
When Good Becomes Evil: Keystroke Inference with
Smartwatch ∗

Xiangyu Liu
The Chinese University of

Hong Kong
lx012@ie.cuhk.edu.hk

Zhe Zhou
The Chinese University of

Hong Kong
zz113@ie.cuhk.edu.hk

Wenrui Diao
The Chinese University of

Hong Kong
dw013@ie.cuhk.edu.hk

Zhou Li
ACM Member

lzcarl@gmail.com

Kehuan Zhang
The Chinese University of

Hong Kong
khzhang@ie.cuhk.edu.hk

ABSTRACT
One rising trend in today’s consumer electronics is the wearable
devices, e.g., smartwatches. With tens of millions of smartwatches
shipped, however, the security implications of such devices are not
fully understood. Although previous studies have pointed out some
privacy concerns about the data that can be collected, like person-
alized health information, the threat is considered low as the leaked
data is not highly sensitive and there is no real attack implemented.
In this paper we investigate a security problem coming from sen-
sors in smartwatches, especially the accelerometer. The results
show that the actual threat is much beyond people’s awareness.

Being worn on the wrist, the accelerometer built within a smart-
watch can track user’s hand movements, which makes inferring
user inputs on keyboards possible in theory. But several challenges
need to be addressed ahead in the real-world settings: e.g., small
and irregular hand movements occur persistently during typing,
which degrades the tracking accuracy and sometimes even over-
whelms useful signals.

In this paper, we present a new and practical side-channel attack
to infer user inputs on keyboards by exploiting sensors in smart-
watch. Novel keystroke inference models are developed to mitigate
the negative impacts of tracking noises. We focus on two major cat-
egories of keyboards: one is numeric keypad that is generally used
to input digits, and the other is QWERTY keyboard on which a
user can type English text. Two prototypes have been built to infer
users’ banking PINs and English text when they type on POS ter-
minal and QWERTY keyboard respectively. Our results show that
for numeric keyboard, the probability of finding banking PINs in
the top 3 candidates can reach 65%, while for QWERTY keyboard,
a significant accuracy improvement is achieved compared to the
previous works, especially of the success rate of finding the correct
word in the top 10 candidates.

∗We have got the IRB approval from the authors’ institutes before
performing any experiment related to human subjects.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
CCS’15, October 12–16, 2015, Denver, Colorado, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3832-5/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2810103.2813668.

Categories and Subject Descriptors
D.4.6 [Operating System]: Security and Protection—Invasive soft-
ware

Keywords
Smartwatch; Keystroke Inference; Side-channel Attacks

1. INTRODUCTION
Keyboard is extensively employed for inputting sensitive infor-

mation, like PINs and secret documents, and it is naturally a very
attractive target to cyber-criminals. Keylogger can directly steal the
keystrokes but it has to maintain footage in victim’s machine. On
the other hand, side-channel based keystroke inference attack col-
lects the signals emanated from keyboards using external devices
and is stealthier. There have been a plenty of works exploring fea-
sible channels for such attacks. For example, the work by Asonov
and Agrawal demonstrated that sound produced by hitting different
keys is unique and can be exploited for keystroke inference [20].
Following their work, a broad spectrum of attack surfaces were
identified, including electromagnetic emanations [38], optical em-
anations [35], acoustic emanations [29, 23, 42], and even the vibra-
tion of wooden desk [32].

A large corpus of existing attacks are only feasible after the at-
tacker deploys signal collector (e.g., parabolic microphone [20]) in
the near range of the victim. Such constraint seems to be removed
if the attacker is able to control victim’s smartphone and abuse it as
the signal collector. However, the result from previous works sug-
gests the smartphone has to be placed close enough to the keyboard
by the victim to enable such attacks [32, 42], which is not practical
in most cases.

Smartwatch, on the other hand, appears to be a better option for
such attacks. Featuring diversified apps and sensors, it greatly ex-
tends the functionality of traditional watch and quickly gains pop-
ularity in recent years. But if the smartwatch is controlled by an at-
tacker, e.g., through malicious app, user’s movement could be mon-
itored to infer the typed keys. The bar for launching such attacks is
also lower: the adversary does not need to deploy signal collector
or expect the user putting one nearby. In this paper, we explore the
attack surface from smartwatch and try to answer these questions:
Is there an effective side-channel source from smartwatch for such
task? Will it lead to more accurate keystroke inference?

The answer appears to be “yes”. Sensors like accelerometer, gy-
roscope and microphone provide continuous data streams directly

Figure 1: The scenarios of attacking POS terminal (Left) and
attacking QWERTY keyboard (Right).

related to user’s activities. The adversary can intercept the stream
from either motion sensors or acoustic sensors for keystroke in-
ference. Yet, it is not straightforward to transform the stream data
into precise keystrokes. Motion sensors can be used to capture hand
movements but several issues have to be addressed before using the
data. First, there is a big variance in hand movements. For instance,
the moving speed of hand is not constant between different keys:
people type fast for familiar words but slow for unfamiliar ones.
Second, the data collected is noisy. Small and irregular hand move-
ments always accompany with typing keys, making the data input
unstable. Third, the sampling rate is limited for smartwatch sen-
sors, which causes movement information uncollected occasion-
ally. Regarding acoustic sensors, previous works leverage the ones
on mobile phones for keystroke inference [42], but the same tech-
niques cannot be applied here. Previous works assume the mobile
phones are placed steadily in fixed positions during attack to re-
duce the variance of acoustic signals produced by hitting the same
key. Such an assumption does not hold in our scenario: smartwatch
always moves with hand and the acoustic signals oscillate for the
same key due to the ever-changing distance and relative position
between keyboard and sensors.

In this paper, we develop a set of new techniques to decode
keystrokes using sensors on smartwatch. Instead of reconstructing
the whole precise track of hand movements, we only capture hand
movements between successive keystrokes and model them using
displacements or motion directions. A transition diagram is built
to assign probability to different combination of keys. This new
model turns out to be quite effective. We tested two commonly used
keyboards, including a normal QWERTY keyboard and a numeric
keypad of a handheld Point of Sale (POS) device. The user’s input
falls into a small candidate set produced by our approach with high
probability. This result suggests using smartwatch for keystroke
inference is totally feasible. To notice, the security implications re-
garding smartwatch has been discussed before, but mainly revolv-
ing in leaking health index [13, 2]. Our research shows smartwatch
could bring in more severe threat if abused by attackers. We sum-
marize our contributions as follows:

• We present a new and practical side-channel attack against
keyboards for decoding keystrokes using a smartwatch, which
can infer banking PINs from a POS terminal and recover En-
glish text from a QWERTY keyboard.

• We develop novel schemes to capture and model two differ-
ent typing movements, i.e., displacement mode for numeric
keypad and acceleration mode for QWERTY keyboard, which
alleviate the negative impact of noises, like shaking of hand,
different typing styles, etc. In addition, a modified k-NN al-
gorithm and an optimization scoring algorithm are also pro-
posed to improve the inference accuracy.

• We build two prototypes and thoroughly evaluate them. The
result shows that for numeric keyboard, the probability of
finding banking PINs in the top 3 candidates can reach 65%.
While for QWERTY keyboard, a significant accuracy im-
provement (i.e., 50% improvement in accuracy for top 10
candidates) can be achieved compared to the previous works
[23, 32].

Roadmap. The rest of this paper is organized as follows: We
begin with background introduction in Section 2, as well as an
overview of our attacks in Section 3. Section 4 shows our attack
on POS terminal keypad. Inferring English text when user types on
QWERTY keyboard is introduced in Section 5. Section 6 proposes
several approaches for mitigation and in Section 7, we discuss lim-
itations of this paper and future works. We compare our work with
the previous related research in Section 8. Finally, Section 9 con-
cludes this paper.

2. BACKGROUND

2.1 Smartwatch
It has been a long history for watch manufacturers to extend the

capability of watch beyond basic time keeping function, and smart-
watch is just another trend that migrates functionalities from smart-
phones. To support such rich functions, a smartwatch generally has
a built-in modern Operating System, such as Android Wear in Sam-
sung Galaxy Gear and Watch OS in Apple Watch. Such framework
enables users to install various applications (apps) to perform ad-
vanced tasks, like making phone calls, checking SMS, etc.

Besides, smartwatches also have multiple sensors to collect in-
formation about the user and the environment. Sensors include ac-
celerometer, microphone, gyroscope, heart rate sensor, and so on.
In this work, we focus on the security implications of the sensors in
smartwatches, in particular keystroke inference issue based on in-
formation from those sensors. LG G WATCH [25] was chosen for
our evaluation purpose. This watch is powered by Android Wear
OS [1], a variation of standard Android OS supporting a subset of
full Android functionalities but suiting better to limited process-
ing power and battery life. We mainly extract the data from ac-
celerometer for the purpose of attack. The built-in accelerometer is
manufactured by InvenSense [10], and its resolution and maximum
measured value are 0.04 m/s2 and 19.6 m/s2 respectively. Sim-
ilar to accelerometers in mobile phones, this sensor can measure
the accelerations of movement in x-, y- and z-axis regardless of the
orientation of watch (see Figure 2).

Z

Y
X

Figure 2: The x-, y- and z-axis of accelerometer in smartwatch.

2.2 Adversary Model
We assume that a user (the victim) wears a smartwatch while

she is typing, and the adversary studied here is interested in infer-
ring the inputs the victim has typed when wearing the smartwatch.
The keyboards we studied include normal QWERTY keyboard and
numeric keyboard on POS terminal. Both of them are frequently
used.

In order to get data from sensors on a smartwatch, it is assumed
that the adversary has already tricked the victim to install a mali-
cious app onto her smartwatch, which is parallel to other attacking
papers on Android smartphones. To propagate and install a piece of
mobile malware, one common practice for adversaries is repackag-
ing a popular paid app with malicious code embedded, then upload-
ing to and making it free in one or more Android markets. Careless
users will quickly get their devices compromised after download-
ing and installing the masqueraded malicious app.

We also assume that the malicious app can access smartphone
sensors, including the accelerometer (for both cases) and micro-
phone (for QWERTY keyboard case). This is a reasonable as-
sumption. On Android, access to accelerometer is not fettered
by any permission. Access to microphone is mediated by permis-
sion RECORD_AUDIO, but the malicious app could trick the user
to believe such access is necessary and legitimate 1.

Since there is a significant difference between the two types of
keyboards, we study them separately under different attacking sce-
narios. For numeric keyboard, the adversary’s goal is to infer PIN
code which consists of 6 digits. For QWERTY keyboard, the ad-
versary’s goal is to recover the English text input by the victim 2.
Given the nature of this type of attack (i.e., side-channel informa-
tion with lots of noises), it is almost impossible to get the exact user
inputs, so we take the same strategy as previous works [29, 23, 32]:
the algorithm produces a set of possible user inputs, and see how
likely the real input appears in this set. Like the previous keystroke
inference attacks [20, 29], we store the data locally on the device
during the collection process and upload them later to our server,
where Matlab is used to perform the offline analysis.

3. ATTACK OVERVIEW
In this section, we briefly describe the steps of our attack against

numeric keypad and QWERTY keyboard. Then, we highlight the
advantages of our attack.

3.1 Attacking Numeric Keypad
In this paper, we take POS terminal as an example to show how

a victim’s digital inputs can be inferred, but the same techniques
could be applied to devices with similar inputting interface, like
ATM, door access control system, telephone, etc. The attack in-
cludes two phases: learning phase to build a model, and attacking
phase to infer victim’s input based on the generated model.

• Learning phase. We recruit a group of participants and ask
them to press sequences of numbers with smartwatch worn
on one wrist. The acceleration data collected by our app will
be processed to extract the data points relevant to movements
between keystrokes. These data points are finally decom-
posed along x- and y-axis of smartwatch as features and fed
into a modified k-NN algorithm for model training.

• Attacking phase. Similar to learning phase, the raw accel-
eration data of the participants are recorded, processed and
converted into features. We then apply the model generated
in training stage on the features and produce a set of PIN
candidates ranked by their possibilities.

Advantages. Accelerometer has been exploited by previous works
to decode PINs [30, 33, 40]. However, these works all utilize the
1Analysis result from our repository of collected apps shows that
this permission was requested by a large corpus of legitimate apps.
2Password inference on QWERTY keyboard is not considered in
this work.

data from the accelerometer embedded within the targeted devices,
and as such, the attacks are only effective against smart devices
(e.g., smartphones). Instead, the accelerometer we exploit comes
with the smartwatch which stays away from the targeted devices,
hence, any keypad, including the one on POS terminal and smart
devices, is potentially under threat.

3.2 Attacking QWERTY Keyboard
To demonstrate the broad attack surface by using smartwatch, we

also attempt to recover English text typed through QWERTY Key-
board. In addition to information from accelerometer, we extract
acoustic signals from the embedded microphone to improve accu-
racy. By combining the data collected from two sensors, our attack
can accurately determine hand movements even without training
phase. The flow of this attack is divided into three steps and they
are elaborated below.

• Detecting keystrokes. Comparing to typing numeric keypad,
the hand movements of a common user tend to be slimmer
when typing adjacent keys on QWERTY keyboard, which
makes separating keystrokes much more difficult if using ac-
celeration information from accelerometer solely. Hence,
in addition, we use the acoustic signals collected from em-
bedded microphone to identify the window for individual
keystroke.

• Modeling keystrokes. The information collected from the
hand wearing smartwatch and the other hand is quite differ-
ent, so we model two hands differently. Assume the user
wears smartwatch on her left hand. When a keystroke is de-
tected, we first determine if it is pressed by left hand using
z-axis accelerations. If so, we represent the key pairs using
the direction of hand displacement inferred from x- and y-
axis acceleration variations. Otherwise, the key is pressed by
right hand and we use “R” to label it3. After the sequence
of keystrokes is processed, multiple sequences of labels are
generated (called predicted profiles) to cover all the possible
combinations of hand movements.

• Word matching. A labeling process is first performed to tag
each word in a dictionary and then we develop an optimiza-
tion algorithm to score likelihood of the words in the dictio-
nary by comparing their tags with the predicted profiles. The
outcome is a list of words ranked by probability.

Advantages. Compared to the previous works on QWERTY key-
boards, our attack has several advantages:
Non-intrusive. Previous works collect acoustic signals or vibra-
tions with the help of external devices, like microphone or smart
phones [20, 32, 42]. The adversary has to deliberately set up these
devices to be placed around the keyboard. To the opposite, smart-
watch is worn by the user herself and the distance between the
watch and keyboard is small enough naturally.
Strong tolerance to acoustic noise. Since the smartwatch worn
on user’s wrist is very close to keyboard, the keystroke sound in
general is much stronger than the ambient noise (e.g., noise from
air conditioner) when sensed by smartwatch. Besides, people tend
to keep quiet and reduce prominent body movement when typing,
which makes the sound of key presses more distinguishable.
High accuracy. The mechanism we developed takes both acoustic
signals and accelerations as input, which produces high entropy and
improves the accuracy comparing to previous works [23, 32].
3“L” letters include {a b c d e f g q r s t v w x z} and “R” letters
include {h i j k l m n o p u y} [12].

4. INFERRING PINS FROM NUMERIC KEY-
PAD

In this section, we present the attack stealing banking PINs from
numeric keypad of POS terminal. The attack can succeed by just
analyzing the acceleration data collected from the victim’s smart-
watch. Our empirical study suggests it is not a good choice to di-
rectly infer the keys tapped from the acceleration data for two rea-
sons. First, slight shake of user’s hand frequently happens during
typing and finger moving, injecting a lot of noise. Second, as we
observed from empirical study, user tends to move and type slow
when using POS terminal, and the duration for each action differs
prominently, making it more difficult to profile keystrokes. So in-
stead, we convert the accelerations into displacements along x- and
y-axis using integration techniques. Finally, we feed the displace-
ment vectors into a state-transition model to obtain PIN candidates
ranked with possibilities.
Settings. The POS terminal we attacked is LANDI E530 [16],
which is used by a large number of stores in China. The lay-
out of keypad is also similar to other POS terminals. We assume
each PIN contains 6 digits, a typical setting adopted by financial
systems around the world [14]. The malicious app we built col-
lects accelerations using the Android sensor sampling interface:
TYPE_LINEAR_ACCELERATION, and the sampling rate is set to
mode SENSOR_DELAY_FASTEST (FASTEST for short) by spec-
ifying it when registering the sensor listener.

In this study, we assume the user follows the common typing
style shown in Figure 1 (Left). Specifically, the POS terminal is
held by the user’s left hand, and she presses keys with the index
finger of her right hand wearing the smartwatch. We also assume
the user does not make huge movements during typing.

4.1 Movement Modeling
We model the displacements of movements in 2-dimensional

Cartesian coordinate system, elaborated in Figure 3. Specifically,
we use the geometric center of each key as the point coordinate
and set the origin to key 1. The horizontal direction aligns with
y-axis and the vertical direction aligns with x-axis. Then, the dis-
placement between two keys can be represented by a vector. For
example, the coordinates of key 1 and key 2 are (0, 0) and (0, 1),
and the displacement between them is a vector [0, 1]. The number
of all unique displacement vectors between number keys is 31, less
than the number of all unique number key pairs (100 for 10 number
keys), because different pairs of keys might have the same vector
(e.g., {[0, 2]: key 1→ key 3, key 4→ key 6, key 7→ key 9}). A
label Label i is assigned to each vector, where i ∈ [1, 31].

In addition to modeling number keys, we also need to model
“Enter” key, which is used to submit the previous 6-digit number.
Since the size of “Enter” key is two times as the number key (see
Figure 3), we use (2.5, 3) to represent its coordinate. The vectors
between each number key to “Enter” key are different, counting up
to 10 vectors, which are denoted as Label i, where i ∈ [32, 41].

4.2 Attack Steps
Our attack first learns the mapping model between accelerations

and displacements through a learning phase. Then the model is
applied in the testing stage to infer PINs.

4.2.1 Learning Phase
Data collection. Since user’s hand movements are classified into
41 vectors (Label 1 to Label 41), we collect accelerations from
participants for each vector. We did not collect accelerations for
the combinations of vectors since user tends to pause a while be-

X

Y

FUNC

CANCEL

CLEAR

ENTERALPHA

Figure 3: The x-, y-axis of POS terminal.

tween pressing one key and moving to the next key (also proved by
our pilot experiment), introducing clear separation between con-
secutive vectors. To reduce the workload for each participant, we
cluster the vector and its reverse one (e.g., [2, 2] for key 1→ key
9 and [-2, -2] for key 9→ key 1) into one group. After that, only
26 groups of accelerations need to be collected instead of 41 vec-
tors. During this stage, each participant is instructed to complete
15 times for each group. One extra requirement for participants is
to keep hand static for a period before/after the whole input, cre-
ating a “silence” start/end period with unobservable accelerations.
To notice, this is only for facilitating the later extraction process
and it is not required in testing stage.
Extraction. For the accelerations logged for each group, we extract
the acceleration segment during which the 15 times input is com-
pleted. Such a process is performed automatically with the help of
the “silence” start and end period.
Pre-processing. We perform the following two phases to filter out
noises and improve signal-to-noise ratio (SNR).
Re-sampling. Due to the limited accuracy of accelerometer on
smartwatch, the time interval between two successive sampled data
points is not constant. Such non-uniform sampling data impacts the
performance of latter stage, and should be refined. For this purpose,
we log the time stamp of each sampled acceleration as well besides
its magnitude. Then, cubic spline interpolation [6], a commonly
used signal processing technique, is utilized to obtain acceleration
magnitudes on regular sampling intervals throughout the whole ac-
celeration segment.
Filtering. The collected accelerations mainly contain two types of
noises, including the linear noise (also known as signal trends) and
noise in high-frequency range, which is usually caused by the small
but random movement of hand. We filter them using an Fast Fourier
Transform (FFT) filter. In particular, we first use FFT to detect
dominant frequencies corresponding to user’s movements. Then
we set the amplitudes of the linear part and high frequency part
as zero, and apply Inverse FFT (IFFT) on the remaining frequency
data to recover the time-domain signal.
Feature extraction. Our feature extraction consists of three phases:
Movements capturing, Calculation, and Optimization. We elabo-
rate them separately as below.
Movements capturing. After the accelerations are pre-processed,
we map them to the displacements in order to reconstruct the hand
movements. As a first step, we need to correctly identify the time
window for each movement since different users usually type keys
with different time span. Moreover, a single user may type keys dif-

ferently each time. Fixed-size time window is not a viable solution
and we detect the abrupt changes of energy to infer the time win-
dow instead. In particular, assume accX(i), accY (i) and accZ(i)
represent pre-processed accelerations on x-, y-, and z-axis for sam-
ple point i in time domain. We compute the acceleration EXY Z(i)
using the equation below:

EXY Z(i) = accX(i)2 + accY (i)2 + accZ(i)2 (1)

Then, we compute the accumulated energy AXY Z(i) of the ac-
celerations in a sliding window (size equals to 10):

AXY Z(i) =

i+10∑
n=i

EXY Z(n) (2)

Each AXY Z(i) is compared to a pre-defined threshold Ath
XY Z

(set to 0.7 based on the empirical analysis). If AXY Z(i) surpasses
the threshold, the user is supposed to begin to move finger to the
next key, and we take i as the start location in time domain. A
user moves finger 6 times to finish PIN typing and the start location
for the remaining movements is identified similarly. To reduce the
computation overhead, we skip the time window gap_time after
one start location is detected and scan for the new start location. We
set gap_time to 1 second (200 samples) based on our observation
that it typically takes more than 1 second between two keystrokes.
Hence, there is at most one start location within one-second time
range. After that, a list of start locations is detected and we define
the start location of the kth movement as Locmk .

For the kth movement, we infer its accurate start and end accel-
eration location along x-axis using Algorithm 1, which is inspired
by one prominent acceleration pattern: the accelerations will first
follow the direction of the movement, and then change to the re-
verse direction as there should be a sharp deceleration before the
finger hovers on the next key. Particularly, we elaborate Algorithm
1 with the diagram shown in Figure 4 as below: we first scan the
samples in the range [Locmk−L1, Locmk +L2] and find the loca-
tion of maximum and minimum (see P2 and P3 in Figure 4). Then,
we define the smaller location as Locsmall (P2) and the larger one
as Loclarge (P3). Finally, a forward and backward search are per-
formed based on P2 and P3 respectively to obtain Locstartm_xk

(P1)
and Locend

m_xk
(P4). Similarly, the accurate start and end location of

the kth movement along y-axis can be obtained by applying these
steps and denoted as Locstartm_yk and Locend

m_yk .
Calculation. The array of accelerations in x- and y-axis corre-
sponding to each movement will be integrated into a “coarse” dis-
placement array using a double integral (trapezoidal integration).
The equation of calculating displacement array for x-axis is shown
as below:

Sj
m_xk

= cumtrapz(t, cumtrapz(t, accX(j))),

j ∈ [Locstartm_xk
, Locend

m_xk
]

(3)

t is a list of timestamps corresponding to the acceleration sam-
ple points and the initial velocity is set as 0 since each movement
starts with a relatively static posture. cumtrapz is the function for
trapezoidal integration. For each acceleration sample point with in-
dex j, we can find its corresponding displacement. Therefore, the

last element of x-axis displacement array (S
j=Locend

m_xk
m_xk) is taken

as x-axis displacement of the kth movement. Similarly, Sj
m_yk ,

j ∈ [Locstartm_yk , Loc
end
m_yk] is computed and S

j=Locend
m_yk

m_yk is the y-
axis displacement of the kth movement.
Optimization. The above “coarse” displacement array needs to be
refined. It is inaccurate when the user moves slightly along the

Algorithm 1 : Algorithm to capture x-axis movements
Input: Locmk , L1 = 20 samples, L2 = 180 samples
Output: The accurate start and end location of a movement
1: range = [Locmk − L1, Locmk + L2];
2: Locmin

m_xk
= argmin accX(range);

3: Locmax
m_xk

= argmax accX(range);
4: Locsmall = min (Locmin

m_xk
, Locmax

m_xk
);

5: Loclarge = max (Locmin
m_xk

, Locmax
m_xk

);
6: Do a forward search from Locsmall and find the first sample in

opposite sign. The location plus one is labeled as Locstartm_xk
.

7: Do a backward search from Loclarge and find the first sample
in opposite sign. The location minus one will be marked as
Locend

m_xk
.

8: return Locstartm_xk
, Locend

m_xk

-1

-0.5

0

0.5

1

No of Samples (j)

A
c
c
e
le

ra
ti
o
n

P3 P4

P1

... ...

... ...

P2

forward search

backward search

Figure 4: The diagram of processes described in Algorithm 1.

corresponding axis, though it is fairly accurate if the user moves
significantly along the corresponding axis. Figure 5 shows an ex-
ample of the displacement arrays for 15 movements from key 1 to
key 9. The 15 x-axis displacement arrays (shown in top left) are
close, and the displacements can be clustered. But the y-axis dis-
placement arrays (shown in top right) differ prominently, though
they should be close to 0 in theory. We think the errors can be at-
tributed to the instability of user’s hand and low sampling rate of
accelerometer.

We aim to mitigate the errors caused by instable hand. The
key insight we leverage here is that the direction of acceleration
changes frequently when the hand moves along x- or y-axis, there-
fore, we search the location in time domain where the second al-
ternation of the acceleration direction occurs and remove the data
points after. Taking y-axis as an example, if the location exists, we
denote it as Locpm_yk and use it to correct the end location of move-

ment. If S
j′=Locpm_yk
m_yk is smaller than a threshold, i.e., 0.5 cm, we

replace Locend
m_yk with Locpm_yk , and the new displacement array is

denoted as Sj′
m_yk , where j′ ∈ [Locstartm_yk , Loc

p
m_yk].

Using the above approach, we can get the optimized integral dis-
placement arrays, shown in Figure 5 (bottom left and bottom right).
As expected, the x-axis displacement arrays keep unchanged, while
the y-axis displacement arrays become much shorter and are more
consistent. Finally, we define the last element of Sj′

m_xk
and

Sj′
m_yk as Sm_xk and Sm_yk respectively, and the displacement vec-

0 100 200
0

2

4

No. of Samples (j)

S
m

_
x

k

j
 (

c
m

)
Original x-axis displacements

0 100 200
-1

0

1

No. of Samples (j)

S
m

_
y

k

j
 (

c
m

)

Original y-axis displacements

0 100 200
0

2

4

No. of Samples (j')

S
m

_
x

k

j'
 (

c
m

)

Optimized x-axis displacements

0 100 200
-1

0

1

No. of Samples (j')

S
m

_
y

k

j'
 (

c
m

)

Optimized y-axis displacements

Figure 5: (Top Left) The x-axis original integral displacement
arrays for 15 movements from key 1 to key 9; (Top Right)
the corresponding y-axis original integral displacement arrays;
(Bottom Left) The optimized x-axis displacement arrays; (Bot-
tom Right) the y-axis displacement arrays after optimization.
Note that the No. of samples after optimization is denoted as j′.

tor [Sm_xk , Sm_yk] is taken as the feature to model the kth move-
ment.

4.2.2 Testing Phase
The displacement vectors generated in the learning stages are

leveraged to infer the keys typed by a victim. We elaborate how the
victim’s movement data is processed and matched with the vectors
as below:
Data collection. The app on smartwatch continuously record the
accelerations, covering the movement of typing 6-digit PINs and
“Enter” key. The accelerations are not separated into movement
labels beforehand this time.
Extraction. Given the obtained accelerations, the first step is to
extract the acceleration segment during which the PIN is entered.
We fulfill this task through applying a heuristic that a movement
usually starts and ends with low accelerations and such pattern will
repeat 6 times during typing. Alternatively, we can extract acceler-
ations using the sliding window technique, which has been widely
used for recognizing gestures from accelerations [28].
Pre-processing. Similar to the processes conducted on training
data, the resampling and FFT filter techniques are also used to pro-
cess the testing data.
Feature extraction. We extract the same set of features, i.e., dis-
placement vectors, as what are derived from the learning phase.
The main goal of this testing phase is to find the correct Label for
each vector and we apply machine-learning based techniques for
this purpose.
Classification. After evaluating several widely used classification
algorithms, including Random Forest, K-Nearest Neighbor (k-NN),
Support Vector Machine and Neural Network, we found k-NN is
the best option since it is accurate and only incurs low computation
overhead. The standard k-NN algorithm produces only one label
for each input, which reduces the chance of success for adversary,
since only all the 6 successive classifications were made correct de-
cisions would result in the correct PIN code. Therefore, we mod-

ify the standard k-NN algorithm to output all the possible Labels
with their corresponding probabilities. For example, after [Sm_xk ,
Sm_yk] is obtained, a prediction array P will be generated. Each
element Pj within P is the probability for the jth Label, where
j ∈ [1, 41]. Specifically, if there are n neighbors belonging to the
jth Label, Pj = n

k
. Note that two models were built separately for

the two types of movements (movements between numeric keys
with Label i, where i ∈ [1, 31] and the movements from numeric
keys to the “Enter” key with Label i, where i ∈ [32, 41]) using the
modified k-NN algorithm.
Selecting k. The parameter k is critical for k-NN algorithm as it di-
rectly decides the performance of a single classification. However,
the accuracy of our attack depends on all the 6 successive classifi-
cations. In other words, only all the results of the 6 classifications
are non-zero will lead to a non-zero final result. Therefore, k in this
attack could not be determined by only testing a single classifica-
tion. Instead, we take the process of determining k as part of our
evaluation.
Cross-validation. To demonstrate the feasibility of our attack, we
use 10-fold cross-validation (kfoldLoss function in Matlab) on the
two groups of training data and the results are 0.2616 and 0.2975
respectively when k=5. Such loss values are acceptable and show
the promising of our attack, especially considering that the modi-
fied k-NN algorithm could further improve the final accuracy.
PIN recovery. For each movement, non-zero probability will be
generated for each valid Label. Each Label includes several pairs
of keys with the transition (e.g., key 0→ key 0), as shown in Fig-
ure 6. Therefore, the password recovery process is to calculate the
probabilities of all the possible combinations for the 6 movements,
which is similar to the process of probability calculation in Hidden
Markov Model. Note that some combinations are not valid. Such
examples are marked out with red cross in Figure 6. Finally, all
the possible PINs with non-zero probabilities will be produced as
candidates and sorted in descending order.

Key 1Key 6

Label 31, P=0.1

Key 0Key 0

Key 9Key 9

Label 1, P=0.6

Label 31, P=0.1

Key 0Key 0

Key 9Key 9

Label 1, P=0.6

Key 9 Enter

Label 41 , P=0.1

Key 0 Enter

Label 32, P=0.6

...

......

Key 4Key 9

Key 1Key 6

Key 4Key 9

1st Movement 2nd Movement Last Movement

X ...

Figure 6: The diagram of transition between labels.

4.3 Experiment Results
The training data were collected from 8 volunteers (denoted as

P1-P8), who were university students aged from 20 to 30. In total,
we collect valid accelerations data for 4920 movements, in which
3720 movements correspond to the motion between two number
key presses and 1200 movements about moving to last “Enter” op-
eration.

We examined the effectiveness of our attack on three different
participants, denoted as User1, User2 and User3. 300 6-digit

Table 1: The success rate of PIN inference attack.
User 1 User 2 User 3

k Top3 Top10 Top25 Top50 Top100 Top3 Top10 Top25 Top50 Top100 Top3 Top10 Top25 Top50 Top100
5 60% 80% 88% 88% 88% 52% 81% 86% 86% 86% 51% 75% 82% 82% 83%

10 63% 77% 91% 93% 94% 57% 78% 94% 96% 96% 45% 71% 83% 89% 91%
20 65% 76% 91% 97% 99% 54% 77% 86% 95% 98% 50% 67% 77% 91% 94%
30 62% 78% 91% 94% 96% 63% 82% 89% 94% 98% 52% 69% 77% 83% 95%
40 61% 78% 87% 95% 97% 60% 83% 90% 93% 97% 47% 65% 76% 80% 89%
50 59% 73% 82% 90% 93% 60% 85% 91% 95% 98% 46% 68% 76% 79% 83%

PINs were randomly generated following the principles4. Each
volunteer was instructed to type 100 PINs and each PIN was typed
once. Finally, we logged 300 pieces of accelerations and each piece
corresponds to one PIN input. The processes described in testing
phase were leveraged to examine PINs inference.
Overall success rate. A PIN is correctly inferred if it appears in
the candidate PIN list and the attack is deemed successful for this
case. Table 1 describes the overall success rate for our experiments.
We changes the size of candidate list and the parameter k for k-
NN algorithm and obtains result for each combination. Our result
shows that when limiting to 3 candidates, the highest success rates
of User 1, User 2 and User 3 are 65%, 63% and 52% with k
set to 20, 30 and 30. Since most POS terminals allow one user to
type a PIN three times, the attacker has decent chance of selecting
the right PIN. The success rate largely increased when using top 10
candidates, such that the highest accuracies on the three users are
80%, 85% and 75%. When the number of candidates grows higher,
the increase of success rate is relatively small, suggesting the pos-
sibilities assigned by the modified k-NN algorithm are reasonable.
Impact of k. As shown in Table 1, the value of k makes a big
impact on the accuracy. In general, the accuracy rises when k in-
creases from 5 to 30 and then decrease when k grows from 30 to
50. On one hand, smaller k clusters less neighbors, reducing the
chance of finding the right label. On the other hand, larger k as-
sociates more labels to a movement, making the correct label less
distinguishable.

4.4 Discussion about Attack Settings
We assume the victim uses the same hand to type PINs and wears

smartwatch. This is a necessary condition as to collect accelera-
tions regarding hand movement. A natural question is how many
people share this typing style. It turns out to be quite difficult to tell
the precise number. Instead, we discuss the population of potential
victims as below:
Watch worn on the right wrist. Contrary to the traditional me-
chanical wristwatch which is usually worn on the left wrist due
to time adjustment and manual winding issues, digital watch (e.g.,
smartwatch) is equally easy to use on either wrist [17]. Therefore,
which wrist to be worn is more determined by user’s personal pref-
erence, and in real world, it is not surprised some people do wear
watch on the right wrist. We classify them into two groups and
have a discussion.
Right-handers. In general, female right-handers are more likely
to wear smartwatch on the right wrist. Additionally, many right-
handers in the forums [11, 18] claim that they wear watch on the
right hand and suggest some famous people also do the same, like

4Some financial institutions do not give out or permit PINs where
all digits are identical (such as 111111, ...), consecutive (123456,
...), numbers that start with one or more zeroes [14]. In addition,
we add one requirement that no more than two successive digits are
identical, which in order to introduce more randomness.

Putin (President of Russia), Jean-Pierre Melville (French noir film
director), etc.
Left-handers. Studies suggest that approximately 30% of popula-
tion is mixed-handedness, whose hand preference is changed be-
tween tasks [19]. Therefore, a certain number of left-handers will
type PINs using right hand.
Watch worn on the left wrist. Though we only evaluated our
model when user wears smartwatch on her right hand, we believe
these techniques are also promising if a user wears smartwatch on
her left hand since the movement vectors are the same, which will
further increase the number of potential victims.

5. INFERRING ENGLISH TEXT FROM QW-
ERTY KEYBOARD

In this section, we present an English text inference attack against
QWERTY keyboard. The attack scenario is shown in Figure 1
(Right), in which the smartwatch is worn on the left wrist of user.
We elaborate the left-wrist case and the right-wrist case is discussed
briefly. We assume the user follows the standard typing pattern [12]
in general, but several overly restricted rules are changed to accom-
modate the style of more users5. We combine both acoustic signals
and accelerations as input to limit the negative impact of various
noises, thus making our attack more robust. Solely relying on ac-
celerations or acoustic signals is not a good option and the causes
are described below.
Accelerations only. Different from the case of PIN inference,
when a user types English text, accelerations are always interfered
with strong noises due to user’s movements are more delicate and
change in motion direction happens much more frequently. What’s
worse, the low sampling rate of accelerometer will amplify such
noises and lead to high error rate. To address this problem, we
record acoustic signal with the embedded microphone simultane-
ously, which helps to select the right time window when a key is
pressed. In addition, the acoustic signal also facilitates the detec-
tion of “R” letters, when the acceleration information is not avail-
able.
Acoustic signals only. A large corpus of previous works about
keystroke inference on QWERTY keyboards exploit acoustic em-
anations, and those works assume the spying devices are placed at
a standstill within certain range to keyboard. Such an assumption
is invalid for our setting since user’s hand is always moving when
she types text. We evaluate the impact of moving sensors by redo-
ing the experiment conducted in [20] using sound collected from

5The original standard typing pattern: the user places her fingers
on “home row” ({a s d f j k l ;} [12]) initially, and moves fingers
back after pressing keys in other rows. The modifications: (i) user
will not return to “home row” if the next letter is located in the
same row of the current key; (ii) user’s fingers will not pause on the
“home row” when moving from the top row to the bottom row or
vice versa.

0

10

20

30

40

50

60

70

80

90

S
u

m
 o

f
F

F
T

 C
o

e
ff

ic
ie

n
ts

Start Position

Release PeakPush Peak

Figure 7: Energy levels over the duration of 3 keystrokes.

watch. Specifically, each alphabetic key was pressed 100 times,
and the acoustic signal was then processed for creating FFT fea-
ture vectors. We trained a neural network model and tested using
70%/30% data split, the overall accuracy was only 35.75%, sig-
nificantly lower than 78.85% reported in [20]. The result clearly
suggests that using acoustic signals alone is not sufficient. It is also
worth noting that there are often quite dramatic differences between
acoustic emanations generated by different people and keyboards,
which prevents the prevalence of this kind of attacks.

5.1 Detecting the Start of Keystrokes
As a start, we need to identify the time windows corresponding

to key presses. Often, there exists a big gap between consecutive
keystrokes. The study by Asonov et al. [20] showed that the period
from pushing to releasing is about 100 milliseconds. Typically, a
user spends 200 milliseconds to type one character (300 charac-
ters per minute) [20]. Such gap ensures that the keystrokes can be
separated.

We use microphone on the smartwatch to collect sound signals
in order to identify start of each key press. The main challenge
is to prune ambient sound noises. We distinguish keystroke sound
and ambient noise using energy levels in time windows. Specifi-
cally, we calculate the energy level of signal using windowed dis-
crete Fourier transform (DFT) and take the sum of FFT coefficients
(denoted S) in the range [0.4, 12] KHz. We only sum over the
coefficients in this specific range since we observed that the en-
ergy of keystroke duration mainly lies in the frequencies between
400Hz and 12KHz. During our experiments, as the audio sam-
pling rate is set to 44.1kHz, we set the window size of DFT as 256
samples and the overlap is 50%, which is able to correctly frame
keystrokes. Figure 7 shows the energy curve of three keystrokes,
and each keystroke contains push phase and release phase. The
start of keystrokes is detected by comparing S to a threshold, which
is empirically set to 7. We evaluate this step over a number of
keystroke samples, and it turns out the start can be correctly identi-
fied as the push peak of keystroke.

5.2 Modeling Keypress Events
After obtaining the time window of a keystroke, we further infer

the letter pressed using accelerations recorded simultaneously.

5.2.1 Detecting “L” Letters
As described in Section 3.2, the letters on the keyboard are clus-

tered into “L” and “R” letters. Hitting both “L” letters and “R”
letters will produce noticeable sound. Here, we exploit the fact that

0 100 200 300 400 500

0

0.2

0.4

No of samples

A
c
c
e

le
ra

ti
o

n

x-axis acceleration measurements

0 100 200 300 400 500
-0.5

0

0.5

No of samples

A
c
c
e

le
ra

ti
o

n

y-axis acceleration measurements

0 100 200 300 400 500

-1

0

1

2

No of samples

A
c
c
e

le
ra

ti
o

n

z-axis acceleration measurements

Figure 8: The x-, y-, and z-axis accelerations when user types
the word “quick”. The accelerations have been processed using
the corresponding approaches described in Section 5.2.1 and
Section 5.2.2.

Q W E R T

A S D F G

Z X C V B

Area1:

Area2:

Area3:

Figure 9: The three areas of the “L” letters.

only “L” letters introduces huge z-axis acceleration and measure
this variable.
Signal pre-processing. The variation of acceleration sampling rate
will decrease the accuracy of the synchronization between acoustic
signal and acceleration signal, thus pose negative impact on later
stages. Similar to the Resampling process described in Section
4.2.1, the cubic spline interpolation technique is leveraged again to
obtain consistent sampling intervals throughout the whole times-
tamped accelerations. In addition, we apply the method described
in [8], which in general is used to remove the mean value or linear
trend from a vector, to erase the linear noise.
Method. Since the start time of keystrokes in acoustic signal have
been detected (see Section 5.1), the z-axis accelerations in a short
time near keystrokes could be extracted, and we distinguish “L”
letters and “R” letters using their z-axis acceleration range values.
Specifically, we use Ki to denote the ith letter in the word, and
accZKi to represent the z-axis accelerations during the time [STKi

- 50ms, STKi + 100ms], where STKi is the acoustic start time
of Ki. We consider Ki is typed by left hand if Range(accZKi)
beyond the threshold, i.e., 0.25, and Range(accZKi) is defined as
below:

Range(accZKi) = (max(accZKi)−min(accZKi))
2 (4)

To illustrate our approaches, we take a word with length 5 as an
example. By analyzing the z-axis accelerations when user types

Table 2: The relationship between each acceleration variation
and its corresponding movements.

Movements Acceleration
variation

Area1→Area2, Area1→Area3, Area2→Area3 negative (-1)
Area1→Area1, Area2→Area2, Area3→Area3 stable (0)
Area2→Area1, Area3→Area1, Area3→Area2 positive (+1)

Algorithm 2 : Algorithm to classify “L” letters
Input: accXKi , accYKi , threshold = 0.2, st_location
Output: The classes of “L” letters
1: sumXKi = sum(abs(accXKi));
2: sumYKi = sum(abs(accYKi));
3: [max_value,max_location] = max accYKi ;
4: [min_value,min_location] = min accYKi ;
5: if max_value == 0 then
6: min_location = st_location;
7: end if
8: if min_value == 0 then
9: min_location = st_location;

10: end if
11: if sumXKi + sumYKi ≥ threshold then
12: if max_location < min_location then
13: return +1
14: else
15: return -1
16: end if
17: else
18: return 0
19: end if

this word, shown in Figure 8, we could model these keypresses
events as “LRRLR”.

5.2.2 Classifying “L” Letters
Only dividing letters into two classes (“L” and “R”) is not suf-

ficient to correctly infer words. Therefore, we classify “L” letters
into sub-classes to produce more entropy. User moves hand to dif-
ferent directions when typing different letters, leading to distinct
patterns of x- and y-axis accelerations, and we exploit the moving
direction for classification.

The randomness of user’s hand movements makes it impossi-
ble to calculate accurate displacements, we therefore divide all the
“L” letters into three horizontal areas, denoted as Area1, Area2 and
Area3, shown in Figure 9, and attempt to recognize movements be-
tween areas. We abstract the movement into three modes: positive
(+1), negative (-1), and stable (0). The corresponding movement
patterns are shown in Table 2.

We first extract accXKi and accYKi which are the x- and y-
axis accelerations within the time window [STKi -125ms, STKi],
and extract the timestamp of the first acceleration in time window
as st_location. Then, the accelerations with absolute values less
than 0.2 will be set as 0. Finally, we classify the “L” letters follow-
ing the steps in Algorithm 2. Particularly, the letter will be labeled
as 0 if the the sum of sumXKi and sumYKi (sum of accXKi and
accYKi respectively) is less than the threshold, i.e., 0.2. Otherwise,
we determine the label (+1 or -1) only using the y-axis accelera-
tions, since the areas are divided vertically. When a user moves
hand, the accelerations will first follow the direction of the move-
ment, and then change to the reverse direction. Therefore, if the
timestamp of the maximum acceleration is less than the timestamp
of minimum acceleration, the hand movement should be upward
and we mark it as +1. Otherwise, the letter is labeled as -1.

0

idleArea3

0 0

+1(1-p2)

+1(p2)

-1

-1(p1) -1(1-p1)

Area2

Area1

idle

RR

R

0 -1

+1

+1

R

Figure 10: The diagram of labeling process.

Table 3: The number of tags that are associated with 1-5 words,
including the scenarios that the smartwatch is worn on user’s
left wrist and right wrist.

The number of tags
The number of words Left wrist Right wrist

1 26143 16817
2 3722 2981
3 1323 1184
4 671 594
5 376 376

For the word “quick” which is labeled as “LRRLR” in the pre-
vious step, the the x- and y-axis accelerations within time window
[STKi -125ms, STKi] are shown in Figure 8. The label is refined
to “+1,R,R,-1,R”, which is used as predicted profile to infer the
typed word later.

5.3 Word Matching
In this section, we demonstrate how to recover word from the

predicted profiles with the help of dictionary. The words in the
dictionary are all translated into tags consisted of {-1, 0, +1,
R}, and then matched against the predicted profile. A matching
score will be assigned to each word.

5.3.1 Labeling Words
We assume the user types keyboard following the typing style

described before. Therefore, we define the state transitions cor-
responding to the movements as shown in Figure 10. The ini-
tial state of typing is defined as idle state when fingers are ly-
ing on “home row” and transited to other states depending on the
keys pressed subsequently. When “R” letters are typed, the state
is transited to idle. As an example, “security” will be labeled as
{“security”:[“0,+1,-1,R,+1,R,+1,R”]} using this state machine.

This model in essence labels a letter by the vertical direction
of hand movement. However, hand moving in the same direction
could finally end up in different areas. For instance, assuming the
user moves her hand downward from Area1 (acceleration variation
is -1), her hand could be placed at Area2 or Area3. There is no
clear way to exactly differentiate these two cases, due to the limited
capability of watch sensors. To solve this issue, we define such type
movements using probabilities.

We assign each word with a movement pattern, but it is unclear
how unique is one pattern, i.e., how many words are associated with

the same pattern. It is less likely to derive the correct word if one
pattern is associated with many words in average. To answer this
question, we chose an aggregation of the “corncob” wordlist [5] as
our testing dictionary and labeled them by virtually simulating the
typing movement. For the 58110 dictionary words, in total 34121
tags are generated, and as many as 26554 tags are associated with
a single word. Table 3 describes the distribution of number of tags
to the number of words (limited to 1 to 5), which suggests this
labeling approach could produce sufficient entropy.
Watch worn on the right wrist. The model described above as-
sumes the watch is worn on the left wrist. For the case that the
watch worn on the right wrist, we classify the “R” letters into three
areas 6, then perform a similar labeling process to estimate the ef-
fectiveness. The accelerations and acoustic signals should have the
similar pattern and the only factor deciding the result is the dis-
tribution between tags and words. We again scan the dictionary
to generate tags for all words, and finally 23449 tags are gener-
ated, in which 16817 tags correspond to a unique word. The details
are shown in Table 3. Such an analysis shows that a user is under
threat no matter if she wears the smartwatch on her left wrist or
right wrist, but it is more dangerous when the watch is worn on her
left wrist since more entropy will be generated.

5.3.2 Matching Process
Obviously, the predicted profiles and the matching algorithm are

two key factors in the matching process. We describe the method
of optimizing the predicted profiles and the matching algorithm as
below.
Optimizing predicted profiles. In the step of “L” letters classifica-
tion, we use z-axis accelerations to decide if a letter is typed by left
hand. In reality, user’s left hand might also move when typing “R”
letters. To make our scheme robust to this type of noise, we create
additional predicted profiles based on the initial one. Specifically,
we search for the letter (if exist) whose Range (defined in equa-
tion 4) is closest to the threshold for detecting “L” letters, and then
flip its label from “L” to “R” or “R” to “L” to create another pre-
dicted profile. Another source of incorrect labels come from long
words. For words with more than 5 letters, we identify two letters
whose Range are smaller than the threshold and two letters whose
Range are larger than the threshold, and flip the labels separately
to generate 4 other predicted profiles. All of the predicted profiles
will go through the “L” letters classification process. Finally, a list
of the predicted profiles are generated, with the original one as the
“best” and the others as candidates.
Matching algorithm. We use a scoring mechanism to improve
the success rate of matching process. Particularly, Algorithm 3 is
leveraged to complete such process, it takes the predicted profiles
as input, and then scores the similarity between the predicted pro-
files and the words in the dictionary with the same length. This
process produces a list of candidate words which are presented to
attackers with the scores sorted in descending order. The words
with the same “L/R” profile to the “best” and other potential pre-
dicted profiles will be assigned with two and one more scores re-
spectively. Words with only one letter (i.e., only ‘a’ and ‘I’) are ex-
empted from being processed since they can be differentiated based
on “L/R” profiles.

5.4 Evaluation
We measure the accuracy of our approach through two experi-

ments. In the first experiment, we re-created the work conducted
by Berger et al. [23] and compared with our result. We recruited 5

6Area1∗:{y u i o p}, Area2∗:{h j k l}, Area3∗:{n m}.

Algorithm 3 : Word matching process
Input: dic, profiles, score = {}
1: for each word in dic.keys do � The dic with len(n)
2: score.word = 0;
3: for i = 1 to len(profiles) do
4: if dic.word.LR == profiles[i].LR then
5: if i == 0 then
6: Mark(2); � Add 2 bonus marks
7: else
8: Mark(1);
9: end if

10: else
11: Mark(0);
12: end if
13: if Mark(result) > score.word then
14: score.word = Mark(result);
15: end if
16: end for
17: end for
18: return sorted(score);
19:
20: procedure MARK(result)
21: flag = 0; temp_score = 0;
22: for j = 1 to len(word) do
23: if word.LR[j] == R and profile.LR[j] == R then
24: temp_score++; � One mark for equal R
25: result+ = temp_score;
26: flag = 0; temp_score = 0;
27: end if
28: if word.LR[j] == L and profile.LR[j] == L then
29: temp_score++; � One mark for equal L
30: if word.Acc[j] == profile.Acc[j] then
31: if flag == 0 then
32: temp_score++;�One mark for equal Acc
33: end if
34: else
35: flag = 1; � Pause the comparison of Acc
36: end if
37: end if
38: end for
39: result+ = temp_score;
40: end procedure

volunteers to complete the evaluation of this experiment, denoted
as User 4, 5, 6, 7, 8. In our second experiment, we examined
the accuracy when user typed the sentences which were randomly
chose from BBC News [3], and the dictionary was constructed us-
ing the context of the related articles. Another volunteer (User 9)
completed this experiment.

5.4.1 Implementation
A malicious app was developed and installed on the LG G WATCH,

which records the acoustic signals and accelerations simultaneously.
We set the audio sampling rate to 44.1kHz, and accelerations were
logged using FASTEST mode.

We collected testing data from 5 volunteers, and all the partici-
pants were students in our university with ages between 20 and 30,
and have the ability to type in words following the standard type
method [12] fluently. To ensure the consistency across our data
collection processes, all participants use the same keyboard (Dell
Keyboard KB212-B) in all experiments. The participants were also
instructed to keep the wrist always above the desk and avoid huge
body movements when typing words.

Table 4: A comparison of accuracies using smartwatch and
the dictionary attacks proposed by Berger et al [23] and Mar-
quardt et al [32].

User # Top5 Top10 Top25 Top50 Top100 Top200
User 4 55% 64% 77% 83% 87% 90%
User 5 61% 69% 82% 87% 89% 94%
User 6 52% 60% 71% 80% 83% 88%
User 7 49% 58% 69% 79% 83% 87%
User 8 57% 64% 76% 83% 88% 93%
Mean 54.8% 63% 75% 82.4% 86% 90.4%
Berger N/A 43% 61% 73% 87% 93%

Marquardt N/A 43% 50% 57% 60% 80%

5.4.2 English Text Recovering
In order to compare our approach with the previous works in

this space, we re-created the work proposed by Berger et al. [23],
which attempted to recover 27 test words with length from 7 to 13
characters by analyzing acoustic emanations. The dictionary used
in this work was the “corncob” wordlist [5], which contains 58110
words and has been discussed in Section 5.3.1. Intuitively, the word
length is critical for dictionary attacks, longer words are easier to be
identified due to fewer potential matches in the dictionary. While in
our experiments, besides re-using the 27 words 7 and the “corncob”
dictionary, we extended the 27 test words to 35 words by adding an-
other 8 words with length from 5 to 6 characters. Such an extension
is for the purpose of comparing with Marquardt’s work [32] at the
same time, which introduced more shorter words. Each participant
was instructed to type each word 10 times.

The overall success rate of our experiments are shown in Ta-
ble 4, which also describes that of Berger’s work. Our techniques
achieved better accuracy even when we added another 8 shorter
words. For example, with only 43% probability Berger’s work
could find the correct word in the top 10 potential words, while
in an average of 63% of our tests, the correct word was located
within the top 10 candidates. When examining the number of cor-
rect words in the top 25 and top 50 candidates, our mean accuracy
are 75% and 82.4% respectively, which are also better than the re-
sults achieved in the work of Berger. Our approach only performs
slightly worse when considering the top 100 and top 200 potential
words. Table 4 also describes the results of Marquardt’s work,
which leverages the accelerometer in a smartphone to monitor the
vibrations of desk when user types text. Again, our approach pro-
duces better result, proving that using acoustic signals can greatly
improve the accuracy.

5.4.3 Context-aware Text Inference
We assume the attackers in previous experiments have no prior

knowledge of the victim and matches predicted word profiles against
a dictionary with a large volume of words. Though the big dictio-
nary covers the nearly all possible words user could type, it also
increases the chance that multiple words share the same tag and
therefore reduces accuracy. In real-world scenarios, it is not diffi-
cult for an attacker to collect context information about the victim,
e.g., her occupation and residency, and leverage these information
to reduce the guessing range. Expectedly, the success rate should
increase and we evaluate this hypothesis through a modified version
of the prior experiment. In particular, we constructed a dictionary
using 4 news reports [4, 15, 9, 7] from BBC News, all were writ-
ten by Smitha Mundasad, a health reporter specialized in medical

7We replace the word “obfuscating” with “obfuscation”, since we
could not find the word “obfuscating” in the dictionary.

field, in which we assume the victim is also engaged. Through the
labeling process described in Section 5.3.1, 672 different tags were
generated for all the 765 words, and as many as 615 tags were only
associated with a singe word.

We evaluated the accuracy of our inferring approach on 20 sen-
tences (463 words in total) randomly selected from the 4 reports.
57% of the words are correctly ranked top in the candidate list.
If taking the top three candidates into consideration, the accuracy
was raised to 88%, even significantly higher than the accuracy of
using top 5 candidates (54.8% listed in Table 4). Note that our
evaluations only focused on words with length no less than 4 let-
ters, which were expected to contain more valuable information.
Taking the sentence “The results will be compared to see if either
vaccine offers any meaningful protection against the virus” as an
example, the main sensitive information like “results, compared,
vaccine, protection, virus” were all recovered. The result suggests
our attack can be more effective when combining context informa-
tion.

6. MITIGATIONS
The proposed attacks in this paper rely on two types of side-

channel information: accelerometer data and acoustic emanations,
so the most effective measure to mitigate the attack is to prevent
malicious apps to get such data. There are several ways to achieve
this goal.
Controlling accelerometer data. Current Android OS does not
provide any permission to mediate the access to accelerometer, and
a malicious app can read accelerations without any constraint. It
turns out to be quite difficult to develop a mitigation approach with-
out considerable cost. A new permission controlling such access
could be introduced into Android OS, but then the user has to make
the choice of whether granting the permission. A user can be easily
fooled if the malicious app masquerade itself as a legitimate one.
Reducing the sampling rate does not defeat our attack (QWERTY
keyboard) either, since our approach models the hand movement
from the directions instead of accurate readings. In addition, the
functionality of the legitimate apps will be impaired. Probably the
most reliable and secure solution is to take off the smartwatch while
typing, which inevitably introduces usability problems.
Limiting acoustic emanations. It is equally difficult to mitigate
the threat by limiting acoustic emanations. Mechanisms that in-
troduces new permission or reduces sampling rate can be circum-
vented as well. What’s worse, removing the watch does not solve
the problem this time: the malicious app can still record the sound
when running at background. On possible and interesting solution
is to have keyboard or PC/laptop speakers generating white noise
during user’s typing, which can disturb the malicious app to some
extend if it needs accurate acoustic data stream.
Our solution: dynamic permission management based on con-
text. We propose to add permissions mediating access to sensors
and dynamically grant or revoke them based on context informa-
tion. Clearly, the access to the sensors should be limited when sen-
sitive operation is performed by the user. To this end, profiles of
permission configurations (e.g., “secure mode” which blocking ac-
cess to all sensors) can be built ahead and activated under certain
context (e.g., typing). Such context information can be explicitly
obtained from signals broadcast by external objects [36] or inferred
from the movement of user.

7. DISCUSSION
In this section, we discuss several limitations of our study and

then describe the future plan.

Sample size. Since each participant is required to type many PINs
or phrases, each run of test takes significant time and we are unable
to evaluate our attack on many users. But on the other hand, the
scale of our evaluation is comparable to or even larger than many
of the previous works in this space [20, 29, 32, 23, 42].
Computational overhead. We evaluate the computational over-
head of the attacks in two ways. First, we queried the participants
about noticeable phenomena but no prominent slowdown or tem-
perature rises of watch were observed during testing. Second, we
estimated the extra power consumption due to the attacks. Specifi-
cally, we compute the overhead by comparing the power consump-
tion by the app when running and turning off. To keep consistent
of our comparison, each experiment starts with a fully charged de-
vice and runs for 35 minutes (with 5 halts, each one consumes 1
minute). The results show that about 4% and 5% battery life are
more consumed for attack scenario 1 (numeric keypad) and attack
scenario 2 (QWERTY keyboard) respectively, which suggest our
attack is hard to be detected by users.
Typing styles. We assume that users follow standard typing styles,
but in the real-world scenario, a user may choose to type in ad
hoc ways (e.g., starting with different posture when typing PINs or
typing overly fast), increasing the difficulty of accurately inferring
the right PINs/texts. It is very hard to accommodate our algorithm
to all typing styles, but we can circumvent this issue by profiling the
victim ahead and launch a targeted attack by applying the relevant
movement model.
Future work. Some of the previous works [30, 34, 40] have demon-
strated the feasibility of inferring keystrokes on devices with touch
screen using their built-in sensors, e.g., accelerometer of smart-
phone. We believe the data from the sensors in touch-screen de-
vices and smartwatches can be combined together and produce more
entropy, such that the accuracy can be further improved. We plan to
investigate the right way of combining them and the performance
gain in the future.

The candidate list might not correctly rank the possibility of each
candidate word or PIN, making them indistinguishable or in the
wrong order. To improve the accuracy, the distribution of the us-
age of words and PINs in the real world can be incorporated. For
example, we could increase the probability if the word or PIN is a
popular choice.

Though we prune ambient noise based on energy level before
further processing, certain noises might still be left and impact the
result negatively. Another noise filter that can be considered is re-
lated to the consistency of acoustic signals. If sound with consistent
frequency is detected (noises generated by vibration of air condi-
tioners), we can label it as ambient noises and filter them out from
the overall acoustic signals collected.

8. RELATED WORK

8.1 Body Movements Monitoring
Monitoring user’s body movements is necessary for rehabilita-

tion patients, and such researches are widely studied in medical
field. For example, using miniature gyroscopes and accelerome-
ters, Luinge et al. [31] proposed an approach for accurately mea-
suring the orientation of human body segments. Friedman et al.
[27] developed a device called “manumeter” to monitor the wrist
and hand movements through capturing angular distance traveled
by wrist and finger joints, which are useful for stroke rehabilitation.
In addition, body movements monitoring is also a key factor for the
applications heavily relying on human-computer interactions. For

instance, game developers need to monitor user’s movements and
recognize their gestures accurately [26, 24].

The technique for monitoring body movements is definitely help-
ful in many aspects, but it is also a double-edged sword which can
be abused to breach user privacy. As shown in this paper, it can be
leveraged to infer sensitive data of smartwatch users.

8.2 Emanation-based Attacks
The emanations produced by electrical devices were known to

leak information regarding users’ activities. In particular, various
emanation attacks that aim to infer keystrokes have been proposed
and proved to be effective.
Electromagnetic emanations. By analyzing electromagnetic em-
anations produced by wired and wireless keyboards, M. Vuagnoux
et al. [38] demonstrated the feasibility to recover keystrokes. This
attack discovered four different kinds of compromising electromag-
netic emanations that could lead to successful keystroke inference.
Acoustic emanations. Asonov and Agrawal [20] were the first
to present a concrete keystroke inference attack using keyboard
acoustic emanations. They extracted FFT values as the features
of keystrokes, and used supervised learning technique to classify
and recognize keystrokes. However, the performance of this ap-
proach largely depends on training dataset and is less likely to suc-
ceed when testing on different users. Zhuang et al. [29] performed
a keystroke inference attack through unsupervised learning tech-
nique, which leveraging the cepstrum features of keystrokes and
HMM model. A dictionary-based attack was then proposed by
Berger [23], which exploited the similarity of keystrokes in a word
and the constraints learned from dictionaries. More recently, Zhu
et al. [42] presented a context-free and geometry-based approach
to recover the keystrokes by combining sensor data from several
smartphones near the keyboard.
Optical emanations. Researchers also discovered that optical em-
anations can lead to information leakage. By exploiting the reflec-
tions of a computer monitor on glasses, tea pots, spoons, plastic
bottles, and eyes of the user, Backes et al. [22, 21] successfully
recovered the content displayed on the computer monitor. With the
popularity of touch screen devices, e.g., smartphone, [35] infers
user inputs on a virtual keyboard by observing refections of a de-
vice’s screen on a victim’s glasses or other objects. Xu et al. [39]
broadened the scope of such vision-based attacks by inferring the
text input by user through tracking the movement of user’s fingers
over the screen. This attack was able to reconstruct the typed input
even when the available video recording was in low resolution and
recorded in a very long distance away from the victim. More re-
cently, Yue et al. [41] improved the performance of the prior attack
and made the attack feasible even when the user touches the screen
with both hands and multiple fingers. Without leveraging the op-
tical emanations from screen, i.e., reflections of the screen, Shukla
et al. [37] proposed an attack to reconstruct the smartphone PIN,
which entirely relies on the spatio-temporal dynamics of the hands
during typing to decode the typed text.
Mechanical emanations. The mechanical vibrations can be lever-
aged to infer user’s activities as well. For example, Marquardt et
al. [32] achieve such goal by placing an iPhone near the keyboard
and used accelerometer to collect vibration data of desktop to re-
cover typing context. The work addressed the issue of low sampling
rate of accelerometer (100 Hz) by modeling pairs of keypresses in-
stead of individual keypress. Similarly, we have to deal with low
sampling rate and we choose to model the displacement or motion
direction of hand movement.

9. CONCLUSION
With the increasing popularity of smartwatch, concerns were

raised about their capability of collecting and sharing user’s pri-
vate data, e.g., health index. However, little has been discussed
about the threats introduced by its sensors. In this paper, we make
the first step of exploring such threat space, and we show it is feasi-
ble to infer user’s highly sensitive information, e.g., PINs and typed
texts, through data collected from the built-in sensors, including ac-
celerometer and microphone. In particular, we propose a set of new
techniques to model user’s hand movement and reduce the interfer-
ence from noises, and our attack is able to achieve high accuracy
in keystroke inference. As demonstrated by our research, the threat
is real and we propose several countermeasures in addressing such

10. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valu-

able comments. This work was supported by the ECS/GRF grant
from Research Grants Council, University Grants Committee, Hong
Kong (with project number 24207815) and the Direct Grant from
The Chinese University of Hong Kong (with project number C001-
4055047).

11. REFERENCES
[1] Android wear.

https://developer.android.com/wear/index.html.
[2] As smartwatches gain traction, personal data privacy worries mount.

http://www.computerworld.com/article/2925311/
wearables/as-smartwatches-gain-traction-personal-
data-privacy-worries-mount.html.

[3] Bbc news. http://www.bbc.com/news/.
[4] Cancer patients with depression ’are being overlooked’.

http://www.bbc.com/news/health-28954661.
[5] The corncob list of more than 58 000 english words.

http://www.mieliestronk.com/wordlist.html.
[6] Cubic spline data interpolation.

http://www.mathworks.com/help/matlab/ref/spline.html.
[7] ’deaths averted’ at hospitals put into special measures.

http://www.bbc.com/news/health-31166211.
[8] Detrending data. http://www.mathworks.com/help/matlab/

data_analysis/detrending-data.html.
[9] Ebola crisis: Experimental vaccine ’shipped to liberia’.

http://www.bbc.com/news/health-30943377.
[10] Invensense. http://www.invensense.com/.
[11] Is it acceptable to wear a watch on the right wrist? http://www.

askandyaboutclothes.com/forum/showthread.php?116570-
Is-it-acceptable-to-wear-a-watch-on-the-right-wrist.

[12] Learn how to touch type. http://www.ratatype.com/learn/.
[13] A new wave of gadgets can collect your personal information like never before.

http://www.businessinsider.com.au/privacy-fitness-
trackers-smartwatches-2014-10.

[14] Personal identification number. https://en.wikipedia.org/wiki/
Personal_identification_number.

[15] Poor water and hygiene ’kills mothers and newborns’.
http://www.bbc.com/news/health-30452226.

[16] Pos terminals e530 pos. http://landicorp.en.frbiz.com/group-
pos_systems/34719013-pos_terminals_e530_pos.html.

[17] Watch handedness.
https://en.wikipedia.org/wiki/Watch#Handedness.

[18] why wear a watch on the wrist where you’re hand dominant?
http://www.reddit.com/r/Watches/comments/1wzub5/
question_why_wear_a_watch_on_the_wrist_where/.

[19] ANNETT, M. Handedness and brain asymmetry: The right shift theory.
Psychology Press, 2002.

[20] ASONOV, D., AND AGRAWAL, R. Keyboard acoustic emanations. In IEEE
Symposium on Security and Privacy (2004), IEEE Computer Society.

[21] BACKES, M., CHEN, T., DUERMUTH, M., LENSCH, H., AND WELK, M.
Tempest in a teapot: Compromising reflections revisited. In Security and
Privacy, 2009 30th IEEE Symposium on (2009), IEEE, pp. 315–327.

threat. We also hope our research could raise more awareness of
the security community and users in the security issues underlying
smartwatch.
[22] BACKES, M., DURMUTH, M., AND UNRUH, D. Compromising

reflections-or-how to read lcd monitors around the corner. In Security and
Privacy, 2008. SP 2008. IEEE Symposium on (2008), IEEE, pp. 158–169.

[23] BERGER, Y., WOOL, A., AND YEREDOR, A. Dictionary attacks using
keyboard acoustic emanations. In Proceedings of the 13th ACM conference on
Computer and communications security (2006), ACM, pp. 245–254.

[24] BIANCHI-BERTHOUZE, N. Understanding the role of body movement in
player engagement. Human–Computer Interaction 28, 1 (2013), 40–75.

[25] ELECTRONICS, L. Lg g watch | powered by android wear.
http://www.lg.com/global/gwatch/one/index.html#main,
2015.

[26] FOTHERGILL, S., MENTIS, H., KOHLI, P., AND NOWOZIN, S. Instructing
people for training gestural interactive systems. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems (2012), ACM,
pp. 1737–1746.

[27] FRIEDMAN, N., ROWE, J. B., REINKENSMEYER, D. J., AND BACHMAN, M.
The manumeter: A wearable device for monitoring daily use of the wrist and
fingers.

[28] KWON, D. Y., AND GROSS, M. A framework for 3d spatial gesture design and
modeling using a wearable input device. In Wearable Computers, 2007 11th
IEEE International Symposium on (2007), IEEE, pp. 23–26.

[29] LI, Z., FENG, Z., AND TYGAR, J. Keyboard acoustic emanations revisited. In
Proceedings of the 12th ACM Conference on Computer and Communications
Security (2005).

[30] LIANG, C., AND CHEN, H. Touchlogger: inferring keystrokes on touch screen
from smartphone motion. In 6th USENIX Conference on Hot Topics in Security,
HotSec (2011).

[31] LUINGE, H. J., AND VELTINK, P. H. Measuring orientation of human body
segments using miniature gyroscopes and accelerometers. Medical and
Biological Engineering and computing 43, 2 (2005), 273–282.

[32] MARQUARDT, P., VERMA, A., CARTER, H., AND TRAYNOR, P. (sp) iphone:
decoding vibrations from nearby keyboards using mobile phone accelerometers.
In Proceedings of the 18th ACM conference on Computer and communications
security (2011), ACM, pp. 551–562.

[33] MILUZZO, E., VARSHAVSKY, A., BALAKRISHNAN, S., AND CHOUDHURY,
R. R. Tapprints: your finger taps have fingerprints. In Proceedings of the 10th
international conference on Mobile systems, applications, and services (2012),
ACM, pp. 323–336.

[34] OWUSU, E., HAN, J., DAS, S., PERRIG, A., AND ZHANG, J. Accessory:
password inference using accelerometers on smartphones. In Proceedings of the
Twelfth Workshop on Mobile Computing Systems & Applications (2012), ACM,
p. 9.

[35] RAGURAM, R., WHITE, A. M., GOSWAMI, D., MONROSE, F., AND FRAHM,
J.-M. ispy: automatic reconstruction of typed input from compromising
reflections. In Proceedings of the 18th ACM conference on Computer and
communications security (2011), ACM, pp. 527–536.

[36] ROESNER, F., MOLNAR, D., MOSHCHUK, A., KOHNO, T., AND WANG,
H. J. World-driven access control for continuous sensing. In Proceedings of the
2014 ACM SIGSAC Conference on Computer and Communications Security
(2014), ACM, pp. 1169–1181.

[37] SHUKLA, D., KUMAR, R., SERWADDA, A., AND PHOHA, V. V. Beware, your
hands reveal your secrets! In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security (2014), ACM, pp. 904–917.

[38] VUAGNOUX, M., AND PASINI, S. Compromising electromagnetic emanations
of wired and wireless keyboards. In USENIX Security Symposium (2009),
pp. 1–16.

[39] XU, Y., HEINLY, J., WHITE, A. M., MONROSE, F., AND FRAHM, J.-M.
Seeing double: Reconstructing obscured typed input from repeated
compromising reflections. In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security (2013), ACM, pp. 1063–1074.

[40] XU, Z., BAI, K., AND ZHU, S. Taplogger: Inferring user inputs on smartphone
touchscreens using on-board motion sensors. In Proceedings of the fifth ACM
conference on Security and Privacy in Wireless and Mobile Networks (2012),
ACM, pp. 113–124.

[41] YUE, Q., LING, Z., FU, X., LIU, B., REN, K., AND ZHAO, W. Blind
recognition of touched keys on mobile devices. In Proceedings of the 2014
ACM SIGSAC Conference on Computer and Communications Security (2014),
ACM, pp. 1403–1414.

[42] ZHU, T., MA, Q., ZHANG, S., AND LIU, Y. Context-free attacks using
keyboard acoustic emanations. In Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security (2014), ACM.

https://developer.android.com/wear/index.html
http://www.computerworld.com/article/2925311/wearables/as-smartwatches-gain-traction-personal-data-privacy-worries-mount.html
http://www.computerworld.com/article/2925311/wearables/as-smartwatches-gain-traction-personal-data-privacy-worries-mount.html
http://www.computerworld.com/article/2925311/wearables/as-smartwatches-gain-traction-personal-data-privacy-worries-mount.html
http://www.bbc.com/news/
http://www.bbc.com/news/health-28954661
http://www.mieliestronk.com/wordlist.html
http://www.mathworks.com/help/matlab/ref/spline.html
http://www.bbc.com/news/health-31166211
http://www.mathworks.com/help/matlab/data_analysis/detrending-data.html
http://www.mathworks.com/help/matlab/data_analysis/detrending-data.html
http://www.bbc.com/news/health-30943377
http://www.invensense.com/
http://www.askandyaboutclothes.com/forum/showthread.php?116570-Is-it-acceptable-to-wear-a-watch-on-the-right-wrist
http://www.askandyaboutclothes.com/forum/showthread.php?116570-Is-it-acceptable-to-wear-a-watch-on-the-right-wrist
http://www.askandyaboutclothes.com/forum/showthread.php?116570-Is-it-acceptable-to-wear-a-watch-on-the-right-wrist
http://www.ratatype.com/learn/
http://www.businessinsider.com.au/privacy-fitness-trackers-smartwatches-2014-10
http://www.businessinsider.com.au/privacy-fitness-trackers-smartwatches-2014-10
https://en.wikipedia.org/wiki/Personal_identification_number
https://en.wikipedia.org/wiki/Personal_identification_number
http://www.bbc.com/news/health-30452226
http://landicorp.en.frbiz.com/group-pos_systems/34719013-pos_terminals_e530_pos.html
http://landicorp.en.frbiz.com/group-pos_systems/34719013-pos_terminals_e530_pos.html
https://en.wikipedia.org/wiki/Watch#Handedness
http://www.reddit.com/r/Watches/comments/1wzub5/question_why_wear_a_watch_on_the_wrist_where/
http://www.reddit.com/r/Watches/comments/1wzub5/question_why_wear_a_watch_on_the_wrist_where/
http://www.lg.com/global/gwatch/one/index.html#main

	Introduction
	Background
	Smartwatch
	Adversary Model

	Attack Overview
	Attacking Numeric Keypad
	Attacking QWERTY Keyboard

	Inferring PINs from Numeric Keypad
	Movement Modeling
	Attack Steps
	Learning Phase
	Testing Phase

	Experiment Results
	Discussion about Attack Settings

	Inferring English Text from QWERTY Keyboard
	Detecting the Start of Keystrokes
	Modeling Keypress Events
	Detecting ``L'' Letters
	Classifying ``L'' Letters

	Word Matching
	Labeling Words
	Matching Process

	Evaluation
	Implementation
	English Text Recovering
	Context-aware Text Inference

	Mitigations
	Discussion
	Related Work
	Body Movements Monitoring
	Emanation-based Attacks

	Conclusion
	Acknowledgments
	References

