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ABSTRACT
A web application is a “two-part” program, with its components
deployed both in the browser and in the web server. The com-
munication between these two components inevitably leaks out the
program’s internal states to those eavesdropping on its web traf-
fic, simply through the side channel features of the communication
such as packet length and timing, even if the traffic is entirely en-
crypted. Our recent study shows that such side-channel leaks are
both fundamental and realistic: a set of popular web applications
are found to disclose highly sensitive user data such as one’s fam-
ily incomes, health profiles, investment secrets and more through
their side channels. Our study also shows that an significant im-
provement of the current web-application development practice is
necessary to mitigate this threat. To answer this urgent call, we
present in this paper a suite of new techniques for automatic detec-
tion and quantification of side-channel leaks in web applications.
Our approach, called Sidebuster, can automatically analyze an ap-
plication’s source code to detect its side channels and then perform
a rerun test to assess the amount of information disclosed through
such channels (quantified as the entropy loss). Sidebuster has been
designed to work on event-driven applications and can effectively
handle the AJAX GUI widgets used in most web applications. In
our research, we implemented a prototype of our technique for an-
alyzing GWT applications and evaluated it using complicated web
applications. Our study shows that Sidebuster can effectively iden-
tify the side-channel leaks in these applications and assess their
severity, with a small overhead.
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1. INTRODUCTION
A web application is “desktop software in the browser”, which

serves an end user through both its browser-side component and
web-server-side component. Such web-based computing, also known
as software-as-a-service (SaaS), has been increasingly used to re-
place desktop applications and is rapidly becoming mainstream.
This fundamental change of computing paradigm, however, brings
in new privacy threats, which, in some cases, have serious con-
sequences. Our recent study [13] shows that even with the state-
of-the-art cryptographic protection, the communication between a
web application’s client/server components is vulnerable to side-
channel attacks, in which a network eavesdropper can infer the
content of encrypted web traffic from its observable attributes such
as packet sizes and sequences. As an example, consider a situation
where one prepares her tax returns through an online tax applica-
tion; though the web traffic generated by the software is protected
by HTTPS, her adjusted gross income (AGI) can still be identified
from the disparate traffic patterns associated with different execu-
tion paths, which are related to her eligibility for various tax credits.

Side-channel leaks in web applications. Although side-channel
leaks in encrypted web traffic have long been known [38], the prob-
lem was found in our recent study to be inherent to web applica-
tions [13]: fundamentally, the client/server split of these applica-
tions exposes part of their internal information flows to a network
eavesdropper, who can therefore deduce their state transitions and
the user data that trigger these transitions. To make things worse,
such data are often of low entropy and thus easy to enumerate
and compare, thanks to the standard programming methods like
AJAX [22], which query a server in response to even a single let-
ter entered into a text box or an item selected from a list. Our
findings [13] highlight the pervasiveness of this problem in popu-
lar web applications, including Google/Yahoo/Bing search engines,
popular tax programs, online health information systems and mu-
tual fund investment websites. The information being leaked out
include one’s health record (medications/surgeries/disease condi-
tions), annual family incomes and investment secrets (mutual fund
selections and allocations), even when web traffic is protected by
HTTPS [7]. Also inferable are the query words corporate employ-
ees enter into their laptops, despite the protection of the up-to-date
WPA/WPA2 Wi-Fi encryptions [8]. The causes of the problem
were found to be the design features of these applications [13],
for example, the popular auto-suggestion widget triggered by ev-
ery keystroke and distinguishable execution paths determined by
income thresholds defined in tax laws.

Mitigation of this side channel problem turns out to be very chal-
lenging [13]. The information leaks in individual applications are
specific to their functionality, semantics and even domain knowl-



edge (e.g., tax laws and public financial data). On the other hand,
while general mitigation measures, such as packet padding, have
been well studied, applying these techniques blindly without con-
sidering a web application’s specific features often render them less
effective and exceedingly costly. For example, to suppress the in-
formation leaks from a famous tax application without detecting its
side-channel vulnerabilities, the communication overhead incurred
by packet padding was found to be prohibitive [13]. The same prob-
lem is likely to happen to other universal fixes, such as producing
constant-rate noise packets, simply because the web contents (e.g.,
images, videos, code, etc.) exchanged within a web application are
usually highly diverse, and their traffic attributes are often too dis-
parate to hide [13]. Fundamentally, given the complexity of state
transitions within web applications and the diversity of their inter-
nal information communicated through the network, a general and
effective defense can only be built upon in-depth analyses of indi-
vidual applications. This calls for changes to the way today’s web
applications are built and tested, to add the steps for detecting and
removing their side-channel vulnerabilities.

Our work. The first step of such a principled development method-
ology is to identify potential side-channel weaknesses from a web
application and determine their gravity. This requires automatic
program analysis technologies to be developed to support in-depth
analysis of increasingly complicated web applications. In our re-
search, we made the first step towards building such technologies.
We present in this paper Sidebuster, the first approach for auto-
matic detection and quantification of side-channel leaks in web ap-
plications. Based upon a set of “taint sources” the developer labels
as sensitive, Sidebuster conducts an information-flow analysis [44]
on source code to track the propagation of “tainted” data across
a program’s client/server components. Whenever the tainted data
are found to be transmitted to the network through an encrypted
channel, an information-leak evaluation is performed to understand
whether the side-channel information of the channel, such as packet
sizes and sequences, can be used to infer the content of the data.
Whenever a branch condition is found to be tainted and its branches
involve client/server communications, our tool evaluates whether
the attributes of such communications reveal the sensitive condi-
tion. We also propose new techniques for analyzing GUI widgets,
such as auto-suggestion lists, which are triggered by input events
(e.g., letters being entered) to synthesize different user inputs into
an integral variable (e.g., a query word) that the developer labels as
a “taint target”.

Actually, every web application gives away more or less infor-
mation through its side-channels. However, not all such leaks de-
serve serious attentions and mitigation efforts. For example, peo-
ple could live with disclosure of the lengths of their query words
and certain operations they performed, such as sending/receiving
emails. A question, therefore, becomes how to quantify the private
information that can be inferred from a side-channel vulnerability.
This question can be answered by a dynamic analysis, as the en-
crypted traffic of a web application is actually produced by its un-
derlying web platform (web servers/browsers), whose source code
is often beyond the access of the application developer. In this pa-
per, we also describe our design of a quantification technique that
systematically re-runs selected portions of a web application to un-
derstand how the domain of a taint source or target can be parti-
tioned by its side-channel leaks. We also report an evaluation study
that demonstrates the effectiveness of our techniques.
Contributions. Here we outline the contributions of this paper:
•Side channel detection. We propose the first technique for auto-
matic detection of side-channel leaks in web applications. Built
upon existing technologies such as taint analysis, our approach can

effectively evaluate the source code of those applications to identify
the program locations where sensitive user data affects encrypted
communication through data flows and/or control flows. We of-
fered novel solutions to the technical challenges associated with the
special features of web applications, particularly their extensive use
of AJAX GUI widgets.
•Side channel quantification. We present a novel technique for
quantifying the side-channel leaks in web applications. The new
technique can measure not only the information disclosed from a
single taint source but also that aggregated from multiple sources,
according to the dependency relations among these sources.
•Implementation and evaluation. We implemented our techniques
into a prototype for analyzing the web applications built upon Google
Web Toolkit (GWT) [18], and evaluated it over 6 real-world or syn-
thesized applications. Our study shows that Sidebuster worked ef-
fectively on these applications and incurred acceptable overheads.

Although Sidebuster made an important first step toward mitigat-
ing the side channel threats in web applications, its current design
is still preliminary. We cannot guarantee the completeness of our
side-channel analysis. For example, our rerun test cannot exhaus-
tively evaluate all possible combinations of sensitive inputs when
the input space is large. Actually, a complete side-channel analy-
sis is a daunting task, considering the complexity of the problem:
not only could subtle information leaks hide deep inside myriad
program structures, they could also be caused by the domain in-
formation specific to individual applications, such as the relations
between diseases and their treatments [13]. This leads us to be-
lieve that instead of closing a case, our work actually opens a new
episode. Continued research efforts are expected on this important
yet understudied direction.

Roadmap. The rest of the paper is organized as follows. Section 2
presents an overview of Sidebuster and the assumptions made in
our research. Section 3 and 4 elaborates our designs and imple-
mentations of side-channel detection/quantification techniques re-
spectively. Section 5 reports our experimental study of these tech-
niques. Section 6 discusses the limitations of our approach and
potential future research. Section 7 reviews related prior research
and Section 8 concludes the paper.

2. OVERVIEW
In this section, we first discuss the backgrounds of our research,

then explain how Sidebuster detects and quantifies side-channel
leaks in web applications through an example. The designs of
these techniques are elaborated in Section 3 and 4. We also imple-
mented a prototype for analyzing the web applications built upon
GWT [18] (GWT is a widely used web application platform that au-
tomatically converts a Java program into a JavaScript-based client
component and a Java Servlet on the server side).

2.1 Adversary Model and Research Problem
Similar to a traditional desktop application, a web application

has its control flows and data flows. The difference is that a subset
of such information flows go through the network and as a result,
are subject to network eavesdropping. In our research, we con-
sider an adversary who intends to infer the content of the encrypted
communication between the application’s client and server com-
ponents. The adversary does not have a direct observation of the
content but can only eavesdrop on encrypted web traffic to glean
the traffic features (indirectly related to the content), such as packet
lengths and sequences. We also assume that the adversary has a test
account on the target application, so that he/she can study the traffic
features of the test account before analyzing the traffic of the victim
user’s account. Our research aims at mitigating this side-channel
threat, which causes the leaks of sensitive user information out of



the encrypted channel connecting a web application’s client and
server components. As a first step, we focused on the leaks from
packet sizes and sequences, not inter-packet timings.

There are two necessary conditions for such side-channel leaks
to happen. First, sensitive data should “taint” network traffic: if
they always stay within the client or the server side without any
direct or indirect influence on the communication between these
components, they are impossible to infer by the eavesdropper. Sec-
ond, at least some privacy-critical properties of the data should be
identifiable from the encrypted channel: tainting the network traffic
by sensitive information does not necessarily imply that it can be
inferred; the side-channel leaks happen only when packet sizes, se-
quences and other features of encrypted information flows vary in
accordance with the content of the flows, and when such variations
are consistent across different users and at different times.

Our prior research discovered that side-channel leaks from data
flows exist in high-profile web applications. For example, consider
the auto-suggestion list used in a personal health application; ev-
ery keystroke it receives taints an AJAX request, which uses the
letter entered to acquire from the server a list of suggestions with
distinctive size, essentially enabling the eavesdropper to differen-
tiate different keystrokes. Side-channel leaks from control flows
are also realistic [13]. In a popular tax application we studied,
one’s family income affects the program’s branch conditions. For
example, depending on whether the income is below $115,000,
above $145,000, or between $115,000 and $145,000, the applica-
tion makes different decisions on the Student Loan Interest credit,
which moves its execution into different sub-modules to handle the
cases of “Full Credit”, “No Credit” and “Partial Credit”. The at-
tributes of the web traffic associated with these sub-modules are
distinguishable, which reveals the range of the user’s income.

2.2 An Example
Sidebuster analyzes a web application’s information flows to de-

tect and quantify side-channel leaks. Here we use an example to
explain how it works. Throughout the paper, we use “sensitive”
and “private” interchangeably, and “taint” to refer to the situation
that data has been directly or indirectly affected by the sensitive
information labeled by the developer.

Figure 1: A simple example
Figure 1 shows a simplified health information system. To use

the system, one first needs to select a user type, either “patient”
or “doctor”. The selection posts an AJAX request to the server
to download a program module to the browser. The functionality

of the patient module is totally different from that of the doctor
module. Thus the user type is essentially a branch condition that
decides the application’s execution paths.

The patient module consists of two list boxes as shown in the
figure. They jointly enable the user to select an illness name: she
is supposed to first choose the initial letter “A-Z” of the name us-
ing the first list box; this causes the browser to download list2,
which contains the names of all diseases with that initial; the user’s
selection on that list sends a specific disease name to the server,
which stores the item.
Side-channel detection. Our approach takes several steps to detect
possible side channels in the application, as illustrated in Figure 2.

Figure 2: The working flow

To perform an analysis, the developer of the web application
needs to do two things. First, she must label in the source code
the variables that carry private information, for example, value2
that hold the name of the selected illness, as required by other
information-flow analyzers such as JIF [36]. Second, the developer
is supposed to identify a set of user-action sequences to be tested.
This is because in a real-world web application, the number of pos-
sible action combinations, which correspond to different event se-
quences and orders for invoking different call-back functions, can
be very large. Our analyzer therefore requires a pre-defined action
specification as its input, which defines a set of possible user be-
haviors that developers want to analyze. In the example, one of the
action sequences can be “clicking the patient radio button”, “select
in the first list”, and then “select in the second list”. The objective
here is to determine whether these user actions leak the sensitive
data to the eavesdropper; if so, the analyzer moves on to quantify
such information leaks.

As stated earlier, one of the necessary conditions for the side-
channel leaks is that sensitive data should taint network traffic. To
identify such tainted network operations from web applications,
Sidebuster performs two types of taint analyses: forward and back-
ward. It is intuitive that once a piece of data is marked as sensitive,
we want to examine whether it will eventually affect the network
traffic. This is done through a standard forward taint analysis using
user-labeled variables as taint sources (Step 2 in Figure 2). For this
purpose, we implemented a taint analysis tool based on Soot [46],
a Java code optimization framework that supports both data and
control flow analyses. In the example, the variable value2 di-
rectly taints rpc2 within the call-back function of list2, which
is identified by the forward taint analysis.

A prominent property of web applications is the extensive use
of AJAX GUI widgets to assist the user in entering her input. In
the example, even before value2 has been delivered over the net-
work, its content has already been partially revealed by one’s se-
lection of an item on list1 and UserType. In order to tackle
this situation, we need to identify (in Step 1 of Figure 2) all widgets
related to the sensitive data, and include them as the taint sources
for Step 2. This is achieved through a backward taint analysis:
in Figure 1, Sidebuster treats value2 as a taint target and ana-
lyzes all other widget inputs that directly or indirectly affect its
content, which leads to the identification of UserType and API
call getSelected as additional taint sources, and rpc1 and



loadPatientPage as other tainted network operations, in ad-
dition to rpc2. Note that here we also use a widget API as a taint
source, as the widget’s internal implementation is often opaque to
application developers, who therefore can only label the API that
returns the user’s input. Also, the taint source UserType affects
value2 through a control flow: it determines the download of the
patient module, which leads to the generation of the private input
held by value2. The content of this source can also be disclosed
through the control flow, through the different traffic patterns when
different modules are being downloaded from the web server. Af-
ter the analysis, Sidebuster instruments all the tainted network op-
erations for quantifying the amount of the information that can be
inferred through these side channels. We elaborate the design and
implementation of this detection technique in Section 3.
Side-channel quantification. The outcomes of the taint analysis
could be inconclusive. We can only identify the program locations
where sensitive information could be leaked out of an encrypted
channel. Whether such leaks indeed happen and how serious they
are can only be determined by looking at the relations between
features of encrypted traffic and contents of taint sources. This is
achieved in our research through a quantification analysis. To per-
form this analysis, the developer needs to specify the ranges of the
values taint sources and targets can take. In the example, selection
of user types has two choices, getSelected for list1 returns a
letter in {‘A’,· · · , ‘Z’} and for list2 outputs 1 out of 260 different
diseases, with 10 under every initial letter, for example. Sidebuster
then automatically finds out the relations among those sources with
regards to different tainted network operations. For example, rpc1
is tainted by list1.getSelected and can only be reached
when the user type is “patient”, and rpc2 is tainted by UserType
and getSelected from both lists. To quantify their joint side-
channel leaks, Sidebuster strategically reruns the application from
different instrumented call sites to understand how distinctive traf-
fic patterns lead to the partitions of these value ranges. Specifically,
we first check whether selection of different user types can be in-
ferred from their traffic pattern. Then, Sidebuster analyzes rpc1
with different values from the range of list1.getSelected.
Since rpc2 is found to be tainted by the inputs from both list1
and list2, it is analyzed with the values allowed to be taken by
value2 under different initial letters returned from list1.

The outcomes of the analysis are combined and measured by
loss of entropy, i.e., the number of bits of information revealed from
these side channels. For example, if all 26 letters from list1.get
Selected are found to be identifiable and all 10 disease names
under each initial letter are broken into two equal-size sets by their
traffic features, Sidebuster concludes that the amount of side chan-
nel leaks is 5.7 bits for the application. The details of such a quan-
tification technique are presented in Section 4.

3. DETECTING SIDE-CHANNEL LEAKS
In this section, we elaborate how Sidebuster detects side chan-

nels within web applications. We first present the technique that
identifies such vulnerabilities from a program’s data and control
flows, and then focus on AJAX-driven user interfaces to expli-
cate how our approach addresses the special technical challenges
they bring in. These techniques were implemented in our research
to a prototype system for analyzing GWT-based web applications,
which is also reported here.

3.1 Analyzing Program Information Flows
As stated in Section 2, side-channel leaks become possible when

sensitive information is exchanged across the network, between a
web application’s client/server components. Therefore, the first
step to detect this problem is to check whether the sensitive data

are propagated to the network operations within the application and
locate such operations when they are present1. This was achieved
through an in-depth analysis of the program’s data flows and con-
trol flows, which is also known as a taint analysis. For this purpose,
Sidebuster includes an information-flow analyzer, which is built on
a Java compiler infrastructure called Soot [46]. Soot takes Java
source code or byte code as inputs and transforms them into Jimple
code, an immediate representation (IR), which Sidebuster uses to
perform a taint analysis. Our analysis extends the ForwardFlow-
Analysis framework provided by Soot and is integrated into Soot
as an additional transformation pass for taint analysis.

Before a taint analysis can be carried out, the web application
developer needs to mark some “taint sources”, the variables that
host sensitive information. Such taint sources are specified through
an XML file sensitivedata.xml in our prototype. Starting
from them, Sidebuster performs the analysis along both data flows
and control flows in a web application, as described below.
Leaks through data flow. A data-flow leak happens when the con-
tent of a taint source affects the data to be sent through the network
but does not change a web application’s execution path. For exam-
ple, in an auto-suggestion widget, different keystrokes to the input
box result in different traffic features, but the application’s control
flow remains the same regardless of what the user enters.

To detect such leaks, we use the existing taint analysis capability
of Soot. Here, the taint sources are the variables or API functions
accommodating sensitive data and the taint sinks are the parameters
of the APIs that trigger the communications between the client and
server components. The taint analysis starts with a UnitGraph, a
control flow graph (CFG) Soot creates for a Java program, with
each node on the graph being a Jimple statement. Jimple has fifteen
different types of statements but only eight of them appear in most
GWT web applications2. For each statement, we defined a set of
taint propagation rules, as presented in Table 1, which are used by
Sidebuster to track the propagation of tainted data3. Our analyzer is
also designed to support inter-procedural taint analysis: whenever
a function invocation statement is encountered, Sidebuster locates
the code of the function to build a new UnitGraph, and then uses
its input parameters to determine the tainted variables within the
function for the analysis on the new CFG.

Table 1: Taint propagation rules
Statment sample code Rules

IdentityStmt this := that Taint(this) = taint(that)
AssignStmt lhs = rhs1 OP rhs2 ; Taint(lhs) = Taint(rhs1)

OR Taint(rhs2)
InvokeStmt f(a); Taint(parameter0) =

Taint(a)
ReturnStmt a=f(b); Taint(a) = Taint(c) where

f(b) evaluates to c
ReturnVoidStmt f(c) {return;} (none)

IfStmt if (a) goto label; (none)
GotoStmt goto label (none)

SwitchStmt switch(a) {case 1 ...} (none)

Like other taint analysis tools [37, 17], Sidebuster needs to ad-
dress two standard technical hurdles, the presence of API functions
and aliases. Analysis of API functions is known to be complicated
and time consuming. Our design is meant to avoid getting into
these functions whenever possible. Specifically, we took advantage
of a command-line switch provided by Soot to exclude Java-library
1Note that tainting network operations does not necessarily indicate the existence of
side-channel leaks, as the features of encrypted traffic may not reflect the content of
sensitive user data. Whether such leaks indeed exist is actually determined by the
quantification analysis, which also assesses the seriousness of the problem.
2Other statements, for example, EnterMonitor and ExitMonitor, are used by Java VM
for some special purposes.
3Taint propagation from control flow to data flow is not supported in the prototype.



functions from our analysis. Instead, we built API models for some
of these functions, which specify how tainted input parameters af-
fect the outcomes of the calls. When such a model is not there
for a function, our approach pessimistically taints all of its out-
puts once any of its input is tainted. The alias analysis, which is
used to identify all the names for one tainted object, is made easy
by the points-to analysis framework SPARK [32] offered by Soot.
SPARK includes a method reachingObjects that returns the
set of aliases for a given object or a variable.

Whenever a taint sink is found by Sidebuster, its related func-
tions are instrumented for the follow-up quantification analysis.
The taint sinks here can be parameters for Java library functions
that cause network communications, for example, Socket, or user-
defined functions that implement RemoteService, the Java in-
terface implemented in GWT for any remote-procedure calls.
Leaks through control flow. Sensitive information can also be
leaked out through control flows. Typically, such control-flow leaks
happen when the application’s execution path depends on sensitive
user data, often a tainted branch condition, and when different paths
exhibit distinctive traffic attributes. As a result, part of the sensitive
data can be inferred by a network eavesdropper. For example, Fig-
ure 3 illustrates the part of the program logic within a tax preparing
application for determining a user’s eligibility for a tax credit: the
branch conditions in the example are tainted by income, a vari-
able containing the user’s family income, which is specified by the
developer as a taint source.

Figure 3: Program logic of credit claiming

Through the data-flow analysis, Sidebuster first finds out whether
tainted information is propagated to a conditional branching state-
ment. When this happens, a control-flow analysis ensues, which
evaluates whether the content of the condition can be inferred by
distinctive communication patterns associated with different branches
of the statement. Specifically, our approach first seeks the post
dominator of the condition, a program location at which all the
branches converge, as illustrated in Figure 3. The post dominator
is important because together with the conditional branching state-
ment, it determines the scope of the control flow affected by the
condition, which involves all the statements between these two pro-
gram locations (see Figure 3). Within the scope, different branches
are taken, leading to different program behaviors to be observed,
according to whether the condition is TRUE or FALSE. The post
dominator is located by Sidebuster using a Soot class MHGPost
DominatorsFinder. Then, we extract from these branches
their sequences of client-server interactions, which are typically in
the form of remote procedure calls (RPC). These sequences are
compared with each other to catch potential side-channel leaks:
if different outcomes of a tainted condition lead to different RPC
call sequences (in terms of the number of RPC calls on each se-
quence), Sidebuster reports a side channel vulnerability, because
an eavesdropper can figure out which branch is taken (and thus the
information about the branching condition) based on the observed

communication caused by these calls. Otherwise, the analysis is
inconclusive. In either case, we instrument all the call sites for a
follow-up quantification study. This analysis will be performed re-
cursively when tainted conditional branches are nested: that is, a
tainted branch appears on the branch of another tainted condition.

For the example in Figure 3, the first condition is tainted by
income. As a result, the analyzer examines all execution paths
within its scope to extract the following RPC sequences: [Rpc-
NoCredit] when income>$145000, [RpcGetInterest, RpcPartial-
Credit] when $115000 <income<$145000, and [RpcGetInterest,
RpcFullCredit] when in come< $115000, for no credit, partial
credit and full credit paths respectively. From these sequences,
Sidebuster concludes that the condition “income>$145000” is dis-
closed, as an eavesdropper knows that there is only one round of
communication (i.e., one RPC) when the condition is true, and two
rounds (two RPCs) otherwise. The condition “income>$11500”
is attached to two sequences with the identical number of calls, and
thus needs to be further analyzed during the quantification stage.
Cross client-server analysis. During our analysis, the taint tag can
go across the network, from an application’s client component to its
server component, and vice versa. The techniques for performing
this cross client/server analysis depend on the programming lan-
guages used to develop the application. GWT applications use Java
to implement both client and server components: the client-side
code is ultimately converted into JavaScript, and the server runs a
Java Serverlet.

In GWT, the standard client/server interactions are based upon
remote procedure calls4. RPC is asynchronous: that is, a program
makes such a call and then moves forwards without waiting until
the outcome of the call returns; the processing of the return values is
delegated to a call-back function registered during the call. When
analyzing an RPC, our approach propagates taint information to
the remote procedure and then tracks the information flow back
to the client-side call-back function. The names of the procedure
and the function can be easily extracted from the parameters of the
RPC. Specifically, in GWT, the name of a remote procedure will
be appended with a suffix string “Async” when it is invoked by
the client. For example, for a procedure “RPCall()” on the server,
the client needs to call it through the name “RPCallAsync()”. Our
analyzer removes the suffix from the parameter to an RPC before
searching for the procedure from the server-side code.

3.2 Analyzing AJAX-driven User Interactions
AJAX-driven user interfaces, often known as GUI widgets, are

widely used in web applications to help the user enter her input.
For example, major search engines (Google/Yahoo/Bing) all pro-
vide autosuggestion widgets, which allow one to key in a couple of
letters and then choose an item on a list to input the query word for
a search. Such widgets pose special challenges for the taint analy-
sis. First, even before a piece of sensitive input data are constructed
by user-widget interactions, their content can already be disclosed
by such interactions. In the above example, part of the query word
can already be inferred by the operations for retrieving suggestion
lists from the web server before the user finishes typing the whole
word. Therefore we face the problem that given the complexity
of widget-based user interactions, the relations between the user
actions and the input eventually built are often indirect and less ob-
vious to even the developers. For example, in Figure 1, though the
content of value2 is obviously generated by one’s selection on
list2, its connection with the operation on list1 is less clear,

4GWT also supports other client/server interaction methods, for example, through
URLs. However, RPC is the most commonly used approach and the one GWT rec-
ommends. For simplicity, our current implementation focuses on RPC but can be
extended to accommodate other methods.



and even less so is its dependence on UserType. Second, wid-
gets are often provided by the third party. Their source code can
be unavailable to the developer. Even when the code is accessible,
it is not practical to require the developer to understand the imple-
mentations and mark sensitive internal variables. We believe that
only requiring the developer to label the input generated by a wid-
get (e.g., query word) is much more realistic than manually identify
the microscopic interactions (e.g. entering letters) with potentially
multiple widgets related to that input. In our prototype, we devel-
oped a new technique that uses a taint target, i.e., the input formed
by a widget, to automatically label the user actions related to its
content, which is elaborated below.

Backward taint analysis. Our approach is to let the developer
mark a specific taint target and then perform a backward taint anal-
ysis to find out all the widgets and their related user actions re-
sponsible for the content of the target. Here, the user actions are
described by the API functions of these widgets that return the data
that the user inputs. For example, GWT offers the autosuggestion
functionality via a Java class called SuggestBox, which includes
an API event.getNativeKeyCode() to return the letter that
the user types. Such API functions will be tainted5 by the back-
ward analysis if the user actions are found to be related to the taint
target. This analysis offers a convenient avenue for the developer
to locate and evaluate all the widget interactions that can lead to
side-channel leaks.

A natural way to perform such a backward taint analysis is to
conduct a backward slicing [48] to identify all the program state-
ments that affect the taint target. This can be achieved using stan-
dard slicing technologies [25]. Alternatively, we can first assume
that every widget affects the taint target, and set all of its API func-
tions that return user inputs as hypothetical taint sources. A for-
ward taint analysis is performed on these sources to check whether
information flows from these sources to the target. In the prototype
of Sidebuster, we implemented the second approach.

User behavior models. An important issue in analyzing widgets
and other event-driven programs is to determine the path of the ex-
ecution triggered by user interactions. Typically, these programs
include a set of call-back functions that hook different user input
events, like keystrokes, mouse clicks and others. In response to
different combination of user actions, different sequences of call-
back function invocations happen, which leads to different execu-
tion paths a program follows and different outcomes of the taint
analysis. For example, consider an autosuggestion list: whenever a
user types a letter, the call-back function of the widget sends all the
letters in its text box to the server. The problem here is that with-
out knowing how the user enters letters, we have little idea how
many letters, each of them carrying a distinctive taint label, taint
the RPC of the function. Thus, analysis of such a program relies on
a pre-determined set of user-event sequences.

To use our analysis tool, the application developer is supposed
to provide a user behavior model, which specifies the user-event
sequences to be evaluated. Such a model is included in an XML
file. Following is an example:
<UserBehavior>
<Widget classes = "com.test.client"

method = "onModuleLoad"
name = "radio1"

action ="onSelect"/>
<Widget classes = "com.test.client"

method = "onModuleLoad"
name = "list1"

5For a tainted function, each time it is called, the result it returns carries a different
taint label.

action ="onChange"/>
<Widget classes = "com.test.client"

method = "onModuleLoad"
name = "list2"

action ="onChange"/>
</UserBehavior>

The behavior model defines the event sequences to be analyzed.
Each sequence consists of a set of nodes, with each of them contain-
ing the information of the widget and its specific event. In the ex-
ample, classes, method and name are used to jointly identify a
widget within an application, and action indicates the user event:
specifically, onChange is an event that happens with the update of
the user’s select on the list. A challenge here is to find out the call-
back functions of individual events, which are registered during the
application’s runtime. Sidebuster locates such functions from event
registration methods such as addOnChangeHandler() during
a static taint analysis.

Hidden control flows. During an interaction with a web appli-
cation, a user’s behavior, e.g., selection of an item and click on a
certain link, often carries sensitive information. Though in many
cases, such information can be described by certain program ob-
jects like a tainted variable, there are situations where no explicit
taint source or target exists to accommodate the information. For
example, consider a user who is expected to push one of two but-
tons, each triggering a different call-back function. Her action here,
i.e., choice of the buttons, is confidential. However, no single vari-
able and function inside the program actually hosts this piece of
sensitive information: it is just described by different execution
paths being triggered.

We found in our research that such hidden control flows exist
in real-world web applications. To detect their side-channel leaks,
Sidebuster allows the developer to group a set of user events and
mark them with the same taint label. When such grouped events are
specified, our approach treats their call-back functions as different
branches of a tainted path condition, and performs a control-flow
taint analysis on them as described in Section 3.1.

4. QUANTIFYING SIDE-CHANNEL LEAKS
After side channel vulnerabilities have been identified from web

applications, we need to understand how serious the problem is and
whether it deserves mitigation efforts. To this end, we also propose
a suite of techniques for quantifying the information leaked from
these channels. Our techniques are based upon a black-box test
guided by the information about the side channels detected by the
taint analysis and the relations among different taint sources. More
specifically, our approach is to rerun an application to collect the
attributes of the traffic associated with different contents of taint
sources. Then, we evaluate to what extent such attributes help an
eavesdropper partition the value ranges of those sources. These two
steps are elaborated in the rest of the section.

4.1 Rerun Testing
The idea of rerun testing is to continuously rerun portions of a

web application’s code involving side channels, as reported by the
detection stage, to understand how the traffic attributes generated
thereby classify different values taint sources can take. In our re-
search, we implemented such a testing tool using HtmlUnit [3],
an open-source web testing tool. The web traffic created during a
test is recorded by Jpcap [5], a Java library for packet capture.

Rerun guidance. A rerun test is guided by the vulnerability in-
formation acquired from the taint analysis. Most importantly, each
test run should start from the program location where the content
of the related taint source can be legitimately adjusted and always



follows the execution path that leads to the side channel under the
test. This can be achieved through symbolic execution [29], a static
analysis that uses symbols, instead of real values, as inputs to a pro-
gram to analyze its execution. Performing symbolic execution on
the taint-propagation path that leads to a side channel, we can get
its path condition and can therefore evaluate the values of the taint
source that satisfies the condition. Alternatively, we can take ad-
vantage of the test cases that the developer uses for evaluating the
functionality of the application. Since side channels are often at-
tached to important client/server interactions, the test cases leading
an execution to such locations often exist and can thus be reused.

For GUI widgets, the rerun guidance also needs to include other
information. Specifically, Sidebuster has a guidance file “rerun.xml”
that is generated in the detection phase and contains the following
information for a widget: (1) name for locating it on a web page,
(2) type for extracting legitimate values for testing, which we ex-
plain later, and (3) user actions for triggering the event se-
quences to be evaluated, which come from the user behavior model.

The rerun test performed on widgets also utilizes another piece
of guidance information – the relations among tainted user inputs6.
Knowledge of such relations is important because it can signifi-
cantly improve the performance of a rerun test. For example, con-
sider two AJAX lists with 10 elements each; if the user’s selections
on these lists are independent from each other, we can evaluate
them separately, which reruns the widget 20 times; on the other
hand, if the selections are correlated, then we have to perform the
test for 100 times. Such relations are automatically discovered by
Sidebuster during the taint analysis: if a network operation is found
to be tainted by two sources, these sources are considered to be
connected. For example, the letters typed into SuggestBox are
related, as they are pieced together to retrieve a suggestion list from
the server. Using the relations, Sidebuster maintains a taint-source
vector V = ⟨T1, · · · , Tn⟩, where Ti∈{1,··· ,n} is a set of correlated
sources, and the sources in two different sets are independent from
each other. The space of V can be partitioned by the side-channel
leaks from individual taint sources. The objective of the quantifi-
cation analysis is to determine the total amount of information dis-
closed from such a partition.

Other test preparations. Before testing, another important issue
we need to address is to determine the range of the values that each
taint source can take. Some of such ranges are given by the de-
veloper, while others can be automatically identified. Particularly,
those associated with widget elements, such as check boxes and
list boxes, can be analyzed to find out their legitimate contents, ei-
ther directly from their properties (e.g., check boxes), or from their
hosting HTML pages (e.g., List boxes). For the elements like text
box and variables, Sidebuster lets the developer specify their value
ranges. For example, one has to indicate that the user’s input letter
(i.e., return value of event.getNativeKeyCode()) will be
one of the English alphabets.

As mentioned before, the client-side component of a GWT ap-
plication will be converted into JavaScript code. The problem here
is that the name of the widget to be tested changes during this trans-
formation. This can typically be resolved by looking at the combi-
nation of a widget’s type and container information. Another ap-
proach is to instrument the Java code of the application with GWT
API getElement().setId(), which forcefully sets the ID of
a widget to a pre-determined one.

Rerun. During a rerun test, Sidebuster executes a web application
repeatedly with different taint-source vector V . The web traffic

6Tainted user inputs refer to those whose related widget API functions are tainted.
For example, the letter one enters into a SuggestBox is tainted if the API
event.getNativeKeyCode() is tainted by the backward taint analysis.

generated during such executions is recorded by Jpcap, which is
invoked by our instrumentations. The user inputs during the test
are automatically generated by our analyzer. After one test, the
application is rolled back to where individual taint sources in V
are specified, using HtmlUnit’s checkpoint/rollback mechanism.
These sources are then updated for the next round.

Since taint-source elements in V are independent from each other,
we can evaluate them one by one. In the case that an element con-
tains only one taint source, we try to enumerate all its legitimate
values and record the traffic attributes corresponding to these val-
ues if possible. If the source’s value range is continuous or too
large, we allow the options to either randomly sample some values
from the range, or partition it into segments to randomly pick up a
value from each of them.

For Ti ∈ V that includes multiple taint sources, a re-run test
needs to be more strategic. These sources are typically the user’s in-
puts to a set of related widgets. It is conceivable that all their value
combinations need to be checked. This, however, turns out to be
unnecessary in practice. For example, consider an auto-suggestion
widget with an event sequence in which five letters are consecu-
tively entered. Though the possible combinations of these letters
can be as large as 265, only a few thousand of them actually bring in
non-empty suggestion lists. Sidebuster has been designed in a way
that it organizes all sources in Ti into a tree: if a source receives in-
puts or is defined earlier than another source, the former becomes
the ancestor node of the latter on the tree. In the autosuggestion
example, we put the 26 possible letters for the first keystroke on
the first layer, just beneath the root; each letter parents other 26 let-
ters for the second keystroke and so on. During the test, Sidebuster
performs a breadth-first traversal of the tree: it first evaluates all
the inputs on the first level and then goes down to the second level
and so on. Important to this process is that once the values on a
branch until a certain level are found to be no longer valid (e.g., no
suggestion list for a certain sequence with three letters), Sidebuster
stops testing all the nodes on the next level attached to that branch.
In the end, all the leaves of the tree describes the space of Ti.

Discussion. A challenge for the rerun test is possible large number
of test cases for each Ti, which makes an exhaustive evaluation
unrealistic. As mentioned before, we can always control the scale
of the test through random sampling. On the other hand, our prior
research [13] shows that a prominent property of web applications
is low entropy inputs: even a single keystroke or a mouse click
could trigger AJAX interactions and produce web traffic. This is a
fundamental cause of the side channel problem. It also makes the
size of the test-case space manageable in many practical situations.

Another problem is that the attributes of the traffic associated
with the same user input can be different between users. This hap-
pens when the traffic also carries some user-specific information,
such as cookies, as discovered in our prior research. To find out
what exactly the adversary can learn from encrypted web traffic,
Sidebuster also performs a cross-user test to extract invariants from
the traffic attributes related to a specific input. For example, if we
find that among all the packets generated when a list item is se-
lected, only one has an invariable size from user to user, we can
pick up that packet as the signature for the selection. Using traffic
signatures to determine confidential user data offers a more realistic
assessment of the side-channel leaks.

4.2 Quantification
After the rerun test, Sidebuster quantifies the amount of the in-

formation revealed from detected side channels. Denote the space
of V by Ω. What we intend to measure here is the loss of entropy
after the space has been partitioned by the side-channel information
into disjoint sets so that an eavesdropper can tell the sensitive user



data in different sets apart. In our research, we adopted conditional
entropy as the measurement, a concept that has also been used in
prior research on quantitative information flow analysis [35].

Let ∆ be a set of traffic attributes, which in our research de-
scribes a sequence of directional packet lengths [13]: for example,
(64 ⇒,⇐ 1024) represents a 64-byte request from browser and
a 1024-byte response from web server. Before they are observed
by the adversary, the entropy of sensitive user data is H(Ω) =
log2(|Ω|). After that, it becomes H(Ω|∆) =

∑
p(∆i)H(Ω|∆i),

where p(∆i) is the probability for the attributes ∆i to appear, and
H(Ω|∆i) is the conditional entropy given the observation of ∆i.
Since every element on a vector V is independent from others, we
can calculate the conditional entropy H(Ω|∆) by adding the en-
tropies of individual elements H(Ti|∆) together. This property
allows us to focus on the entropy of each element. In the following,
we show how to quantify the side-channel leaks from the element,
when it contains a single taint source or multiple sources.

Quantifying the leaks from a single taint source. We first con-
sider simple cases in which information leaks from a single source
through data flows or control flows. Here we overload the symbol
a little bit, using T to represent the set of all possible values the
source can take. To calculate H(T |∆), we first group these val-
ues into disjoint sets according to their distinctive traffic attributes
(e.g., different packet sizes), as observed in the rerun test, and then
compute the conditional entropy for each attribute (e.g., each size),
that is, the entropy of its set. These entropies, weighted by the
probabilities of taking the values in individual sets, are summed
up to the conditional entropy of T with regards to those attributes.
For example, Figure 4 shows a taint variable with four distinctive
values T ={a, b, c, d} and three different traffic attributes (i.e,
three different packet sizes/sequences). These attributes, denoted
by ∆1, ∆2 and ∆3, classifies T into the partition: { ∆1 → {a, c},
∆2 → {b}, ∆3 → {d}}. Assuming that each value has the same
chance to be taken by the variable7, we have p(∆1) = 0.5 and
p(∆2) = p(∆3) = 0.25. H(T |∆1) = H({a, c}|∆1) = 1 bit,
H(T |∆2) = H({b}|∆2) = 0 bit, H(T |∆3) = H({d}|∆3) = 0
bit, Therefore, the conditional entropy of T becomes 0.5 bits. This
indicates that with the observation of the side-channel information
(i.e., the attributes), the entropy of the variable goes down from 2
bits to merely 0.5 bit.

Figure 4: Quantify the information leaks through data flow

The second example in Figure 5 shows the information leaks
from control flows. Again, a tainted variable has a value range
{a, b, c, d}. A branch condition tainted by the variable becomes
TRUE, when the variable takes a or c, and FALSE otherwise. The
TRUE branch is characterized by two traffic attributes ∆1 and ∆2,
while the FALSE branch has only one attribute ∆1. Given a uni-
form distribution over the range, we have p(∆1∆2) = 0.5 and
p(∆1) = 0.5, and H(T |∆1∆2) = H({a, c}) = 1, H(T |∆1) =
H({b, d}) = 1. Thus, we conclude that the observation of these
attributes reduces the entropy of the variable from 2 bits to 1 bit.

Quantifying the leaks from multiple sources. Information leaks

7We also used this uniform distribution assumption in our evaluation. The developer
can adopt another distribution if it is known.

Figure 5: Quantify the information leaks through control flow

from multiple related taint sources need to be quantified over the
tree for the rerun test. As described before, the leaves of the tree
represent all the legitimate value combinations of those sources.
Here, we again use T to represent the set of these combinations.
The amount of information disclosed from this set can be quantified
in the same way as the case of a single taint source. Figure 6 shows
how to quantify the information leak for the example introduced in
Figure 1.

This example has two user inputs: T1 is the set of the initial let-
ters of the disease names on list1 and T2 is the set of the item
indices of the disease names on list2. Suppose all 26 letters
from T1 generate different traffic attributes ∆A to ∆Z , and all 10
disease names under each initial letter have only two identifiable
traffic attributes: the first five items generates ∆1 and the others
produces ∆2. Since these two sources are correlated, their traffic
attributes divide the leaves of the tree illustrated in Figure 6. As-
suming that each disease name is selected with an equal chance,
we have: p(∆A∆1) = p(∆A∆2) = ... = p(∆Z∆2) = 1/52
H(T |∆A∆1) = H(T |∆A∆2) = ... = H(T |∆Z∆2) = log2(5).
As a result, the total entropy is reduced from 8.02 to 2.32 bits.

Figure 6: A quantification example with multiple correlated
user inputs

5. EVALUATION
5.1 Experiment Settings

To evaluate Sidebuster, we ran our prototype on 6 applications,
whose descriptions are presented in Table 2, to study the situa-
tion when an eavesdropping adversary tries to use packet sizes and
sequences of the HTTPS traffic produced by these applications’
client/server interactions to infer their user data. Among the ap-
plications, the first three were synthesized to simulate the func-
tionalities of the high-profile commercial applications studied in
our prior research [13], including a leading health information sys-
tem, one of the most popular tax preparation applications and pop-
ular search engines such as Google/Yahoo/Bing. We do not name
some of those applications here, per requests from related orga-
nizations. In absence of their source code, we built part of their
user-interaction modules over GWT, using the data collected from
the real applications. Specifically, the first program, which sup-
ports a query suggestion widget adopted by most search engines,
contains the suggestion data we dumped from Bing. The second
one has a user interface that includes the disease names extracted
from the health information system. The third application involves
the program logic of tax software. The other three web applications
are open-source, which we downloaded from the Internet. We used



both synthesized and real applications in our research due to lim-
ited access to the source code of real-world applications: though
GWT has been widely used to develop web applications, most of
them are actually closed source.

Each of these applications has distinctive side channels. The
query suggestion program discloses the query words a user enters
through the letters she types. The health profile program includes
multiple widgets whose interactions leak information. The tax pro-
gram has side-channels in its control flows. The three real applica-
tions expose user behaviors and data through the traffic generated
by button clicks or link selections.

The experiments on static analysis were conducted on a ThinkPad
X61 laptop, with 3GB memory and a Core 2 Duo 2.1GHz CPU.
The quantification analysis utilized a Apache Tomcat 6.0 web server
running on a RedHat Enterprise Linux 5.0 machine and a FireFox
3.6 browser on a Windows Vista client. The server is equipped with
a Core 2 2.66GHz CPU and 4GB memory. The client has a AMD
Turion X2 Dual-Core 2.00GHz CPU and 3GB memory.

5.2 Detection
To detect side channels, we first labeled variables in individual

applications. For each application, our prototype first performed
a backward taint analysis to identify the user inputs related to the
contents of the variables and then a forward analysis to find out
all the tainted network operations. We also built a user-behavior
model for each application, as an input to our static taint analysis.
The experiment results are summarized in Table 3.
Data-flow side channels. Sidebuster reported that Application 1,
2, 4 and 5 had data-flow side channels: the parameters of some
of their remote procedure calls were tainted in our analysis. More
specifically, the SuggestBox widget was found to send individ-
ual input letters to retrieve data from a web server. In a similar way,
GWT Advanced Table used filterText, which was specified by
our user model to contain two letters, to gather the data including
the string from the server side. DynaTable had a tainted variable
startrow that indicated to the server the course page a student
was looking at. The variable propagated its taint to the RPC for
such interactions. The leaks in the health profile came from the
user’s clicks on the first letters of certain disease names and the
selections of the names afterwards. Such leaks, like the problem
in SuggestBox, were identified through the backward taint anal-
ysis: in this example, the tainted variable hosting disease names
was found to be related to the RPC sendNameToServer that
delivered the initial letters and the selected items, and updated the
contents of the list of disease names.
Control-flow side channels. Our prototype also detected the control-
flow side channels in the Tax credits and ETE2009 Demo applica-
tions. The tainted variable in the Tax program, agi, was found in
the branch conditions that led to the execution paths with differ-
ent numbers of RPC functions. As a result, the branch taken by
the program and relatd agi values can be easily determined by an
eavesdropper. ETE2009 Demo gives an example of hidden control
flows: it allows the users to click on different links, each leading
to a different call-back function. Sidebuster discovered that invoca-
tions of these functions produced different number of RPC requests
and therefore revealed the user’s action.

We manually checked the problems reported by our prototype,
and found that the detection did not cause any false positives. Also,
all the known side-channel problems in Application 1, 2 and 3, as
described in [13], were detected.

5.3 Quantification
We further measured the information leaks from those applica-

tions, using our quantification tool. All the user inputs in our exper-

iments were automatically produced by HtmlUnit, in accordance
with the user models. During the experiment, Sidebuster recorded
the sizes and the sequences of the packets observed from the instru-
mented RPC call sites. Such information was used to calculate the
conditional entropies of taint sources.
Leaks from individual applications. Whenever a letter was typed
into auto-suggestion application, its SuggestBox automatically
passed the query to Bing to acquire a suggestion list. This allowed
us to estimate the information leaks through the same functionality
used in real-world search engines. In our research, we tested all the
combinations with two letters. The entropy of the query word be-
fore the test was log2(26

2) = 9.4 bits. After the test, 0 bit was left.
This indicates that the adversary can unambiguously determine the
query words from packet sizes and sequences. The health pro-
file program utilized the data collected from a leading online health
information application, which was also studied in our prior re-
search [13]. There are totally 2508 disease conditions included in
the data, which amounts to 11.29 bits of information. After the re-
run test, we found that the side-channel leaks reduced the entropy
to merely 2.38 bits. The tax program was designed to test one’s
eligibility for various tax credits. It included thirty different levels
of the adjusted gross income (AGI) from 0 to $150,000 with a step
of $5,000. The entropy here is 4.91 bits. After the test, it dropped
to 1.3 bits.

The three real-world applications had their own data-sets. Al-
though such data are not extremely confidential, the way in which
they are exchanged in the applications bears a strong resemblance
to those involving high sensitive user data, as we observed in our
prior research [13]. Therefore, evaluation over these applications
still provides useful information about the efficacy of our tech-
niques. Specifically, DynaTable came with 100 course entries, or-
ganized into pages with each page containing 15 courses. Our anal-
ysis reduced the entropy of the pages being viewed to 0, which
amounts to reducing the entropy of the courses from log2(100)
bits to log2(15) bits. The GWT advanced table leaked information
when it sends the user’s input letters to the server. Different from
SuggestBox, the application did not generate traffic for every let-
ter. Nevertheless, its distinctive traffic attributes could still enable a
side-channel attack: for example, the adversary could build a “dic-
tionary” to record the mappings from traffic attributes to the con-
tent of input strings; when the number of legitimate strings (those
with non-empty responses from the server) is small, such an attack
becomes realistic. In our experiment, we found that such a traffic
analysis could reduce the entropy of a two-letter string from 9.4
bits to 0 bits. The control-flow leaks from ETE2009 Demo were
also found to be serious. With 7 different options, the entropy of
the user’s selection was 2.8 bits. Our analysis shows that almost all
such information was given away through the side channel: only
0.68 bits were left after our test.

5.4 Performance
We also measured the performance of Sidebuster, i.e., the time

spent on detection and quantification of side-channel leaks, as re-
ported in Table 3. This study shows that the overheads of Side-
buster are moderate: the taint analysis on source code was typically
accomplished in two to four seconds; time spent on rerun differed
from case to case, depending on the data used in an application.
For all applications tested in our study, both analysis steps were
completed in about 30 minutes.

6. DISCUSSION
The prototype we have implemented only works on GWT-based

applications. We chose GWT because it is one of the most widely
used platforms for developing web applications, and because it is



Table 2: Experiment applications
App name Description

1 Suggestion Box It simulates the functionality of auto-suggestion widgets widely used in web applications such as web search engine.
Whenever the user types a character, it will pop up a list of input entries the user can choose from. The testing data used
in the program came from bing.com.

2 Health information
system

It simulates the functionality of a real web application that manages users’ health profiles. It has two inputs: the first
one asks one to choose an initial letter of her/his health condition, and the second one lets user select from a list of
conditions with that initial letter. The data also came from a real online health information application.

3 Tax credits It describes the program logic of Tax preparing web applications. The program first asks user to choose her/his AGI
(which was discretized with a $5,000 interval). Then it tries to determine whether the user is eligible for certain tax
credits like student loan interest credit.

4 DynaTable This is an application that comes with GWT SDK [18], which shows a school schedule for professors and students.
Such information is organized into pages and the user can click on buttons to walk through these pages.

5 GWT advanced table The application came from Google Code [2]. It demonstrates the usage of GWT Advanced Table, a complex widget
that illustrates the contents of tables retrieved from a database. The application has a filter function that only shows the
records containing a specific string.

6 ETE2009 Demo This is an open-source program [4] with multiple links that trigger different call-back functions.

Table 3: Effectiveness and Performance
App Types of Side-Channel Leaks Detected Entropy before Entropy after Detection Rerun

test (bits) test (bits) Time (seconds) Time (minutes)
1 Data flow leak: user input letters taint one RPC param-

eter.
Yes 9.4 0 2 12

2 Data flow leak: disease names taint one RPC parameter. Yes 11.29 2.38 3 33
3 Control flow leak: user incomes lead to different exe-

cution paths.
Yes 4.91 1.3 2 <1

4 Data flow leak: the start row of each page taints one
RPC parameter.

Yes 2.58 0 4 <1

5 Data flow leak: the data filter string taints one RPC pa-
rameter.

Yes 9.4 0 3 12

6 Leak through a hidden control flow: different user ac-
tions trigger differnt RPC sequences.

Yes 2.8 0.68 4 <1

based upon Java, whose analysis tools (e.g., soot, SPARK, Jpcap)
are publicly available. GWT is not the only dominant web appli-
cation platform. For example, ASP.Net and PHP are also widely
used in the industry. However, we believe that it is completely
possible to build development tools for these platforms based upon
the fundamental idea of our approach, i.e., information-flow based
side-channel detection and quantification analysis.

Our current design does not track the taint propagation from the
control flow to the data flow because this would otherwise result in
too many variables being tainted. This is a well-known hurdle in
automatic program analysis, and techniques exist to mitigate such
a “taint-explosion” problem [41].

During the rerun testing, we assume that user actions do not
cause server-side writes (e.g., modifications or deletions in the back-
end database). This is because our current implementation only
rolls back the states in the browser. If some user actions indeed
cause server-side changes, the rerun testing will require preserv-
ing the server-side states. Note that for many web applications,
their server states are maintained in the back-end databases. Most
database systems have checkpoints and roll-back functionalities,
which can be incorporated into our rerun tool to handle most server-
side modifications.

We rely on the developers to specify the user action model, which
could increase their workloads and also result in inaccurate models.
As discussed before, such a model is important to the side-channel
analysis because web applications are event-driven: the sequence
of events often determines the path of execution, which can be hard
to predict without understanding the user’s behavior. It should be
noted that the behavior model may not be derived from the source
code - for the same piece of source code, the user often has many
possible action sequences. A possible avenue to facilitate automatic
generation of more accurate model can be analyzing the user’s in-

teractions with a similar application to identify common actions,
which will be studied in our follow-up research.

Like other software testing, completeness of a side-channel anal-
ysis is such a lofty goal that it is often unachievable in practice. The
problem is further complicated by the fact that many side-channel
leaks are actually related to the domain knowledge of a web appli-
cation [13]. Further research is needed to incorporate such infor-
mation into a detection mechanism.

7. RELATED WORK
Side-channel leaks. Side-channel leaks have long been known:
some documented attacks even date back to World War I [21].
More recent studies on side-channels of encrypted communications
have been conducted in various contexts, including secure shell [42,
50], voice over IP [49], multimedia data streaming [40], and web
traffic [14]. Specifically about the web, it is well recognized that
the anonymity of web browsing is very difficult to ensure (despite
the use of anonymity channels such as Tor [39], Mix [24]) because
webpages can often be fingerprinted by their side-channel charac-
teristics [45, 12, 19]. Also, as we summarized in the introduction
section, our recent work [13] demonstrated that side-channel leaks
become a very serious problem for web applications. This work
directly motivates our research on Sidebuster.

Web application vulnerabilities and testing tools. The study of
web application vulnerabilities is a very broad area, in which well-
known vulnerabilities include cross site scripting [1], SQL injec-
tion [6], and others. The vulnerabilities discussed in this paper are
in the category of information leakage. To detect the vulnerabilities
in a web application, a number of testing tools have been proposed.
These tools, depending on whether the source code access is re-
quired, can be white-box or black-box. Our technique falls into



the category of white-box testing, which typically uses information
flow analysis and model checking techniques to uncover web vul-
nerabilities. For example, Lam et al. [31] defines a language with
which users can declare information flow patterns, and detect the
SQL injection and cross site scripting vulnerabilities whose pat-
terns deviate from the specified ones. Huang et al. [26] proposes
to first statically check whether a code is vulnerable to injection at-
tacks, and insert a runtime guard to secure the program without user
intervention. There are also various other papers of this kind [47,
28, 27]. Our approach, though also using information flow analy-
sis, is distinct from the previous work that detects information leaks
by simply looking at whether tainted data is propagated to the net-
work. What we care about here is more complicated: for example,
whether different contents of the tainted data will trigger different
traffic patterns observable to an eavesdropper. The new challenge
asks for significant additions to the existing analysis techniques, in-
cluding the RPC sequence analysis, the rerun testing and the quan-
tification of information leaks.

Quantitative information-flow security. Quantitative information-
flow analysis was first proposed by Denning [20] in 1982, in which
the data in a program are associated with a hierarchy of privilege
levels, and are protected according to the non-interference prin-
ciple [23] (low-security variables should not be affected by high-
security data). A recent survey on this line of research is given
by Mu [34]. Some of the prior approaches [10, 15, 33] statically
analyze the source code of a program to measure the information
disclosed from its outputs. Different from the programs studied
in those approaches, web applications depends on their underly-
ing web platform (web server and browser) to run. Without direct
access to the source code of the platform, we have to resort to a
combination of static and dynamic analysis, using rerun tests to
quantify information leaks from observable traffic features, partic-
ularly packet lengths and sequences.

Effort has also been made to estimate the quantity of the infor-
mation leaked from sensitive data given the relations between the
content of the data and observations (e.g., timings) [9, 30, 43, 16].
For example, Clarkson et al. [16] proposes a model to measure the
accuracy of an adversary’s beliefs that are updated by his observa-
tions of a program’s execution; Boris et al. [30] quantifies the infor-
mation leaks from the secret keys of cryptographic systems through
combining attack strategies with information-theoretic metrics; Stan-
daert et al. [43] proposes a framework for analyzing whether a
cryptographic implementation is secure by quantifying the effect
of practically relevant leakage functions.

At a high level, our approach follows the similar idea, that is,
quantifying information leaks based upon the relations between
sensitive data and the adversary’s observations. The conditional
entropy metric we adopted is also standard [9]. However, prior
approaches cannot be directly applied to determine such relations
from real-world web applications: a web application often involves
complicated, stateful user interactions and generates web traffic in-
directly through its underlying platform, making establishment of
the data-observation relations nontrivial. Sidebuster has been de-
signed to deal with state transitions and user interactions within
these applications, based upon a suite of new techniques including
guided re-runs, use of user behavior models and analysis of ag-
gregate information leaks from multiple user inputs. Also missed
in the prior research is a quantification study of the information
disclosed by packet lengths and sequences, which our approach fo-
cuses on.

Recently Borders and Prakash [11] proposed a method to quan-
tify leaks in network traffic. The target scenario is not the side-
channel leaks, but a malicious sender smuggling stolen data in the
network traffic trying to avoid detection. They proposed an ap-

proach to quantify the bandwidth available to the malicious sender.
What we target in this paper is quantification of entropy losses of
sensitive data in benign applications to network eavesdroppers.

8. CONCLUSION
With the extensive use of web applications, side-channel infor-

mation leaks, which are inherent to those applications, are becom-
ing a non-negligible threat to private user data. Recent study shows
that people’s health information, family incomes, investment se-
crets and other sensitive data are being leaked by a set of high-
profile, top-of-the-line web applications through their side chan-
nels [13]. Mitigation of such a threat is found to be highly non-
trivial, requiring new methodologies to be developed to find the
side-channel vulnerabilities in web applications and fix them. In
response to this urgent call, we propose in this paper Sidebuster,
the first automatic tool for detecting and quantifying side-channel
leaks in web application development. Our techniques first stat-
ically analyze a web application’s information flows to detect its
client/server interactions tainted by sensitive user data, and then
perform a dynamic analysis on related network operations to de-
termine the amount of information being disclosed. Sidebuster can
effectively handle special features of web applications, particularly
use of AJAX GUI widgets. Our implementation of the approach,
which works on GWT, has been demonstrated to be effective at de-
termining the existence and seriousness of the side-channel prob-
lems in real-world applications.
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