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ABSTRACT
The emergence of cost-effective cloud services offers organizations great
opportunity to reduce their cost and increase productivity. This develop-
ment, however, is hampered by privacy concerns: a significant amount of
organizational computing workload at least partially involves sensitive data
and therefore cannot be directly outsourced to the public cloud. The scale of
these computing tasks also renders existing secure outsourcing techniques
less applicable. A natural solution is to split a task, keeping the computation
on the private data within an organization’s private cloud while moving the
rest to the public commercial cloud. However, this hybrid cloud computing
is not supported by today’s data-intensive computing frameworks, MapRe-
duce in particular, which forces the users to manually split their computing
tasks. In this paper, we present a suite of new techniques that make such
privacy-aware data-intensive computing possible. Our system, called Sedic,
leverages the special features of MapReduce to automatically partition a
computing job according to the security levels of the data it works on, and
arrange the computation across a hybrid cloud. Specifically, we modified
MapReduce’s distributed file system to strategically replicate data, moving
sanitized data blocks to the public cloud. Over this data placement, map
tasks are carefully scheduled to outsource as much workload to the public
cloud as possible, given sensitive data always stay on the private cloud. To
minimize inter-cloud communication, our approach also automatically ana-
lyzes and transforms the reduction structure of a submitted job to aggregate
the map outcomes within the public cloud before sending the result back
to the private cloud for the final reduction. This also allows the users to
interact with our system in the same way they work with MapReduce, and
directly run their legacy code in our framework. We implemented Sedic on
Hadoop and evaluated it using both real and synthesized computing jobs
on a large-scale cloud test-bed. The study shows that our techniques effec-
tively protect sensitive user data, offload a large amount of computation to
the public cloud and also fully preserve the scalability of MapReduce.
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1. INTRODUCTION
With the rapid growth of information within organizations, rang-

ing from hundreds of gigabytes of satellite images to terabytes
of commercial transaction data, the demands for processing such
data are on the rise. Meeting such demands requires an enormous
amount of low-cost computing resources, which can only be sup-
plied by today’s commercial cloud-computing systems: as an ex-
ample, Amazon Elastic Compute Cloud (EC2) can easily handle
terabytes of data at a price as low as 0.015 dollar per hour. This
newfound capability, however, cannot be fully exploited without
addressing the privacy risks it brings in: on one hand, organiza-
tional data contains sensitive information (e.g., financial data, health
records, etc.) and therefore cannot be shared with the cloud provider
without proper protection; on the other hand, today’s commercial
clouds do not offer high security assurance, a concern that has been
significantly aggravated by the recent incidents of Amazon out-
ages [13] and the Sony PlayStation network data breach [10], and
tend to avoid any liability [36]. As a result, attempts to outsource
the computations involving sensitive data are often discouraged.

A natural solution to this problem is cryptographic techniques
for secure computation outsourcing, which has been studied for a
decade [38, 17, 19, 16]. However, existing approaches are still
not up to the challenge posed by data-intensive computing. For
example, homomorphic encryption [30, 46, 49] was found to be
prohibitively expensive for a large-scale computation [25]. As an-
other example, the secret-sharing techniques underlying most out-
sourcing proposals can lead to intensive data exchanges between
the share holders on different clouds during a computation involv-
ing an enormous amount of data, and are therefore hard to scale.

Secure hybrid-cloud computing. Oftentimes, a data-intensive com-
putation involves both public and sensitive data. For example, a
simple grep across an organizational file system encounters adver-
tising slogans as well as lines of commercial secrets. Also, many
data analysis tasks, such as intrusion detection [8], targeted adver-
tising [14], etc., need to make use of the information from pub-
lic sources, sanitized network traces and social-network data [9]
for example, as well as information within an organization. If
the computation on the public data can be separated from that on
the sensitive data, the former can be comfortably delegated to the
public commercial clouds and the latter, whose scale can be much
smaller than the original task, will become much easier to handle
within the organization. Such a split of computation is an effective
first step to securely outsource computations and can be naturally
incorporated into today’s cloud infrastructure, in which a public
cloud typically receives the computation “overflow” from an orga-
nization’s internal system when it is running out of its computing
resources. This way of computing, involving both the private cloud
within an organization and the public commercial cloud, is called
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hybrid cloud computing [29]. The hybrid cloud has already been
adopted by most organizational cloud users and is still undergoing
a rapid development, with new techniques mushroomed to enable
a smoother inter-cloud coordination (e.g. [18]). It also presents a
new opportunity that makes practical, secure outsourcing of com-
putation tasks possible.

However, today’s cloud-based computing frameworks, such as
MapReduce [22], are not ready for secure hybrid-cloud comput-
ing: they are designed to work on a single cloud and not aware of
the presence of the data with different security levels, which forces
cloud users to manually split and re-arrange each computation job
across the public/private clouds. This lack of a framework-level
support also hampers the reuse of existing data-processing code,
and therefore significantly increases the cloud users’ programming
burden. Given the fact that privacy concerns have already become
the major hurdle for a broader adoption of the cloud-computing
paradigm [37], it is in urgent need to develop practical techniques
to facilitate secure data-intensive computing over hybrid clouds.

Our work. To answer this urgent call, a new, generic secure com-
puting framework needs to be built to support automatic splitting of
a data-intensive computing job and scheduling of it across the pub-
lic and private clouds in such a way that data privacy is preserved
and computational and communication overheads are minimized.
Also desired here is accommodation of legacy data-processing code,
which is expected to run directly within the framework without the
user’s manual interventions. In this paper, we present a suite of
new techniques that make this happen. Our system, called Sedic,
includes a privacy-aware execution framework that automatically
partitions a computing job according to the security levels of the
data it involves, and distributes the computation between the pub-
lic and private clouds. Sedic is based on MapReduce, which in-
cludes a “map” step and a “reduce” step: the map step divides in-
put data into lists of key-value pairs and assigns them to a group
of concurrently-running mappers; the reduce step receives the out-
puts of these mappers, which are intermediate key-value pairs, and
runs a reducer to transform them into the final outputs. This way
of computation is characterized by its simple structure, particularly
the map operations that are performed independently and concur-
rently on different data records. This feature is leveraged by our
execution framework to automatically decompose a computation
on a mixture of public and sensitive data, which is actually diffi-
cult in general. More specifically, Sedic transparently processes
individual data blocks, sanitizes those carrying sensitive informa-
tion along the line set by the smallest data unit (“record”) a map
operation works on, and replicates these sanitized copies to the
public cloud. Over those data blocks, map tasks are assigned to
work solely on the public or sensitive data within the blocks. These
tasks are carefully scheduled and executed to ensure the correctness
of the computing outcomes and the minimum impacts on perfor-
mance. In this way, the workload of map operations is distributed
to the public/private clouds according to their available computing
resources and the portion of sensitive data in the original dataset.

A significant technical challenge here is that reduction usually
can not be done on private nodes and public nodes separately and
only private nodes are suitable for such a task in order to preserve
privacy. This implies that the intermediate outputs of computing
nodes on the public cloud need to be sent back to the private cloud
for reduction, which could bring in a significant communication
overhead. To reduce such inter-cloud data transfer as well as move
part of the reduce computation to the public cloud, we developed
a new technique that automatically analyzes and transforms reduc-
ers to make them suitable for running on the hybrid cloud. Our
approach extracts a combiner from the original reducer for pre-
processing the intermediate key-value pairs produced by the public

cloud, so as to compress the volume of the data to be delivered to
the private cloud. This was achieved, again, by leveraging the spe-
cial features of MapReduce: its reducer needs to perform a fold-

ing operation on a list, which can be automatically identified and
extracted by a program analyzer embedded in Sedic. If the oper-
ation turns out to be associative or even commutative, as happens
in the vast majority of cases1 , the combiner can be built upon it
and deployed to the public cloud to process the map outcomes. In
our research, we implemented Sedic on Hadoop [28] and evalu-
ated it over FutureGrid [40], a large-scale, cross-the-country cloud
testbed. Our experimental results show that the techniques effec-
tively protected confidential user data and minimized the workload
of the private cloud at a small overall cost.

Contributions. The contributions of the paper are summarized as
follows:

• A new and user-transparent secure data-intensive computing frame-

work. We have developed the first hybrid-cloud based secure data-
intensive computing framework. Our framework ensures that sen-
sitive user data will not be exposed to the public cloud without the
user’s consent, while still letting the public cloud shoulder most
of the computing workload when possible. Also important is the
transparency our design offers, which enables cloud users to work
on the framework in exactly the same way they use the original
MapReduce. As a result, legacy MapReduce jobs can be directly
executed within the framework. An additional benefit that comes
with this transparency is the flexibility of our computing frame-
work: not only can it outsource all non-sensitive map tasks, but our
approach can also automatically move them back to the organiza-
tion perimeter when necessary (e.g., when the public cloud suffers
an outage). It is important to note that these properties are achieved
when the scalability of MapReduce is fully preserved. This is by
no means trivial given the complexity of this execution framework,
which involves carefully-designed algorithms for achieving high
performance, such as the replication strategies of its distributed file
system, task assignment and scheduling and others.

• Automatic reducer analysis and transformation. We have built a
new program analysis tool that automatically evaluates and trans-
forms the reduction structure of a computing job to optimize it for
hybrid-cloud computing. The tool breaks down a reducer into com-
ponents that can work on the public and private clouds respectively,
which not only moves part of the reduce computation away from
the private cloud but also helps control the amount of the inter-
mediate outcomes to be delivered back to the private cloud which
could cause significant delay and bandwidth charges on today’s
cloud model. Since inter-cloud data transfers are known to be a
bottleneck in cloud computing, the new techniques offer a critical
support that makes secure hybrid-cloud computing practical.

• Implementation and evaluation. We have implemented our de-
sign and evaluated it over a large-scale cloud testbed, using both
real and synthesized MapReduce jobs. Our experimental study
demonstrates that the new techniques we propose are both effec-
tive and practical.

Sedic is designed to protect data privacy during map-reduce op-
erations, when the data involved contains both public and private
records. This protection is achieved by ensuring that the sensi-
tive information within the input data, intermediate outputs and
final results will never be exposed to untrusted nodes during the
computation. Another important concern in data-intensive comput-
ing is integrity, i.e., whether the public cloud honestly performs a
computing task and deliveries the right results back to the private
cloud. We chose to address the confidentiality issue first, as it has

1
As a prominent example, 10 out of all 11 examples coming with Hadoop

distribution contain commutative and associative folding loops.
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already impeded the extensive use of the computing resources of-
fered by the public cloud [4]. By comparison, many cloud users
today live with the risk that their computing jobs may not be done
correctly on the public cloud. As a prominent example, the Na-
tional Institutes of Health still prohibits outsourcing of the compu-
tation involving human DNA data to the commercial cloud, though
the same tasks on non-human genomes has already been delegated
to Amazon EC2 [35].

Roadmap. The rest of the paper is organized as follows. Sec-
tion 2 outlines the high-level design of Sedic and also explicates
our objectives and adversary model. Section 3 and 4 describes the
details of our secure execution framework and code transformation
tool, including our implementation of these techniques. Section 5
reports our experimental study that evaluates the performance of
Sedic. Section 6 surveys related prior research. Section 7 discusses
the limitation of our current design and possible future research,
and Section 8 concludes the paper.

2. OVERVIEW
In this section, we first explain the properties expected from

Sedic and then present its high-level design and the adversary model
used in our research.

2.1 Background and Design Objectives
MapReduce. MapReduce is a software framework for supporting
data-intensive computing, such as web searching [22], document
format conversion [43], genome sequence analysis [42, 34] and
others. The computation within this framework first divides the
input data into lists of key-value pairs and assigns them to a group
of concurrently-running problem solvers, i.e., the mappers. Each
mapper is iteratively invoked by the node that performs the compu-
tation (called tasktracker in Hadoop terminology) to convert an in-
put pair into one or more intermediate key-value pairs. These pairs
are fed into the reducers to transfer the pairs with the same key into
a list of output pairs. Although conceptually simple, this computing
framework includes a set of complicated mechanisms to ensure the
scalability and fault tolerance during a computation, through repli-
cating data and scheduling the map-reduce operations dynamically
to nodes capable of undertaking the workloads. It also supports a
user-defined combiner structure that allows the nodes running map-
pers to reduce the amount of the data that needs to be delivered to
the reducers, thereby limiting bandwidth consumption. MapRe-
duce has many open-source implementations, among which the
most popular one is Hadoop [28]. Hadoop includes a distributed
file system (HDFS) that offers reliable and high-performance stor-
age services for MapReduce applications, and a runtime framework
that manages MapReduce jobs through job submission control, task
scheduling and fault tolerance. Another prominent implementation
is Twister [27], which supports iterative MapReduce computations.
With its distributed computing nature, MapReduce has been one of
the most adopted application running on cloud.

Objectives. The original MapReduce framework does not support
the operation over the hybrid cloud to process the data with differ-
ent security levels. We developed Sedic to enhance MapReduce to
make it suitable for performing a privacy-aware data intensive com-
puting. More specifically, our system has been designed to achieve
the following objectives:

• High privacy assurance. Only the public data, as indicated by
the user, can be handed over to the public commercial cloud.

• Moving workload to the public cloud when possible. When the
private cloud is about to run out of its computing resources, we
need to move as much computation to the public cloud as possible,
given the privacy of user data is preserved.

Table 1: Steps for a Privacy-Aware MapReduce

Users
• Label sensitive data, which can be done through a

data-tagging tool (Section 3.1).

• Submit to Sedic labeled data and a MapReduce job.

Sedic
• Analyze and transform the reduction structure of the

job (Section 4).

• Partition and replicate the data according to security
labels (Section 3.1).

• Create and schedule mappers across the public/private
clouds (Section 3.2).

• Combine the results on the public cloud and complete
the reduction on the private cloud (Section 3.3).

• Scalability. The system should preserve the scalability of the
MapReduce framework. The overhead incurred by privacy protec-
tion should be kept low.

• Limited inter-cloud data transfer. Inter-cloud data transfer is
traditionally deemed as a very expensive operation. The bandwidth
offered by today’s Internet cannot sustain intensive data exchanges
during the computation involving a large amount of data.

• Ease to use. The system should be transparent to the users, keep-
ing the MapReduce interfaces they are familiar with, and also sup-
port a convenient migration of legacy jobs (i.e, MapReduce pro-
grams) to the new execution framework. These jobs can either run
without any modifications, or be converted to optimize their perfor-
mance through automatic program transformation.

As discussed before, the MapReduce framework is highly com-
plicated, employing various mechanisms to improve its performance.
Therefore, it is challenging to build privacy protection into the frame-
work to meet the above requirements without undermining its scal-
ability. Here, we present a design that makes this happen, as illus-
trated in Figure 1. We also prototyped the design over Hadoop. The
architecture and individual components of our system are surveyed
in Section 2.2 and elaborated in Section 3 and 4.

2.2 Design
The design of Sedic is meant to be generic, supporting execution

of not only the MapReduce job designed for it but also legacy jobs
without altering the way the user interacts with the original MapRe-
duce platform. It includes an execution framework and auxiliary
tools. The framework performs privacy-aware map-reduce opera-
tions on the data with different security labels (either sensitive or
public). The auxiliary tools are used to help cloud users label their
data and transform the code of their MapReduce jobs for better
performance. What is expected here is that one only needs to in-
dicate which part of the data is sensitive, and the execution frame-
work then takes over to automatically partition the data, create and
schedule map tasks on the data according to its security labels over
the public/private clouds, and strategically arrange the reduce tasks
to minimize inter-cloud communication. The steps for performing
such a privacy-aware MapReduce are summarized in Table 1.

Specifically, before submitting a MapReduce job to the execu-
tion framework, the user can run our data-tagging tool to locate
sensitive data, for example, the content involving special strings
like credit-card numbers, within her dataset, and mark such data
items as “sensitive”. The labeled data is then uploaded to the pri-
vate cloud, which is connected to the public cloud through a virtual
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private network2. The distributed file system (DFS) of this hybrid
cloud breaks the data into blocks according to their security labels
and places them across the clouds strategically: the blocks con-
taining public or sensitive data only are replicated to the public or
private cloud respectively, while the others are propagated through
two types of replicas, the original ones stored on the private cloud
and the sanitized ones, which are cleaned of sensitive information,
disseminated to the public cloud (Section 3.1). Over these data
blocks, the private cloud creates map tasks, which are assigned to
the nodes that host the data (Section 3.2). Such data replication and
task assignment strategies, together our improvement on the execu-
tion mechanism of cloud nodes, ensure that the map tasks are com-
puted correctly and efficiently. The results output by the nodes are
delivered to the reducer to complete the computation (Section 3.3).

The reduce operation typically happens on the private cloud, as
it inputs both public and sensitive data. This requires that all the
mapping outcomes produced by the public cloud be transferred
to the private cloud. To avoid the huge communication overhead
incurred thereby and further move the computation to the public
cloud, Sedic employs an automatic program analysis tool to evalu-
ate and transform the reduction structure of a MapReduce job (Sec-
tion 4). Specifically, when the user uploads her job, the tool is in-
voked to identify the loop within the reducer for folding the input
key-value list. Once such an operation is found to be associative
and commutative, which is often true for real MapReduce jobs, the
loop is extracted to build a combiner and the rest of the reduce code
is exported as a new reducer. The combiner is then deployed to the
public cloud to pre-process mapping outcomes, which helps bring
down the workload of the private cloud and reduce the volume of
the data that needs to be sent to the new reducer.

2.3 Adversary Model
We consider an adversary who intends to acquire sensitive user

information and has a full control of the public cloud. On the other
hand, we assume that the private cloud is trustworthy: specifically,
the adversary has no access to the nodes on the cloud and its under-
lying network, and therefore cannot launch such attacks as eaves-
dropping. Under this adversary model, Sedic is designed to ensure
the confidentiality of a computation, though the powerful adver-
sary can still compromise its integrity, i.e., rendering the outcomes
of the computation incorrect. As discussed before, our focus on
confidentiality is based on the observation that today’s cloud users
seem to be more willing to live with the risk of getting unreliable
computing results than the threat to their private data. Finally, we
assume that the absence of some records in the data blocks pro-
cessed by the public cloud does not leak out information. Note
that this is all that the adversary can see from a public node: Sedic
ensures that the sensitive information in input/intermediate/output
data never gets out of the privacy cloud.

3. THE EXECUTION FRAMEWORK
In this section, we elaborate our design of the privacy-aware ex-

ecution framework within Sedic, as illustrated in Figure 1, and its
implementation over Hadoop.

3.1 Data Labeling and Replication
Sensitive data labeling. As discussed before, to perform a privacy-
aware MapReduce on her data, all a user needs to do is marking out
the data she deems to be sensitive, and then submits the data and
her computing job to Sedic, just as she would do when interact-
ing with the original MapReduce platform. Data labeling can be

2
This can be done, for example, through Amazon Virtual Private Cloud [3]

when the EC2 is used as the public cloud.

done manually when only a very small amount of contiguous sen-
sitive content is involved, or through a data-tagging tool that comes
with Sedic. In our research, we implemented such a tool as a sim-
ple string scanner that searches a given dataset for the keywords
or other text patterns that describe sensitive user information like
social security numbers, credit-card numbers and others. Once the
target is found, a security label is created to record the location
of the information: the one built into our prototype is a tuple (
〈filename, offset, length〉). Also, in the case that a dataset
contains multiple files, individual files can be automatically labeled
according to their access privileges within file systems. For exam-
ple, all except those accessible to the public should be marked as
sensitive data. All the labels for a dataset are included in a meta-
data file, which is submitted, together with the dataset, to Hadoop
Distributed File System (HDFS).

Data uploading. To compute over a dataset, a Hadoop user first
needs to upload it to HDFS, which further places and replicates
the data to the nodes across a cloud. Specifically, HDFS has two
types of nodes: namenode that maintains the meta information of
the whole file system, particularly the inode for each file that doc-
uments its attributes (file name, modification time, etc), and datan-

ode that keeps the actual data. The data stored on the datanode is
organized as blocks, each containing 64 MB by default. The lo-
cations of the blocks that belong to the same file are recorded by
the BlockInfo array within the file’s inode. To upload a file, the
user first uses her Hadoop client to contact a namenode, which cre-
ates an inode for the file, locates an available block within HDFS
and sends its whereabout back to the client. According to the in-
formation, the client communicates with the datanode hosting that
block to transfer its data. If the size of the file exceeds 64 MB, the
client continues to request blocks from the namenode, until all the
data has been uploaded. This process also includes data replication,
which we discuss later.

To protect private user data from the public cloud, which is not
trusted, we modified the Hadoop client and HDFS to ensure that a
file with some sensitive content are uploaded through the namen-
ode on the private cloud. Specifically, the client first contacts such
a node to build an inode for the file, which includes the security
labels associated with the file. To this end, we extended Hadoop’s
INodeFile class by adding a new private field, secureMeta,
which is an array for accommodating locations of sensitive data.
The content of secureMeta is built upon the security labels: for
each label, the namenode puts in the array the location of the data
record that carries the sensitive content indicated by the label. Ac-
cording to such meta-data, whenever the client asks for storage to
upload the data involving sensitive records, the namenode first allo-
cates to it a data block from a private datanode, i.e., the one on the
private cloud. The positions of these records are also given to the
datanode as the meta-data of the block to protect the records from
being disclosed during the follow-up replication process.

Data replication. The data uploading process always comes with
replication, which HDFS uses for the purposes of performance en-
hancement and fault tolerance. For each block of user data a Hadoop
client requests space for, a namenode tries to replicate it to multiple
data blocks on different datanodes. The number of replicas, called
replication factor, can be specified in a Hadoop configuration file
and is set to 3 by default. The replication process starts from the
first datanode receiving data from the client. One by one, the data
is streamed to the next datanode selected by the namenode from
the prior one. This operation can also be triggered by a periodic
checking performed by HDFS: once a block is found to be under-
replicated, the namenode allocates space and directs datanodes to
make copies of it.

The replication mechanism used in Sedic improves over that of
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Figure 1: A Framework for Privacy-Aware MapReduce

Figure 2: Data Replicate

Hadoop, making it suitable for operating on sensitive data in a
hybrid cloud environment. Our approach ensures that the blocks
with all sensitive data are only replicated to private datanodes. On
the other hand, those with public data only are first sent to the
public cloud, which causes the their follow-up replications more
likely to happen there, due to the data locality strategy taken by
Hadoop [28]. For the blocks with both public and sensitive data,
the namenode first uses private datanodes to replicate them and then
propagates their public data to the public nodes. This arrangement
makes it possible to outsource the computation on the public data
to the public cloud, while keeping the operations on the private data
within the private cloud.

When replicating a data block, a private datanode copies not only
the block but also its meta-data to the next node, if the recipient is
also within the private cloud. Otherwise, the sender first zeros out
all the sensitive records on the data block, according to the meta-
data, before propagating it to a public datanode. The public node
also receives the meta-data, which indicates the locations of the
blank records within the block that should not be operated on. As a
result of this replication, the blocks with both public and sensitive
records get two types of replicas, the original versions and the san-
itized ones. Figure 2 illustrates the replication process. Note that
oftentimes, such an inter-cloud data transfer only happens when
a new file is being uploaded, which places replicas on the public
cloud. After that, the cloud user can run different jobs over this
data placement. Actually, many users today already have their pub-
lic data stored on the commercial cloud.

3.2 Map Task Management
Task creation and submission. After uploading data to HDFS,
the client needs to submit a computing job, which includes the Java
code for the mapper, reducer, other optional functions such as com-
biner and job configuration parameters, particularly the paths for
the input and output files of the job. The node on the cloud that
receives such a job is called job submission node. This node con-
tains a jobtracker that works with the client to break the job into
tasks before assigning them to the tasktrackers on a set of datan-

Figure 3: Task Management

odes to run. More specifically, the client provides the jobtracker
with a description of the map tasks over the data blocks of a file
it submitted. Such a description is a list of FileSplit objects,
with each of them associated with a map task. A FileSplit ob-
ject carries two parameters, the offset for the start of a contiguous
region within the file, a 64-MB block typically, and its length. A
map task will process all the records within that block, from the
beginning to the end.

To create the map tasks over the blocks with different security
levels, we modified InputSplit to add in a security tag sensitive.
This tag is set to sensitive when the block associated with a task
carries all private content, and to public when it contains no secret
at all. For the block with both types of data, a Sedic client gen-
erates two map tasks, one sensitive and one public. The offsets
of these tasks point to where public or sensitive data begins and
their length parameters describe the sizes of the contiguous content
with the same security label within a block. To handle the block
with several interleaved segments with disparate security levels, we
changed FileSplit to specify multiple offset-length pairs. The
idea is to use one map task to handle all public data of the block
and the other to process the sensitive one. This treatment ensures
the correctness of the keys produced by these two tasks, which of-
ten depend on the locations of individual records, as well as that
of the values, since each of such segments carries integer number
of records, the smallest data unit a mapper works on, as described
before. The task creation is shown in Figure 3.

Task scheduling. Scheduling those map tasks to cloud nodes is
done by the Hadoop jobtracker. Upon receiving a list of task de-
scriptions, the jobtracker first creates TaskInProgress objects
for the tasks on the list, and then assembles these objects into a
JobInProgress queue. Whenever a “heartbeat” signal comes,
indicating that a tasktracker of a node is ready to run a new task,
the jobtracker looks up the queue and locates the most appropri-
ate task for that node, the one whose data block is stored on the
node, for example. This task scheduling process becomes privacy-
sensitive in Sedic: we revised the jobtracker, which sits on the pri-
vate cloud, to tag the TaskInProgress objects according to the
sensitive fields within the InputSplit objects, and sched-
ule the tasks based on their tags. Simply put, a sensitive task is
always scheduled to a private datanode, which often hosts the re-
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lated data block, while a public task is more likely to be handed
over to a public datanode to outsource the map computation.

Task execution. A tasktracker assigned a map task by the job-
tracker executes the task over the data block stored on its local
host or downloaded from other nodes. In Hadoop, this proceeds
as follows. The mapper reads a record from the block through
a RecordReader object, which makes a socket connection to
DataXceiverServer, a service maintained by the datanode
that hosts the block. Each time a record is processed, the mapper
gets the next one by calling the method nextKeyValue through
the connection. This happens even when the block is co-located
with the tasktracker on the same node.

A problem of this data-access mechanism is that it only reads
contiguous data: whenever the read stops (e.g., due to the need of
moving the read pointer to skip some data), HDFS discontinues
the current connection. Given a data block often contains discon-
nected segments of public or sensitive data, a mapper has to call
seek to adjust the read pointer after finishing its work on one seg-
ment, which interrupts connections. As a result, new connections
need to be made continuously, which incurs a huge overhead. For
example, establishing a connection takes DataXceiverServer
(on the sender side) several hundred milliseconds to create a new
BlockSender object for delivering data to RecordReader (on
the receiver side).

Our solution to this problem is to read all the data segments the
mapper needs within one block through a single connection. To this
end, we modified RecordReader and DataXceiverServer
to pass the offset-length pairs to BlockSender, which was also
enhanced to perform both read and seek operations on a block file
according to these pairs. This ensures that a connection will be torn
down only after all required data is given to the mapper.

3.3 Reduction Planning
The scheduling of the reduce task poses yet another technical

challenge. The reducer receives the outputs from the mappers run-
ning on sensitive data, and therefore cannot be directly executed
on the public cloud. A straightforward solution here is to move all
the map outcomes produced by the public cloud back to the pri-
vate cloud. This, however, can incur a huge amount of inter-cloud
communication, which we intend to avoid. For example, finding
the TCP ports connected by each host requires a large number of
port information to be transferred back to private cloud for reduce
operations. Alternatively, we can carefully plan the scheduling of
map tasks to ensure that the total amount of the map output to be
generated by the public cloud does not exceed an upper limit set by
the user according to the bandwidth she is willing to use and the
delay she can tolerate. More specifically, the user is supposed to
specify to Sedic the amount of output data produced by mapping
one record and a threshold that represents the maximum amount of
data to be sent from the public cloud to the private cloud. When
scheduling a map task to a node on the public cloud, the jobtracker
estimates the output volume the task will produce according to the
size of the data it works on. Once the aggregated volume of the
outsourced tasks is found to exceed the threshold, we stop moving
computation to the public cloud. The problem of this simple treat-
ment is that it constrains the amount of computation that can be
undertaken by the public cloud.

More desired here is to let the public cloud perform part of the
reduce operation, which not only cuts down the volume of the data
that needs to be sent back, but also moves part of the computation
away from the private cloud. What we can leverage are the prop-
erties of reducers: they all contain a fold loop that works on a list
and in the vast majority of cases, such an operation is associative
and commutative. Examples include counting the number of oc-

currences of a keyword in a large database and comparing the edit
distances of different alignments to find the smallest one. For these
reducers, Sedic extracts their loops to build combiners, which pro-
cess the data on the public cloud and deliver their outcomes to the
private cloud to complete the computation. Sedic provides an au-
tomatic program analysis tool that evaluates the source code of a
reducer to determine its features and perform code transformation
when necessary, which is elaborated in Section 4.

4. AUTOMATIC REDUCER ANALYSIS AND

TRANSFORMATION
In this section, we present a suite of new techniques that opti-

mize the reduction structure of a MapReduce job for secure and ef-
ficient computing of the job over a hybrid cloud. These techniques
perform an automatic analysis and transformation on a reducer’s
Java source code, as soon as the job is submitted to the jobtracker,
which enables the Sedic framework to schedule the reduce tasks in
a way that minimizes the inter-cloud communication as well as the
workload of the private cloud. Their design and implementation
are elaborated below.

4.1 Automatic Analysis
The idea. The MapReduce computing framework has its origin
in functional programming [23]. The reduce operation actually
comes from fold, a high order function that aggregates elements on
a list. Although the reducer of real-world job can be more com-
plicated than fold, which is rather straightforward, it typically con-
tains a fold component, in the form of a loop, to combine the values
of the same keys from an input list. If the fold is associative, we
can run it on the public cloud to partially process map outcomes.
For example, given an associative fold f([a1, a2, a3, a4, a5, a6]) =
f([f([a1, a2]), f([a3, a4]), f([a5, a6])]), we can outsource f([a1,
a2]) and f([a5, a6]) to the pubic cloud if only a3 and a4 are sen-
sitive. This move also helps reduce the communication overhead
caused by sending the map outputs back to the private cloud, since
the fold component partially combines these outputs. We can do
even better when the fold is also commutative, which allows us to
compute f([a1, a2, a5, a6]) on the public node in the above exam-
ple. Actually, real-world reducers are often associative and com-
mutative. In the cases they are not, their fold components typically
have these properties. Figure 4 presents an example: although a
reducer that calculates the mean of its input values is clearly not
associative, its fold loop, which does the sum, is.

Before a fold operation can be outsourced, it needs to be ana-
lyzed to find out whether these desired properties are there. To
see how to do this, let us first take a close look at the operation.
Consider a list [a1, · · · , an]. A fold on the list can be described as
f([a1, · · · , an]) = g([g([· · · g([g([a1, a0]), a2]) · · · ]), an]), where
g is a function that works only on a two-element list and a0 the ini-
tial value. Essentially, g describes the operation performed on a
list member and an intermediate aggregation outcome at every iter-
ation of the fold loop. If the operation is associative and commu-
tative, so will be the whole fold loop. In other words, all we need
to study here is what happens in a single iteration. In the rest of
the section, we describe our analysis techniques, which first check
the loop dependence of the fold and then evaluate the operation be-
tween a list member and the intermediate value in an iteration. We
also prototyped our approach using Soot [11], a Java optimization
framework.

Reducer analysis. The first step to analyzing a reducer is to lo-
cate its fold component. As discussed before, fold is typically per-
formed through a loop in Java or other imperative programming
languages. Actually, the loop is mandated by the reduce interface
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Figure 4: Reduce Structure

provided by Hadoop, which keeps the input values in an iterator.
Our approach utilizes Soot to convert the Java source code of a re-
ducer to Jimple intermediate representation and then runs the API
LoopFinder() to identify this fold loop, which is characterized
by its operations on these input values. All the follow-up analysis
mainly happens to that loop. Specifically, we first perform a loop
dependence analysis to check whether there exists any variable that
is first defined within one iteration and later used in another iter-
ation. If there is no such a variable, we conclude that the loop
dependence does not exist and the loop can be used to build a com-
biner (Section 4.2), as it is both associative and commutative. This
happens in the cases such as filtering, which drops the values above
or below a certain threshold, Grep, Sort, etc.

If the dependence relations are found, our approach moves on to
perform a liveness analysis on their causal variables. Specifically,
the analysis utilizes a Soot API SimpleLiveLocals to find out
those still alive posterior to the loop and put them in a set D. These
variables not only carry the dependence but also produce the out-
comes of the fold operation, and therefore are the keys for under-
standing the fold’s properties. The follow-up analysis backtracks
the define-use chain of each variable v ∈ D within an iteration,
starting from the first use of v outside the loop. The objective here
is to discover all the variables and operations that define v across all
execution paths in the iteration. This evaluation ends when it hits
the input key-value list or moves out from the scope the iteration.

For each execution path discovered, our approach checks all the
operators that define the loop-dependent variables. The fold be-
comes associative and commutative if these properties hold across
all the paths. This can only be verified empirically, as the prob-
lem in general is undecidable. However, all we really need here
is just a sufficient condition that covers the operations a real-world
reducer performs, which are typically simple. Specifically, a form
of the computation analyzed in our research is as follow: for each
execution path i in an iteration with a path condition Pi, the re-
ducer calculates an aggregation v ←− v

N

δi, where δi, which
is a function, and Pi do not contain any loop-dependent variables,
and

N

is an operator. Essentially, this computation aggregates all
δi for each input key-value pair using

N

. It is clearly associative
and commutative if

N

has all these properties. Such a type of ag-
gregation, though simple, actually generalizes the fold operations
performed by the vast majority of real-world MapReduce jobs. A
prominent example is sum that adds the values of the same key to-
gether. Other examples include finding the optimal alignment be-
tween two strings, where the edit distance is minimal (operator here
is min), and calculating different statistics according to the values
of the inputs, which are loop independent.

Figure 5: Code analysis example

Such an aggregation can be identified from the define-use chain
of the variable v. Our approach evaluates all the statements on
the chain to ensure that v is the only loop-dependent variables
used, and the operation on the variable only happens between it and
the program elements independent of other iterations, and always
through the same, associative and commutative operator. We also
check all the branch conditions encountered, which need to be loop
independent. For the example in Figure 5, our analyzer backtracks
the statements that work on the live variable sum, which cause the
loop dependence. All such statements meet the above conditions,
particularly, the addition operator is associative and commutative.
Therefore, we conclude that the fold loop has all the desired prop-
erties and can be used to build a combiner. In our research, we
implemented this automatic analysis in the prototype.

4.2 Code Transformation
Once the fold loop is found to be associative and commutative,

Sedic uses it to build a combiner, which is deployed to both the
public cloud and the private cloud to preprocess map outputs. The
results of this operation are fed to a new reducer on a private node
to complete the computation. In this section, we describe our code
transformation technique that supports this data processing.

Our approach. Like the code analyzer, our transformation tool
was also implemented as a Soot jtp pass [11]. It works on the
Jimple representation of the Hadoop job the user uploads and saves
the new code to a newly-created combiner class CombinedData
before resubmitting the modified job to the cloud. Specifically, the
tool separates the fold loop from the rest part of the reducer. As
illustrated in Figure 4, the loop sits right between variable dec-
larations/initializations and the posterior loop operations that ulti-
mately export the outcomes of the computation to outputCollect
of a Hadoop job. Using the information provided by the code ana-
lyzer, our tool locates the fold loop and its related variable declara-
tions on Soot’s structural representation of Jimple code, and copies
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these nodes to the new combiner class. The new program structure
is then converted directly into Java class files by Soot. Note that
when the whole reducer includes just an associative and commuta-
tive loop and standard output functions (e.g., Context.write),
our tool simply adds SetReducer to the original job to make the
reducer also the combiner with proper initial value adjustment.

Although conceptually simple, this code transformation does bring
in a few interesting technical issues. First, the handling of the vari-
ables in the reducer needs to be well thought-out. Remember that
the combiner generated thereby is supposed to be run on both the
public and private clouds. If we simply copy to it the variables
and their initializations from the original reducer, we could end up
with aggregating the initial values of these variables multiple times,
which leads to an incorrect outcome. To see how this could hap-
pen, let us look at the example in Figure 4. In the fold loop that
does the sum, if we keep the initial value of the aggregation vari-
able i0 = 5 in the combiner, this value will be added twice to
its partial sums produced on both the public cloud and the private
cloud, and added again by the new reducer, making the final result
larger than what it is supposed to be by 10. Our solution is to set
the initial value of the fold operation to an identity element of the
fold operator

N

to avoid this double-counting. For example, when
the operator is an addition, we can set the value to 0; when it is a
multiplication, we initialize it as 1. The original initial values are
only aggregated by the new reducer. Second, although the new re-
ducer and combiner share large amount of code with the original
reducer, a naive copy of Jimple Stmt from original reducer will
not work because the ValueBoxes in each Jimple Stmt refers to
variables in original reducer. Besides copying the Local chain
and Trap chain, we also patch the values in each ValueBox so it
refers to variables in the new Local chain. Finally, we also need
to add an interface between the new combiner and the new reducer.
Specifically, our tool sets all the live variables of the fold loop as
the output of the combiner and put them into a data structure called
CombinedData, which is essentially a list of output objects. We
further modify the loop within the new reducer, which extracts ele-
ments from the lists provided by the combiners on both clouds and
aggregates these elements using the operator

N

. We also need to
remove the computation of δ from the reducer to avoid duplicate
computation of δ.

An example. For the example in Figure 4, the reducer calculates
the mean of input values. Our code analyzer identifies the fold loop
on the structural representation of the code, moves it, together with
all related variables, to the new combiner class and further modifies
the reducer structure. Such code is finally converted into Java class
files. For the ease of understanding, we also present the Java source
code of the combiner and reducer here, though the output of our
tool is actually Java bytecode.

5. EVALUATION
In this section, we report the evaluation study of our privacy-

aware MapReduce framework. Our objective is to understand whether
these techniques are capable of significantly reducing the workload
of the private cloud, scaling to a large amount of data and also
maintaining an acceptable level of overall overheads, particularly a
limited inter-cloud communication cost. To this end, we evaluated
the performance of realistic, large-scale Hadoop jobs using our pro-
totype, over a large-scale cloud test-bed. The details of the study
are elaborated here.

5.1 Experimental Setting
Here, we describe the setting of our experimental study, includ-

ing the MapReduce jobs and the data we used to evaluate our pro-
totype, and our hybrid cloud-computing environment.

Computing jobs and data. In our study, we ran five Hadoop jobs
over our prototype to evaluate its effectiveness and performance,
which include a data analysis for target marketing, two intrusion
detection analyses and two jobs for preparing spam detection. The
target-marketing analysis was designed to understand the public’s
responses to different brand names. More specifically, we utilized
Hadoop’s Grep implementation to evaluate one day Twitter data
we captured on April 16th, 2010, in an attempt to find out the com-
ment words (e.g., “wonderful”, “worst”, etc.) associated with dif-
ferent product brand names. We randomly select some user and
mark their tweets as sensitive date, just as if they set their privacy
preferences to share data only with their friends. The two examples
for intrusion detection systems (IDS) were all based on the DARPA
Intrusion Detection Evaluation dataset [5]. The dataset includes the
sniffing data from external networks, which was marked as public
in our study, as well as that from the internal network, which was
considered to be sensitive. Our analyses on the data involved find-
ing all the ports connected by each IP address and determining the
amount of traffic generated by individual hosts. The last two jobs
prepared a Naive Bayesian classifier for detecting email spam: one
of them counted the occurrences of a set of words on a spam key-
word list and the other counted the total number of words in a large
dataset. We utilized the published Enron email dataset [6] as the
private data and a SPAM archive [12] as the public data. These
jobs and their related datasets are described by Table 2 and 3. We
also performed an additional experiment to understand the perfor-
mance of Sedic on the dataset with various proportions of sensitive
records, using a job that computed the average lengths of packet
payloads over the IDS dataset. The code of the job came from
Hadoop sample code [28].

Table 2: Descriptions of Hadoop Jobs

Job Data set Descriptions

Port Scan
Detection

IDS data set
Find the TCP ports connected by
each host

Traffic
Statistics

IDS data set
Count the total amount of the traffic
generated by each host (for detecting
denial of service attacks)

Email Word
Count

Spam data set
Count the total number of words
in the spam dataset (for calculating
Bayes probability)

Spam Keyword
Count

Spam date set

Count the occurrences of each
keyword on a given spam keyword
list file(for calculating Bayes
probability)

Grep Twitter

Search for word patterns according to
predefined regular expressions
within the dataset, e.g., brand names
and comment words such as
awesome, wonderful, worst etc.

The hybrid cloud. We built our hybrid cloud on FutureGrid [7], an
NSF-supported, across-the-country cloud test-bed [40]. The public
cloud included 3 nodes located at the University of Chicago. Each
machine has 8-core 2.93 GHz Intel Xeon, 24 GB memory, 862 GB
local disk and Linux 2.6.18. The private cloud involved 3 nodes
at Indiana University, each with 8 to 24 cores of Intel Xeon CPUs,
32G or 48GB memory, 1.6TB disk and also Linux 2.6.18. These
two clouds were connected by a 40 MBps link.

5.2 Experimental Results
In our experiment, we evaluated both the effectiveness of our

code transformation tool and the performance of our execution frame-
work, which includes computational and communication overheads.

Code transformation. Like the typical reduction performed in a
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Table 3: Descriptions of Datasets

Name Sensitive Data Public Data
Size of

Sensitive Data
Size of

Public Data
Percentage of

Sensitive Content

IDS data set The tcpdump files for inside The tcpdump files for outside 17GB 15GB 54%

Spam data set The Enron Email Dataset
SPAM archive download from
http://untroubled.org/spam/

1.3GB 0.8GB 62%

Twitter data set
Tweets from randomly chosen users who
are assumed to prefer to protect their tweets

Tweets from other users 123MB 491MB 20%

MapReduce job, all the reducers encountered in our experimental
study were pretty simple. Actually, most jobs simply summed up
the values produced by mappers according to the keys. Our analysis
tool easily identified the fold loops within them and determined
that they were all commutative and associative. These reducers
were also set as combiners so that they could combine the data
at the public and private clouds respectively, and then reduce the
outputs on the private node. The exceptions include the tasks for
collecting all the ports associated with individual IP addresses and
for determining the average lengths of packet payloads. The fold
loop of the former did not have a loop dependency and therefore
was directly used as a combiner. The latter calculated the mean of
all its inputs, which was analyzed and transformed as described in
Section 4.2.

Performance. We ran the job that computes average payload lengths
on the IDS dataset to analyze the performance of our execution
platform in the presence of different public/sensitive data mixtures.
Specifically, we considered the situation that sensitive data was
uniformly distributed to every data block, since it represents the
worst-case scenario with the most negative impact on the perfor-
mance of our system. Under this scenario, we gradually raised
the proportion of sensitive information, from 10% to 50%, to eval-
uate the amount of the computation being outsourced to the public
cloud. The workload here was measured by the total task execu-
tion time, which was summed over the execution time of individual
tasks (map and reduce) processed by private nodes. Such work-
load was compared with that of running the whole job within the
private cloud, which we call baseline, to estimate the ratio of the
computation being outsourced to the public cloud. We got all the
runtime statistics from Hadoop log files, which has the detailed in-
formation about each task, including the starting time, running on
which TaskTracker and finishing time. The outcomes of this study
are illustrated by Figure 6. The workload the private cloud shoul-
dered increases from about 69.68 seconds (an outsource ratio about
76%), when 10% of the dataset was sensitive, to about 168.88 sec-
onds (about 40% of outsource ratio), when 40% of the data was
private, compared with that caused by running the whole job on
the private nodes. The workload dropped a bit when the ratio of
the sensitive data went to 50%, probably due to the randomness in
execution. Remember that the map task undertaken by the private
cloud only processes the sensitive records within each block (Sec-
tion 3.2). However, there apparently were noticeable overheads
associated with initializing the task and seeking for these records
within a block, which brought down the performance.

The performance of other jobs are described in Table 4. What we
can see here is that all of them successfully moved a large portion of
computation to the public cloud, in accordance with the ratio of the
private information within the individual datasets they worked on.
This even happened to the job that processed the Twitter dataset,
whose distribution of sensitive data was more even compared with
the other two datasets. In some cases, the outsource ratios are even
higher than the proportion of the public data within the dataset
(Word Count). We believe that this was caused by the randomness
in the job execution. The overall job execution time was also low
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Figure 6: Performance vs. Sensitive Data Ratio

for our prototype: as an example, for port scan detection, it took
about 3 minutes to complete the whole job (on 6 nodes, 3 private
and 3 public), even below the baseline, which used about 6 minutes
(on 3 private nodes). This is actually quite reasonable, given the
fact that our hybrid-cloud computing leveraged the resources from
the public cloud.

Communication overheads. Our experiments also show that the
new reduction structure automatically generated by Sedic did con-
tribute to the effective control of inter-cloud data transfers, one of
the major hurdles to the extensive use of cloud computing. Specif-
ically, we compared the bandwidth consumption of the original
Hadoop jobs with that incurred after their reducers were trans-
formed. The results are presented in Table 4. As we can see here, in
the presence of code transformation, the flood of the traffic stream
between the public and the private clouds was reduced to trick-
les: for example, in the case of port scan detection, over 1.5 GB
data was reduced to merely 8.2 MB using the automatically gen-
erated combiner on the public cloud. This saving in bandwidth
consumption can significantly improve the performance of hybrid-
cloud computation, given the fact that inter-cloud bandwidth is typ-
ically low. For example, the link between Amazon EC2 and Ama-
zon S3 is around 50MBps [1] and the connections EC2 receives
from the outside are often less than 10MBps [2]. The experimental
results offer strong evidence that our code analysis and transforma-
tion techniques indeed work.

6. RELATED WORK
Security protection in cloud computing. Most system security re-
search on the cloud focuses on data-storage security [47] and virtu-
alization security [33]. Little effort has been made to facilitate secu-
rity and privacy protections during the computation specific to this
new computing platform (despite the rich literature on more generic
secure-computing techniques). One exception is Airavat [41], a
system that ensures mandatory access control and differential pri-
vacy [26] when MapReduce operations are performed on sensitive
data. Different from Airavat, which trusts the cloud platform it is
running upon, our work aims at protecting sensitive data from the
public cloud, which will be achieved by a security mechanism de-
signed for the hybrid-cloud platform.
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Table 4: Performance

ID Job

Task Execution Time
of the Whole Job

(Baseline, in seconds)

Total Task Execution
Time in Private

Cloud(in seconds)

Outsource
Ratio

Public
Data Ratio

Inter-cloud
Communication

w/o Transformation
(in Bytes)

Inter-cloud
Communication

w. Transformation
(in Bytes)

1 Port scan detection 1909.79 928.86 51% 46% 1512075005 8215706
2 Traffic statistics 1723.87 890.25 48% 46% 672975164 582889
3 Word count 148.48 66.12 55% 38% 422691678 294

4
Spam Keyword
Count

155.70 99.03 36% 38% 68598926 13173

5 Grep 17.85 5.24 71% 80% 2158 156

Secure computation outsourcing. Secure computation outsourc-
ing has been studied for more than a decade. Early research is
mainly on delegating cryptographic operations (e.g., modular ex-
ponentiations) to a set of untrusted helpers [38, 31]. More recent
studies include the techniques for secure computing of edit dis-
tances and string alignments [19, 16, 32, 20, 44], which are too
heavyweight for data-intensive computations. Effort has also been
made to securely outsource the computations such as linear alge-
bra operations [15] and machine-learning tasks [25]. For exam-
ple, Peer-for-Privacy decomposes a category of data mining algo-
rithms into vector addition steps and distributes them to multiple
nodes on a cloud, which can be securely evaluated through a spe-
cial secret sharing scheme [25]. All these approaches, however,
incur a large amount of communication during the computation.
Also, secret-sharing based approaches may bring in new policy
challenges: once the data has been shared to multiple parties, an
organization completely loses the control of it, since these parties
can work together to restore the data; it is still unclear whether the
organization needs to sign an agreement with each of them, which
these parties may want to avoid for liability concerns [36], and if
so, what the agreement will look like. This concern is also applied
to the approaches that decompose a computation problem [44] into
small sub-problems and allocates them to multiple problem solvers,
under the assumption that these parties will not collude.

Computation split. The idea of splitting a computation among
multiple parties for security purposes has been explored under dif-
ferent scenarios. For example, Swift [21] uses a secure information-
flow analysis [39] to partition a web application into client and
server components. Other examples include distributing a genomic
computation to two or more parties [44, 48]. However, none of
these techniques are designed for data-intensive computations, the
focus of our research.

7. DISCUSSION
Sedic is designed to work on the data whose sensitive records

are known to its owner and can therefore be marked out. This is
true in most real-life situations: for example, documents in orga-
nizations’ file systems oftentimes are already labeled by their ac-
cess privileges. On the other hand, there are situations when the
owner herself has no idea about which part of the data is sensitive.
A prominent example here is mapping of human DNA sequences,
which is also known as read mapping [45]. The task is to align a
short human DNA sequence to a long reference genome, so as to
identify the genetic location of the sequence. The challenge here
is that before the alignment, we have no idea where the sequence
belongs, no to mention whether it carries sensitive information. In
this case, we have to come up with a specific solution to such a
problem, by carefully considering its special features.

Our approach is built upon Hadoop, which does not support
iterative MapReduce [23]. To execute a task that needs to per-
form multiple rounds of map-reduce operations, we have to break

it down into multiple Hadoop jobs. Also, Sedic requires an addi-
tional step to label the output of one job so that its follow-up job
can be split between the public and the private clouds. In the future
research, we plan to move our design to Twister [27] to support
iterative MapReduce, which is important to a set of data mining
analyses [24]. We could also embed a lightweight information-flow
tracking and declassification mechanisms into the execution frame-
work to enable automatic labeling of a job’s sensitive outputs.

The design of Sedic can also be improved. For example, our ex-
perimental study found that the data block involving public or sen-
sitive data alone can be more efficiently processed than those con-
taining both types of information. A straightforward solution seems
to be simply re-organizing the data, clustering sensitive records
from different blocks into new blocks. This approach, however,
could cause the outcomes of the computation to be incorrect, as
the keys generated by mappers are often related to the positions
of the blocks in the datasets. To solve this problem, we need to
attach such position information to individual records being clus-
tered. The question is, whether the extra workload to process such
information can lead to a significant performance degradation. This
will be investigated in the future research.

Our current code analysis and transformation tool can only han-
dle the type of the reducers as described in Section 4.1. This ap-
proach seems to be good enough, as the vast majority of the re-
ducers in real-world jobs are rather simple. However, it is still im-
portant to understand whether there are strong demands for more
complicated reduction operations, which may not be associative.
If such demands are indeed there, the analysis and transformation
techniques certainly need to be improved to accommodate the new
applications. This issue, again, is on our research agenda.

8. CONCLUSION
Commercial cloud services, such as the Amazon EC2, enable

their customers to process a large amount of data at a low cost. This
benefit, however, comes with privacy risks: the computing tasks of
organizations often involves sensitive data and therefore cannot be
directly delegated to the public cloud without proper protection.
Such protection cannot be expected from traditional secure out-
sourcing techniques, which often cannot handle the large amount
of data such computation involves. A more practical solution is to
split the computation so as to move the workload unrelated to sen-
sitive data to the commercial cloud, while keeping the rest within
an organization’s private cloud. This hybrid computing paradigm
needs to be supported by a new privacy-aware computation frame-
work. To this end, we present Sedic, the first secure data-intensive
computing system, in this paper. Our approach leverages the spe-
cial features of MapReduce to schedule individual map tasks over
a carefully planned data placement, in a way that the tasks within
the private cloud only work on sensitive data and those on the pub-
lic cloud only processes public data. As a result, all the workload
that does not involve private information can be offloaded to the
low-cost commercial cloud. To avoid an intensive data exchange
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between clouds, Sedic also automatically analyzes the reducer of a
legacy MapReduce job to extract a combiner for aggregating the
map outcomes on the public cloud. We implemented our tech-
niques on Hadoop and evaluated our prototype on FutureGrid, a
large-scale cloud test-bed. Our study shows that without jeopar-
dizing user privacy, Sedic effectively outsourced a large amount of
computing workload to the public cloud, fully preserved the scala-
bility of MapReduce and also conveniently accommodated legacy
computing jobs.
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