Google Keyboard [8] 4.0 Multi-language No 100,000,000+

versions ranging from very old (2.3.7) to the latest (5.0) are vulnerable without
exception. The list of vulnerable phones and OS versions is shown in Table 2.

Table 2. Evaluation against Android OSes

Phone Model Android Version Attack
Result

Nexus 6 (Genymotion
Emulator [6])

AOSP Android 5.0 success

Sony Xperia Z3 Sony official 4.4.4 success

Samsung Galaxy S3
CyanogenMod 4.4.4 success
Samsung official 4.3 success

Meizu MX2 Meizu official 4.2.1 success
Sony Xperia ion Sony official 4.1.2 success
Nexus S (Genymotion
Emulator)

AOSP Android
2.3.7

success

Also, our attack is not lim-
ited to a specific language or
a specific IME. All smart IMEs
equipped with optimization fea-
tures should be potentially vul-
nerable. We tested our attack on
11 popular IMEs and 8 among
them are vulnerable, as shown in
Table 3. Our attack does not suc-
ceed on 3 IMEs because they only
respond to taps on soft keyboard,
but ignore the key-presses simulated by app. These IMEs, however, may have
compatibility issues since hardware keyboard is not supported well. We suspect
such lucky escape is probably due to design flaw rather than protection enforced.

5.2 Experiment on Word Completion Attack Mode

In this mode, DicThief injects 2 or 3 random letters and selects the first word
suggested by IME. The victim IME we chose is Sogou Mobile IME [16], a domi-
nant Pinyin-based IME in China with 200 million monthly active users [17]. The
information leakage and overhead caused by DicThief are assessed separately:

Information leakage. We conducted a user study8 to portrait and quantify the
leaked information. We recruited 5 Sogou Mobile IME users (labeled as User1 –
User5) to participate in our experiments. All of them are native Chinese speakers
(the mother tongue of User5 is Cantonese, which is a dialect of Chinese). Their
basic information and the final results are shown in Table 4.

All the participants installed a modified version of DicThief on their phones
before the experiment. All 2-initial combinations are probed, counting up to 529
rounds (23× 23 combinations, see Section 4.3). To address the privacy concerns
of our human subjects, we did not collect any word entries from their phones.

8 The experiments have followed the IRB rules, and all human subjects fully under-
stood the privacy implication of the experiments and agreed to participate.

Table 4. User Study – Word Completion Attack Mode

User Age Gender Installation
Time

Feeling of
Info Leakage

Category of
Info Leakage

Personalized
Entries

% of Per-
sonalization

1 25∼30 male 1 year+ Many 1© 2© 3© 5© 416 78.6%
2 25∼30 male 8 months+ Many 1© 2© 239 45.2%
3 25∼30 male 1 year+ Some 2© 5© 358 67.7%
4 18∼25 male 2 months+ Many 2© 3© 5© 107 20.2%
5 18∼25 male 2 months+ Some 2© 5© 436 82.4%

Instead, we asked them to report the type and quantity of personalized entries
(calculated by DicThief). The detailed result is presented in two aspects:

1. Intuition: severity of leaked information. DictThief shows the extracted
words to the volunteers directly after the attack finishes and then the volun-
teers are asked to fill a survey. Questions include: how much sensitive infor-
mation are extracted [“Many” /“Some” /“None”]? which categories can be
used to summarize the leaked information [1©“Occupation”/ 2©“Contacts”/
3©“Location”/ 4©“Hobby”/ 5©“Other personalized information”]? The result
is shown in the 5th & 6th columns of Table 4.

2. Quantification: percentage of personalized entries. For each volun-
teer, MD5 for all extracted words (529 entries total) are generated and com-
pared with the MD5 of extracted words from the IME freshly installed.
Personalized entry is counted if discrepancy identified. The result is shown
in the last two columns of Table 4.

Apparently, a plenty of sensitive information will be leaked if the CAKI
vulnerability is exploited by real attackers. On average, 58.8% of the words
extracted are indeed personalized. Besides, all volunteers report that contact
names are listed in the result, which are definitely sensitive to users.

Time and battery consumption. The time spent for KeyEvent injection is
negligible, but DicThief has to pause for a while after a round of key injection
till the IME renders its UI. The actual time overhead depends on the implemen-
tation of IME apps and the performance of phone’s hardware. We measure it on
Samsung Galaxy S3 and set the waiting period to 70 ms based on manual testing
a priori. The total time consumed adds up to 221 s for all 2-initial combinations
injections against Sogou Mobile IME. Meanwhile, the battery consumption is
also slim, costing less than 1% of total battery life. The whole attack process
will hardly be detected by victim user if DicThief runs under the right context.

5.3 Experiment on Next-word Prediction Attack Mode

In this mode, DicThief injects one or more words and choose the first word from
the list of predictions provided by IME. The IME evaluated is TouchPal [21],
an English IME with over 10 million installations worldwide. Since it is hard
for us to recruit enough native English speakers as volunteers in our region, we
decided to use public web resources to create virtual user profiles and customize
IME dictionary with them. It brings the extra benefit that now we are allowed
to look into what exact private entries are leaked. We document the steps for
generating user profiles as below:

Table 5. Simulation Experiment – Next-word Prediction Attack Mode

Sample Crawled
words

Author Info &
Blog Topics

Personalized
Entries

% of Per-
sonalization

Blog URL

1 31581 female, professor,
work experience

273 63.3% http:
//ge***hd.blogspot.com/

2 31661 male, cooking,
food

39 9.0 % http:
//ff***od.blogspot.com/

3 35606 male, American
football

73 17.0 % http:
//fo***og.blogspot.com/

4 40913 male, personal life 54 12.5 % http:
//li***gy.blogspot.com/

5 32347 female, traveling 208 48.3 % http://www.st***ls.com/

1. In a real-world scenario, an IME is customized by the text a user inputs or
information left by the user. Likewise, for each virtual user, we compile the
text she could enter and dump it to IME. In all, we create 5 users (labeled
as Sample1 – Sample5) and use content scraped from 5 blogs to externalize
them separately. The blogs are carefully chosen so that the topic focused on
by each one is different. Table 5 shows statistics of the prepared data.

2. Since TouchPal is able to read messages and customize itself, we dump the
collected blog content into the SMS sent box of the test phone (Samsung
Galaxy S3) using an Android app developed by ourselves. We use one para-
graph to fill one text message.

3. Now, TouchPal can proceed to customize its dictionary. We tick the op-
tions “Learn messages automatically” and “Only learn sent messages”, and
run the “Learn from messages” function of TouchPal. It takes one hour on
average for the customization process to end.

When a predicted word is selected, TouchPal will prompt a new predicted word.
Hence, a user can type one word and continuously choose the words provided by
TouchPal to build a long phrase. We leverage this feature to carry out 3-level pre-
diction attack. For example, DicThief injects one word “want” and then chooses
three predicted words – “to”, “go” and “shopping” – prompted consecutively
(through injecting number “1”). A meaningful phrase “want to go shopping” will
be revealed. Our empirical study suggests that starting from a verb, we have
higher chances to capture a meaningful phrase. Therefore, we select 431 words
from 1000 frequently used English verbs [20] (from “is” to “wrap”) to bootstrap
our attack. The remaining 569 words are not selected as they are either other
tenses of the selected verbs or largely used as nouns.

Information leakage. We followed the same leakage quantification method
used in the last experiment and the result is shown in Table 5. Since the data
comes from virtual users, we take a close look at the personalized words this
time. We use Sample1 as an example and show its leaked information in the list
below. (Another example is described in Appendix).

For a sequence of injected keys, we compare the phrase generated from fresh
IME (left-side of “→”) and Sample1’s IME (right-side of “→”) (see Table 6).
One can easily find words related to Sample1’s occupation, such as “tenure”,
“professional editor”, “advise”, “university” and “recent talk”. Expectedly, the
privacy of a real-world user will be under severe threat if such attack is launched.

http://ge***hd.blogspot.com/
http://ge***hd.blogspot.com/
http://ff***od.blogspot.com/
http://ff***od.blogspot.com/
http://fo***og.blogspot.com/
http://fo***og.blogspot.com/
http://li***gy.blogspot.com/
http://li***gy.blogspot.com/
http://www.st***ls.com/

Table 6. Examples of Private Entries – Sample1

– know what to do → know I always advise
– want to go to → want to publish an
– become a better place → become a professional editor
– relate to the gym and → relate to the New York
– create a new one → create a gmail account
– invest in a few days → invest in a recent talk
– rely on the way → rely on the tenure
– buy a new one → buy a new university
– wish I could have → wish I could write

Time and battery con-
sumption. The time over-
head is also small. Injection
of single key costs 35 ms
(counting waiting time) and
the whole attack takes around
401 s. The battery consump-
tion is also negligible (less
than 1%).

6 Defense

Our reported attack exploits a critical vulnerability of Android KeyEvent pro-
cessing framework as the security checks fail to cover the complete execution
path. However, it is not a trivial task to fix this vulnerability due to the highly
sophisticated design of Android. Adding a new permission to limit such behavior
is unhelpful. Injecting KeyEvent to the app itself should be permitted as usual
for the purpose of automated testing unless IME is involved in the process. Yet,
there is no way to ensure this when app installation. Simply modifying IME
app code and rejecting all the injected KeyEvents is not a viable solution either,
as the injections from system-level apps owning the INJECT EVENTS permission
should be allowed.

To mitigate such threat, we propose to augment the current KeyEvent pro-
cessing framework. Currently, the information about KeyEvent sender is limited.
It only tells whether KeyEvent is injected by one app or coming from hardware-
keyboard, turning out to be too coarse-grained. We argue that the identity of
the source app (i.e., package name, signature) should be enclosed in KeyEvent
as well, which can be fulfilled by adding a new field to its data structure. Before
a KeyEvent is dispatched, Android OS automatically attaches the sender’s iden-
tity to it. Prior to forwarding KeyEvents to IME, Android OS verifies the sender
and discard the injected KeyEvents if the sender is neither system app owning
the INJECT EVENTS permission nor hardware-keyboard. Attaching origin has also
been explored by Wang et al. [40] to prevent one app from sending unauthorized
intents to another app in Android. Their approach requires modifications to An-
droid OS and app’s code, and the policy setting process is delegated to the app
side. In contrast, our approach only calls for modification to Android OS, as the
policy should be identical to all IME apps, which protects them transparently.

Meanwhile, we examine other possible countermeasures, but they all come
with the loss of usability or compatibility. One possible solution is to prohibit
IME being invoked when the phone is securely locked, but this will disable the
quick-reply feature of the default SMS app and third-party IM apps. We can also
force IME to commit words to text controls only if the word displayed on touch
screen is tapped, which, however, will block the input from hardware keyboard.

7 Related Works

IME security issues. All user typed text can be collected by IMEs, and user’s
privacy will be breached if an IME sends out the collected key presses out of
malice. In fact, there have been questionable behaviors of IMEs observed in the
wild [35,34]. Suenaga [38] and Mohsen et al. [30] also studied key-logging threats
of malicious IMEs on Windows and Android platform respectively. In this work,
we identify a totally different venue to abuse IME: rather than enticing users to
install malicious IME, an adversary is able to exfiltrate the sensitive information
through a new system design flaw and a novel IME probing technique.

Key-logging attacks. A non-system app on Android cannot obtain keystrokes
directly. However, previous works show that it is possible to infer keystrokes
through various side-channels. A touch on the phone surface, especially the soft
keyboard will cause vibrations and touching on different positions will intro-
duce distinctive vibration patterns. Previous works monitor the motion sen-
sor like accelerometers to collect vibration statistics and infer what keys are
pressed [27,43,33,26]. Besides, other sources are also exploited for keystrokes in-
ference, including sound collected by microphone [32] and video camera [37]. On
the other hand, our work steals user’s input history in plain text and a large
amount of typed text can be unveiled in a short time.

Untrusted input. A plethora of key functionalities in mobile devices are driven
by user’s input and the modules handling such data are usually entailed with
very high privileges. A natural path for a malicious app to elevate its privileges
is impersonating human and injecting false input. Diao et al. [28] discovered that
an adversary can inject prerecorded voice commands to the built-in voice assis-
tant module (Google Voice Search) of Android and bypass permission checks.
Jang et al. [29] investigated accessibility (a11y) support framework of popular
desktop and mobile platforms and identified a number of system vulnerabilities
in handling user’s input. In this work, we identify a new channel to inject fake
input and bypass permission checks. We believe this type of threats is not yet
over and encourage future research in identifying other exploitable sources and
building better input validation mechanisms.

8 Conclusion

In this paper, we identify a new cross-app KeyEvent injection vulnerability
against IMEs installed on Android devices. By exploiting such flaw, an adversary
can infer words frequently used by a user or coming from other sensitive sources.
We implement DicThief, a prototype app and evaluate it under real-world set-
tings. The result shows that all Android versions and most of popular IMEs are
vulnerable, putting a large amount of users into danger. Such issue should be
fixed immediately and we propose a solution only requiring changes to Android
system. In the end, we believe this vulnerability is only the tip of the iceberg,
and the security of input processing framework and IME needs to be further
studied.

Acknowledgments. We thank anonymous reviewers for their insightful com-
ments. This work was supported in part by Internal Grants C001-4055006 and
C001-2050398 from The Chinese University of Hong Kong.

Appendix: Additional Data for Experiments on Next-word
Prediction Attack Mode

Table 7. Examples of Private Entries – Sample5

– see you soon then → see the stars and
– supply of the day → supply of our trip
– prepare for the first → prepare for the flight
– intend to do it again → intend to do in Utah
– behave like a good → behave like a packing
– rest of the day → rest of the city
– use the bathroom and → use the Sky train
– travel to the gym → travel tips for the
– search for the first → search for the flight

For Sample5, several terms
related to traveling could be
found. They reflect what top-
ics the author often types. Es-
pecially, they point to a loca-
tion – “Utah” and a type of
transportation – “Sky train”
which is the rapid transit
railroad system operating in
Bangkok, Thailand. After ex-
amining the blog content of
Sample5, we found the location was visited and the transportation was boarded
before.

References

1. Adaptxt - Trial. https://play.google.com/store/apps/details?id=com.kpt.

adaptxt.beta

2. Android Open Source Project: android-4.4.4 r2.0.1. https://android.

googlesource.com/platform/frameworks/base/+/android-4.4.4_r2.0.1

3. Baidu IME. https://play.google.com/store/apps/details?id=com.baidu.

input

4. EditText. http://developer.android.com/reference/android/widget/

EditText.html

5. Fleksy Keyboard Free. https://play.google.com/store/apps/details?id=com.
syntellia.fleksy.kb

6. Genymotion. http://www.genymotion.com/
7. GO Keyboard. https://play.google.com/store/apps/details?id=com.jb.

gokeyboard

8. Google Keyboard. https://play.google.com/store/apps/details?id=com.

google.android.inputmethod.latin

9. Google Pinyin Input. https://play.google.com/store/apps/details?id=com.

google.android.inputmethod.pinyin

10. Instrumentation. http://developer.android.com/reference/android/app/

Instrumentation.html

11. KeyEvent. http://developer.android.com/reference/android/view/

KeyEvent.html

12. MotionEvent. https://developer.android.com/reference/android/view/

MotionEvent.html

https://play.google.com/store/apps/details?id=com.kpt.adaptxt.beta
https://play.google.com/store/apps/details?id=com.kpt.adaptxt.beta
https://android.googlesource.com/platform/frameworks/base/+/android-4.4.4_r2.0.1
https://android.googlesource.com/platform/frameworks/base/+/android-4.4.4_r2.0.1
https://play.google.com/store/apps/details?id=com.baidu.input
https://play.google.com/store/apps/details?id=com.baidu.input
http://developer.android.com/reference/android/widget/EditText.html
http://developer.android.com/reference/android/widget/EditText.html
https://play.google.com/store/apps/details?id=com.syntellia.fleksy.kb
https://play.google.com/store/apps/details?id=com.syntellia.fleksy.kb
http://www.genymotion.com/
https://play.google.com/store/apps/details?id=com.jb.gokeyboard
https://play.google.com/store/apps/details?id=com.jb.gokeyboard
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.latin
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.pinyin
https://play.google.com/store/apps/details?id=com.google.android.inputmethod.pinyin
http://developer.android.com/reference/android/app/Instrumentation.html
http://developer.android.com/reference/android/app/Instrumentation.html
http://developer.android.com/reference/android/view/KeyEvent.html
http://developer.android.com/reference/android/view/KeyEvent.html
https://developer.android.com/reference/android/view/MotionEvent.html
https://developer.android.com/reference/android/view/MotionEvent.html

13. Pinyin. http://en.wikipedia.org/wiki/Pinyin
14. QQ IME. https://play.google.com/store/apps/details?id=com.tencent.

qqpinyin

15. Settings.Secure. http://developer.android.com/reference/android/

provider/Settings.Secure.html

16. Sogou Mobile IME. https://play.google.com/store/apps/details?id=com.

sohu.inputmethod.sogou

17. SOUHU.COM Annual Report. http://mfiles.sohu.com/corp/2013%20Annual%

20Report.pdf

18. SwiftKey Keyboard. https://play.google.com/store/apps/details?id=com.

touchtype.swiftkey

19. Swype Keyboard Free. https://play.google.com/store/apps/details?id=com.
nuance.swype.trial

20. Top 1000 Verbs. http://www.talkenglish.com/Vocabulary/Top-1000-Verbs.

aspx

21. TouchPal. https://play.google.com/store/apps/details?id=com.cootek.

smartinputv5

22. WindowManager.LayoutParams. http://developer.android.com/reference/

android/view/WindowManager.LayoutParams.html

23. ISO 7098:1991 Romanization of Chinese. ISO/TC 46 Information and Documen-
tation (1991)

24. Android Open Source Project: InputDispatcher.cpp. https://android.

googlesource.com/platform/frameworks/base/+/android-4.4.4_r2.0.1/

services/input/InputDispatcher.cpp

25. Android Open Source Project: PhoneWindowManager.java. https://android.

googlesource.com/platform/frameworks/base/+/android-4.4.4_r2.0.1/

policy/src/com/android/internal/policy/impl/PhoneWindowManager.java

26. Aviv, A.J., Sapp, B., Blaze, M., Smith, J.M.: Practicality of Accelerometer Side
Channels on Smartphones. In: Proceedings of the 28th Annual Computer Security
Applications Conference (ACSAC) (2012)

27. Cai, L., Chen, H.: TouchLogger: Inferring Keystrokes on Touch Screen from Smart-
phone Motion. In: Proceedings of the 6th USENIX Workshop on Hot Topics in
Security (HotSec) (2011)

28. Diao, W., Liu, X., Zhou, Z., Zhang, K.: Your Voice Assistant is Mine: How to
Abuse Speakers to Steal Information and Control Your Phone. In: Proceedings of
the 4th ACM Workshop on Security and Privacy in Smartphones & Mobile Devices
(SPSM) (2014)

29. Jang, Y., Song, C., Chung, S.P., Wang, T., Lee, W.: A11y Attacks: Exploiting
Accessibility in Operating Systems. In: Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (CCS) (2014)

30. Mohsen, F., Shehab, M.: Android Keylogging Threat. In: Proceedings of the 9th
International Conference on Collaborative Computing: Networking, Applications
and Worksharing (CollaborateCom) (2013)

31. Mulliner, C., Michéle, B.: Read It Twice! A Mass-Storage-Based TOCTTOU At-
tack. In: Proceedings of the 6th USENIX Workshop on Offensive Technologies,
(WOOT) (2012)

32. Narain, S., Sanatinia, A., Noubir, G.: Single-stroke Language-Agnostic Keylogging
using Stereo-Microphones and Domain Specific Machine Learning. In: Proceed-
ings of the 2014 ACM conference on Security and Privacy in Wireless and Mobile
Networks (WiSec) (2014)

http://en.wikipedia.org/wiki/Pinyin
https://play.google.com/store/apps/details?id=com.tencent.qqpinyin
https://play.google.com/store/apps/details?id=com.tencent.qqpinyin
http://developer.android.com/reference/android/provider/Settings.Secure.html
http://developer.android.com/reference/android/provider/Settings.Secure.html
https://play.google.com/store/apps/details?id=com.sohu.inputmethod.sogou
https://play.google.com/store/apps/details?id=com.sohu.inputmethod.sogou
http://mfiles.sohu.com/corp/2013%20Annual%20Report.pdf
http://mfiles.sohu.com/corp/2013%20Annual%20Report.pdf
https://play.google.com/store/apps/details?id=com.touchtype.swiftkey
https://play.google.com/store/apps/details?id=com.touchtype.swiftkey
https://play.google.com/store/apps/details?id=com.nuance.swype.trial
https://play.google.com/store/apps/details?id=com.nuance.swype.trial
http://www.talkenglish.com/Vocabulary/Top-1000-Verbs.aspx
http://www.talkenglish.com/Vocabulary/Top-1000-Verbs.aspx
https://play.google.com/store/apps/details?id=com.cootek.smartinputv5
https://play.google.com/store/apps/details?id=com.cootek.smartinputv5
http://developer.android.com/reference/android/view/WindowManager.LayoutParams.html
http://developer.android.com/reference/android/view/WindowManager.LayoutParams.html
https://android.googlesource.com/platform/frameworks/base/+/android-4.4.4_r2.0.1/services/input/InputDispatcher.cpp
https://android.googlesource.com/platform/frameworks/base/+/android-4.4.4_r2.0.1/services/input/InputDispatcher.cpp
https://android.googlesource.com/platform/frameworks/base/+/android-4.4.4_r2.0.1/services/input/InputDispatcher.cpp
https://android.googlesource.com/platform/frameworks/base/+/android-4.4.4_r2.0.1/policy/src/com/android/internal/policy/impl/PhoneWindowManager.java
https://android.googlesource.com/platform/frameworks/base/+/android-4.4.4_r2.0.1/policy/src/com/android/internal/policy/impl/PhoneWindowManager.java
https://android.googlesource.com/platform/frameworks/base/+/android-4.4.4_r2.0.1/policy/src/com/android/internal/policy/impl/PhoneWindowManager.java

33. Owusu, E., Han, J., Das, S., Perrig, A., Zhang, J.: ACCessory: Password Inference
using Accelerometers on Smartphones. In: Proceedings of the Twelfth Workshop
on Mobile Computing Systems & Applications (HotMobile) (2012)

34. Rowe, I.: Chrome OS to warn users of privacy risks in alternate key-
board layouts. http://www.linuxveda.com/2014/06/20/chrome-os-warn-users-
privacy-risks-alternate-keyboard-layouts/ (June 2014)

35. Sanders, J.: Japanese government warns Baidu IME is spying on
users. http://www.techrepublic.com/blog/asian-technology/japanese-

government-warns-baidu-ime-is-spying-on-users/ (January 2014)
36. Schlegel, R., Zhang, K., Zhou, X., Intwala, M., Kapadia, A., Wang, X.: Sound-

comber: A Stealthy and Context-Aware Sound Trojan for Smartphones. In: Pro-
ceedings of the 18th Network and Distributed System Security Symposium (NDSS)
(2011)

37. Simon, L., Anderson, R.: PIN Skimmer: Inferring PINs Through The Camera and
Microphone. In: Proceedings of the Third ACM Workshop on Security and Privacy
in Smartphones & Mobile Devices (SPSM) (2013)

38. Suenaga, M.: IME as a Possible Keylogger. Virus Bulletin pp. 6–10 (2005)
39. Tsafrir, D., Hertz, T., Wagner, D., Silva, D.D.: Portably Solving File TOCTTOU

Races with Hardness Amplification. In: Proceedings of the 6th USENIX Conference
on File and Storage Technologies (FAST) (2008)

40. Wang, R., Xing, L., Wang, X., Chen, S.: Unauthorized Origin Crossing on Mobile
Platforms: Threats and Mitigation. In: Proceedings of the 20th ACM Conference
on Computer and Communications Security, (CCS) (2013)

41. Wei, J., Pu, C.: TOCTTOU Vulnerabilities in UNIX-Style File Systems: An
Anatomical Study. In: Proceedings of the FAST ’05 Conference on File and Storage
Technologies, (FAST) (2005)

42. Xu, Z.: Android Installer Hijacking Vulnerability Could Expose Android Users
to Malware. http://researchcenter.paloaltonetworks.com/2015/03/android-
installer-hijacking-vulnerability-could-expose-android-users-to-

malware/ (2015)
43. Xu, Z., Bai, K., Zhu, S.: TapLogger: Inferring User Inputs On Smartphone Touch-

screens Using On-board Motion Sensors. In: Proceedings of the fifth ACM confer-
ence on Security and Privacy in Wireless and Mobile Networks (WiSec) (2012)

44. Yang, J., Cui, A., Stolfo, S.J., Sethumadhavan, S.: Concurrency Attacks. In: Pro-
ceedings of the 4th USENIX Workshop on Hot Topics in Parallelism, (HotPar)
(2012)

http://www.linuxveda.com/2014/06/20/chrome-os-warn-users-privacy-risks-alternate-keyboard-layouts/
http://www.linuxveda.com/2014/06/20/chrome-os-warn-users-privacy-risks-alternate-keyboard-layouts/
http://www.techrepublic.com/blog/asian-technology/japanese-government-warns-baidu-ime-is-spying-on-users/
http://www.techrepublic.com/blog/asian-technology/japanese-government-warns-baidu-ime-is-spying-on-users/
http://researchcenter.paloaltonetworks.com/2015/03/android-installer-hijacking-vulnerability-could-expose-android-users-to-malware/
http://researchcenter.paloaltonetworks.com/2015/03/android-installer-hijacking-vulnerability-could-expose-android-users-to-malware/
http://researchcenter.paloaltonetworks.com/2015/03/android-installer-hijacking-vulnerability-could-expose-android-users-to-malware/

	Mind-Reading: Privacy Attacks Exploiting Cross-App KeyEvent Injections
	Introduction
	Background and Adversary Model
	IME and Personalized User Dictionary
	Adversary Model

	Vulnerability Analysis
	Android KeyEvent Processing Flow
	Cross-App KeyEvent Injection Vulnerability

	Attack
	Enumerating Entries from Dictionary
	Attack in Stealthy Mode
	Case Study of IMEs for Non-Latin Languages

	Evaluation
	Scope of Attack
	Experiment on Word Completion Attack Mode
	Experiment on Next-word Prediction Attack Mode

	Defense
	Related Works
	Conclusion

