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Abstract
The specifications of an application’s security configuration are
crucial for understanding its security policies, which can be very
helpful in security-related contexts such as misconfiguration de-
tection. Such specifications, however, are often ill-documented,
or even close because of the increasing use of graphic user inter-
faces to set program options. In this paper, we propose ConfigRE,
a new technique for automatic reverse engineering of an applica-
tion’s access-control configurations. Our approach first partitions
a configuration input into fields, and then identifies the semantic
relations among these fields and the roles they play in enforcing an
access control policy. Based upon such knowledge, ConfigRE au-
tomatically generates a specification language to describe the syn-
tactic relations of these fields. The language can be converted into a
scanner using standard parser generators for scanning configuration
files and discovering the security policies specified in an applica-
tion. We implemented ConfigRE in our research and evaluated it
against real applications. The experiment results demonstrate the
efficacy of our approach.
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General Terms
Security
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1. INTRODUCTION
Software security configuration describes the security policies

an application enforces. Specifications for such configuration can
be highly useful to many security-related utilizations. A promi-
nent example is detection of misconfigurations, a major operator
error with serious security implication [21, 24]. Misconfigura-
tions can only be found by evaluating the security policies defined
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within applications, and identification of these policies relies on
the information about how these applications are configured. Actu-
ally, existing configuration checkers such as the Microsoft Baseline
Security Analyzer (MBSA) [3] detect common misconfigurations
through parsing the configurations of operating systems and service
programs. Knowledge of security configuration could also be used
to circumvent software manufacturers’ restrictions on use of their
products. For example, one might alter the configuration of trial
software to get the functionalities of the full edition.

Tools like MBSA are provided by software manufacturers, who
have the knowledge about their products’ configurations, in par-
ticular, the formats of configuration files. It becomes much more
difficult to acquire the configuration information for the software
developed by the third party. Applications may not come with
well-documented specifications: for example, Linux programs usu-
ally have nothing but a few examples to explain their configuration
options, and as a result, many settings can be left undocumented.
The tendency to use graphic user interfaces for setting and revising
configurations further reduces the need for publishing configura-
tion file formats. Moreover, software manufacturers may have the
intentions to hide some configuration settings from their customers,
for the purposes of controlling the way in which their applications
can be used.

In the absence of specifications, one may have to analyze an ap-
plication to reverse engineer its security configuration. To avoid
intensive human efforts during this process, automated tools need
to be developed. As a first step towards this end, we propose Con-
figRE, a novel technique that automatically analyzes an applica-
tion’s binary executables to generate a specification for its access-
control configurations. A program’s security configuration usually
concerns access control, which describes whether a subject (e.g., a
client) is permitted to access an object (e.g., a file) in a particular
manner (e.g., ‘read’, ‘write’ or ‘execute’). ConfigRE aims
at automatically discovering the configuration syntaxes that define
subjects, objects, and their permissions, which requires semanti-
cally identifying these correlated components from an application’s
execution. This is achieved in our approach through an instruction-
level taint analysis that automatically examines how the informa-
tion flow from configuration files affects the information flow from
the client’s request for accessing an object.

As an example, consider an HTTP server whose configuration
defines a policy that allows the client from an IP address to read the
files under a directory. ConfigRE first partitions the input from the
server’s configuration file into fields and then uses individual fields
as taint sources to analyze a transaction, the process for serving a
request. This analysis reveals the semantic relations among these
fields, in particular, how a field affects the use of another one. It
also detects the field that represents the subject, the client, from
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Figure 1: Analysis steps.

the operation that compares its IP with a value tainted by the con-
figuration file, and the field for the object, the directory, from the
filename parameter of the API call fopen() also tainted by the
file. Suppose the permission is formatted as Read = Yes. The
field that accommodates ‘Yes’ can be detected to be a permission
field through identifying its legitimate values, ‘Yes’ and ‘No’, and
rerunning the program on them to find out whether the success of
the transaction actually depends on these values. These fields are
correlated according to their semantic relations. Based upon such
knowledge, our approach can automatically create a specification
language, which can be converted to a scanner for discovering the
security policies defined in the configuration files of other instances
of the HTTP server.

At a high level, ConfigRE bears some similarity with recent work
on automatic protocol reverse engineering [8, 18, 32], which aims
at producing the specification for a closed network protocol. How-
ever, these approaches focus on parsing an application-level mes-
sage into fields, whereas ConfigRE needs to semantically under-
stand the influence of the configuration input on the processing of a
transaction. Serving our objective are a suite of new techniques for
automatically detecting semantic relations among different fields,
and recognizing subjects, objects and the permissions that corre-
late them. These techniques were developed in our research and
evaluated against real applications. They were demonstrated to be
effective in generating configuration specifications.

We outline the contributions of this paper as follows:

• Novel techniques for identifying access control configura-
tions. We propose a suite of new techniques for detecting
the semantic relations among configuration fields that affect
the processing of a transaction, and the roles they play in en-
forcing an application’s access control policies. These tech-
niques are built upon an innovative approach that takes a dif-
ferent look at the traditional taint analysis: not only did we
study the control flows among configuration fields to iden-
tify their semantic relations, but we also examined how the
information flows are tainted by two different sources, con-
figuration files and a service request, and interact with each
other, which reveals the key components of the policies such
as subjects and objects. We also developed a technique that
automatically discovers fields’ alternative values and reruns
the application on these values to detect permission struc-
tures and generate regular expressions to represent them.

• Automatic generation of specification languages and scan-
ners. We present a technique that automatically generalizes
the information regarding policy-related fields and their rela-
tions into a specification language. The language describes
how to syntactically identify subjects, objects and the per-
mission structures that bind them. It can be conveniently
converted into a scanner through standard parser generators

for recognizing the security policies defined in an applica-
tion’s configuration files.

• Implementation and evaluations. We implemented a proto-
type system of ConfigRE and evaluated it using real appli-
cations, including HTTP servers, FTP servers and P2P soft-
ware. Our experimental study demonstrates that ConfigRE
can effectively generate configuration specifications related
to access control and use them to detect security policies
from an application’s configuration files.

The rest of the paper is organized as follows. Section 2 gives
an overview of the general design of ConfigRE. Section 3 elabo-
rates the detailed design and implementation of our prototype sys-
tem. Section 4 reports an empirical study of our technique using
the prototype. Section 6 discusses the limitations of our current de-
sign. Section 5 presents the related prior research, and Section 7
concludes the paper.

2. OVERVIEW
The general idea of ConfigRE comes from the insight that how

data are used by an application can actually reveal the semantic
meanings of the data. For example, use of a character string as an
input to the function gethostbyname() unambiguously points
to the fact that the string actually represents a host name. Our ap-
proach utilizes this observation to identify security-related config-
uration data and their relations, and then converts such knowledge
into a specification. In this section, we first present the key steps
for this analysis, and then survey ConfigRE using an example. We
also introduce taint analysis, a technique intensively used in our
approach.

Analysis steps. ConfigRE takes four steps to reverse engineer an
application’s security configurations, as described in Figure 1. In
the first step, it monitors the initialization process of the applica-
tion to identify its configuration files, and extract the structure in-
formation of these files, in particular, configuration fields. Then,
our approach performs an instruction-level taint analysis on the ap-
plication using individual fields and a test request as taint sources.
This analysis acquires the semantic information of the configura-
tion structure, such as the semantic relations among the fields, the
fields that define subjects and objects, and those that could be re-
lated to permissions. The possible permission fields are further
studied in the third step, which detects their alternative values, and
reruns the application over these values to generate the conditions
for permitting or denying a request. The last step generalizes the
knowledge about subjects, objects and permissions into a specifi-
cation language.

An example. We use the example in Figure 2 to illustrate our
approach. The example includes the code fragments of an HTTP
server for parsing and initializing its configuration settings, and for
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C1   Directory "/usr/www/" {
C2       IPPrefix=192.168.1.0/24
C3       FileAccess=Yes
C4   }
        ...

Language�� ��
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GET /filename HTTP/1.1

Directory

objectIPPrefix FileAccess

subject Yes
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\n{} \n  {}
\n “
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2. Transaction
       ...

T1   if((ChkPrefix(prefix,outerAddr)
              == true)  && (fileAccess == 1))
T2     file = ReadFile(directory +
                       req ->filename);
        …

1. Initial ization
...

I1   parseLine(line,&keyword,&value);
I2   if (keyword == "Directory") {
I3     directory = value;
I4     if (strchr(line, "{"))
I5       getRelatedField(file);
I6   }    
         ...         

   void getRelatedField(CFG_FILE *file) {
I7  while(getline(file,line)&&!strchr(line,"}")){
I8      parseLine(line,&keyword,&value);
I9      if (keyword == "IPPrefix ")
I10       prefix= value;
I11    else if (keyword=="FileAccess") {
I12       if (value == "Yes")   fileAccess = 1;
I13       else if (value == "No")  fileAccess = 0;
I14       else  ERROR("Invalid value");
I15    }
I16  }
I17    ...

Code

Directory

/usr/wwwIPPrefix FileAccess

192.168.1.0/24 Yes

Semantic Tree

Figure 2: An Illustrative Example.

processing a service request it receives. We also present part of
its configurations related to access control. The server has a secu-
rity policy that only allows the client from ‘192.168.1.0/24’
to read the files under the directory ‘/usr/www/’. This policy is
first interpreted for initializing the configuration settings in mem-
ory (from Line I1 to Line I16), and then enforced during a trans-
action (from Line T1 and T2). The example uses C for illustration
purpose. ConfigRE actually works on binary executables.

ConfigRE first analyzes the execution of the HTTP server until
the point that it is ready to accept service requests. This analysis
traces the propagation of the information tainted by the files the
server read to discover configuration fields. For example, the con-
figuration fragment in Figure 2 is partitioned into fields such as
‘Directory’, ‘usr’ and ‘www’. It also identifies delimiters like
‘{’ and ‘}’ which describe the syntactic relations of fields.

To acquire semantic information, ConfigRE monitors the prop-
agations of the information flows tainted by individual fields to
study their semantic relations and influences on the processing of a
test request. The relations among these fields are modeled accord-
ing to the propagation of control flows between them, which are
used to construct a semantic tree (Section 3.2) as illustrated in Fig-
ure 2. Each field is represented by a node in the tree, which deter-
mines the uses of its offspring nodes. For example, the instructions
from Line I11 to Line I14 shows that the field ‘FileAccess’
must be matched before its child node ‘Yes’ can be processed.
The analysis further detects the operation at Line T1 that compares
‘192.168.1.0/24’ with the IP address of the request, and anno-
tates this field as a subject. The fields ‘usr’ and ‘www’ are found to
be appended with the content of a string variable req->filename
that is tainted by the request, and used as the filename parameter
for ReadFile(). As a result, they are combined and labeled as a
directory-related object. We also observe that fileAccess (Line
I12), a value tainted by the field ‘Yes’ through control flow, has
been used as a branch condition (Line T1), which causes the field
‘Yes’ to be selected as a possible permission.

To verify whether the possible permission is indeed a permission,

ConfigRE re-examines the execution that initializes the server and
identifies the alternative value of the field accommodating ‘Yes’,
which is ‘No’, from Line I13. The value is used to modify the
configuration file, over which the server is rerun to study its re-
sponse to the same service request. This time the request does not
go through, and therefore ‘Yes’ and ‘No’ are confirmed to be the
alternative values for a permission field.

From the semantic tree, our approach extracts the fields anno-
tated as subject, object and permission, along with all their ancestor
nodes which serve as their context. After that, it identifies the de-
limiters that bind these fields together, for example, ‘{’ and ‘}’, to
form a K-tree (Section 3.4). From the K-tree, ConfigRE automati-
cally generates a specification language and converts it to a scanner
for automatically discovering security policies from other instances
of the HTTP server.

Taint analysis. A building block for ConfigRE is taint analysis, a
technique that monitors the execution of an application at the in-
struction level to track its tainted information flows, including data
flows and control flows. Tainted data flows are generated when
an operation such as data transfer happens to tainted data. They
are identified and followed according to a set of taint-propagation
rules similar to those used in other taint-analysis techniques such as
RIFLE [27], TaintCheck [23] and LIFT [25]. Tainted control flows
describe how a tainted branch condition controls the executions of
other instructions. All the instructions affected by the condition are
considered to be within the scope of that condition and their outputs
should be tainted. For example, the condition value == ‘Yes’
at Line I12 in Figure 2 determines the operation fileAccess =
1; as a result, the variable fileAccess is tainted by value.
Here, the scope of the condition ranges from Line I12 to Line I15,
where all branches originated from this condition converge. This
location (I15) is called post dominator of the condition. Our an-
alyzer uses Lengauer Tarjan [17] algorithm to compute the scope
and the post dominator of a tainted condition, and taints the out-
puts of the instructions within that scope. A well known problem



of such an approach is taint explosion caused by excessive taint of
the values that actually do not depend on the branch condition. In
our research, we mitigate this problem using a conservative strat-
egy, which taints the instructions within the scope according to a
set of rules. For example, we allow taint to propagate through the
control flow only when a branch condition is a comparison between
a tainted value and a constant, and that condition is true.

3. DESIGN AND IMPLEMENTATION
In this section, we elaborate our design for individual analysis

steps, and an implementation of the design to a prototype system
under Linux. Our implementation is based on PIN, a dynamic bi-
nary instrumentation tool [19]. Standard parser generators such as
FLEX [1] and BISON [13] were also used in our research to convert
the specification ConfigRE generates into a configuration scanner.

Our current implementation is only semiautomatic and oriented
towards text-based configuration files. Moreover, the type of po-
lices we are dealing with mainly concerns a remote client’s at-
tempts to read or write local files. However, the idea behind our
approach is more general, which we discuss in Section 6.

3.1 Extraction of Configuration Fields
To reverse engineer an application’s configurations, we first need

to extract its configuration structures. This is achieved through par-
titioning an input stream from configuration files into fields. It is
important to note that we do not assume knowing these files a pri-
ori: we can monitor all the files the application reads during its
initialization stage, remove Dynamic Linking Libraries and well-
known system files and detect from the rest those that do contain
configuration settings in the follow-up steps.

The problem of extracting fields from an input stream has been
intensively studied recently under the scenario of protocol reverse
engineering [8, 18, 32]. We do not intend to reinvent the wheel
in our research, and instead, try to build ConfigRE upon the exist-
ing techniques. Specifically, we enhanced the technique proposed
by Wondracek, et al [32] to handle some special configuration fea-
tures, and implemented it into our prototype system as a module
for field extraction. It should be noted here that our design can also
accommodate other field-partition techniques.
Simple delimiters. ConfigRE automatically partitions an input
stream into fields through analyzing the propagations of tainted in-
formation within an application. This is achieved by finding from
the stream a set of delimiters that indicate the ends of individual
fields. Wondracek, et al [32] propose an approach that detects de-
limiters from the way in which the application processes tainted
data: a delimiter is usually used by the application to scan the in-
put, and therefore can be recognized from the activity that con-
secutively compares a constant with a tainted string. For exam-
ple, the HTTP server described in Figure 2 scans Line C1 for the
new-line character ‘\n’ until the end of the line and the space char-
acter ‘ ’ before ‘{’ is encountered, and ‘/’ from the beginning of
‘/usr/www/’ to its end; those characters are identified as delim-
iters. Using delimiters, ConfigRE divides the input into multiple
fields such as ‘Directory’, ‘usr’, ‘www’ and ‘{’. The syntactic
relations among these fields are also described by the delimiters:
for example, ‘\n’ binds all these fields together.

Paired delimiters. A feature of configuration format which has
not been addressed by the prior approaches is paired delimiters
such as ‘{’ and ‘}’. These delimiters are important because they
are widely used by applications to specify the syntactic relations
of multiple fields. For example, ‘{’ and ‘}’ in Figure 2 link all
the fields from Line C1 to Line C3. We also present a fragment

of Apache configuration in Figure 3, in which a multi-byte delim-
iter pair, ‘〈Directory’ and ‘〈/Directory’, correlates several
lines of configuration settings to describe the access-control policy
for the directory ‘/web/docs’. Here we propose a technique that
detects such delimiters.

A prominent feature of paired delimiters is that a program can-
not accept the existence of one of them without the other. This is
usually achieved by scanning an input stream for the close part of
the pair such as ‘}’ only after the start part, ‘{’, has been identi-
fied. Here, we call the latter head of the pair and the former tail.
Based upon the above observation, we propose a new approach for
detecting these delimiters. Our approach first constructs a list of
“head” delimiters, including all the simple delimiters and the heads
of paired delimiters. This list can be acquired by recording all the
delimiters a program uses to compare with a non-delimiter byte
from the input. Whenever a delimiter on the list has been matched,
ConfigRE monitors the operations within the scope of that condi-
tion (matching the delimiter) to look for a new delimiter which does
not appear on the head list. If such a delimiter is found, it is picked
up as the tail for the delimiter in the condition. As an example, con-
sider the code fragment in Figure 2 from Line I4 to Line I6: after
the server identifies ‘{’, it starts scanning for ‘}’ within the scope
of the tainted condition strchr(line, ‘{’) at Line I4, which
reveals that these two characters actually belong to a pair.

Although the above approach describes a pretty general behavior
signature for the way that a program processes paired signatures,
there are exceptions. As an example, consider the case described in
Figure 3. Apache does not treat ‘〈’ as a normal delimiter and never
conducts consecutive comparisons to find it. Actually, the character
is combined with keywords such as Directory as part of a field.
To pair ‘〈Directory’ with ‘〈/Directory’, Apache first iden-
tifies ‘〈/’, and then checks the closest field that begins with ‘〈’ for
the string that follows ‘〈/’, which in the example is ‘Directory’.
ConfigRE detects such delimiters using another behavior signature:
whenever a tainted branch condition becomes true, we check its
scope for the comparison between two tainted strings from differ-
ent fields; if such a comparison has been detected and turns out to
be a match, these two strings are labeled as paired delimiters, to-
gether with the characters that taint the condition. In the Apache
example, our approach discovers ‘Directory’ within the field
‘〈Directory’ and the field ‘〈/Directory’ as a pair1. Since
comparisons rarely happen between two configuration fields, this
signature does not introduce many false positives, as we observed
in our research.

We have to stress here that these two behavior signatures by no
means cover all possible ways an application can take to process
paired delimiters. It is possible that they could allow some delim-
iters to slip under the radar, though all the applications we have
studied so far do not have such a problem. Developing a more gen-
eral alternative is left as our future work.

3.2 Semantic Analysis
The key for reverse engineering configurations is to understand

the roles played by individual fields in enforcing a security pol-
icy, i.e., subjects, objects and permissions. Such an understand-
ing must be gained under certain semantic context which links all
these roles together. For example, in Figure 2, ‘IPPrefix’ and
‘FileAccess’ must be defined under ‘Directory’ to specify
their relations with the directory ‘/usr/www’. This context infor-

1Note that missing the character ‘〈’ does not present a seri-
ous problem, as ‘Directory’ is identified in the context of
‘〈Directory’, which must be there for creating a language (Sec-
tion 3.4).



<Directory  “/web/doc1”>
     Options FollowSymLinks
     Order allow , deny
     Allow from 192.168.0.0/24
</Directory>

<Directory  “/web/doc2”>
     Options FollowSymLinks
     Order deny , allow
     Deny from 192.168.2.0/24
</Directory>

Apache configuration file: httpd.conf

<Directory

Order/web/doc1 Options

FollowSymLinks allow,deny

Semantic Tree

Allow

from

192.168.0.0/24

<Directory

Allowobject Order

allow,deny
deny,allow

mutual-failure

Deny

from

subject

Merged tree

from

subject

<Files  “sensitive.htm”>
     Order allow , deny
     Allow from 192.168.1.0/24
</Files>

<Files

Ordersensitive.htm

allow,deny

Allow

192.168.1.0/24

from

<Directory

Order/web/doc2 Options

FollowSymLinks deny,allow

deny

from

192.168.2.0/24

Figure 3: Another Example.

mation is modeled in our research as a semantic tree. Following
we first describe how to build a semantic tree from an application,
and then introduce the techniques that identify individual access-
control components.

Semantic tree. Semantic tree is used to understand how a field
controls the operations on another field, which unveils the seman-
tic relations between these fields. A semantic tree can be formally
modeled as a 2-tuple 〈N, E〉, where N is a set of nodes and E is a
set of edges. Each node except the root represents a configuration
field. An edge is extended from one node to another if an appli-
cation uses the former to determine how to process the latter. The
root is assumed to control every node that does not have a parent.

ConfigRE builds the semantic tree of an application through an-
alyzing the propagation of tainted information flows. Specifically,
it first marks each field as a different taint source, and connects all
these fields directly to the root as its children. During the analy-
sis, ConfigRE locates the comparison between a value tainted by a
field and a constant. Such a comparison is called a control condi-
tion. Whenever a control condition related to a field n is found to
be true, our approach checks whether other fields have been oper-
ated on within the scope of that condition. Once such a field n′ is
identified, ConfigRE makes n′ an offspring node of n.

For example, consider the program in Figure 2. The instruction
at Line I2 is a control condition that compares the field ‘Directory’
with a constant. Within the scope of the condition (Line I2 to I6),
fields like ‘/usr/www/’2, IPPrefix and FileAccess are all
used for comparisons when the control condition is true. Therefore,
we make these fields children nodes for ‘Directory’. Moreover,
the field ‘Yes’ appears in the scope of ‘FileAccess’, which
causes an edge to be drawn from the latter to the former. The
same happens to the relation between ‘192.168.1.0/24’ and
‘IPPrefix’. These relations are described by the semantic tree
in Figure 2. Another example is presented in Figure 3, which gives
the tree for a configuration fragment of Apache.

Detection of access-control components. ConfigRE detects access-
control components through analyzing how an application enforces
its security policy on a test request. The request is labeled as a
new taint source for the taint analysis and studied against the in-
formation flows derived from configuration fields. Our approach
observes the interactions among the information flows from differ-
ent sources and uses a set of behavior signatures to recognize the

2This field comes from a merger between ‘usr’ and ‘www’, as de-
scribed later.

fields related to subjects, objects and permissions.
Subjects such as IP addresses and Internet domains can be dis-

covered from the behavior that attempts to match a value tainted
by a field to the source IP address of the request. If this attempt is
successful, we are pretty sure that the field is either IP address or
an Internet domain name. The latter can also be identified from the
input parameter for the API calls such as gethostbyname(),
which maps a host name to a structure containing its IP addresses.
More difficult to handle is the field that specifies username. A user-
name included in a request is usually checked by the application
against a configuration record. What ConfigRE can observe from
this process is a comparison that happens between a value tainted
by the request and the other by a configuration field. Such a be-
havior can be too general to become a signature. Our solution is
to make use of some recognizable information on the request. The
payload of the request related to a username can be pre-labeled
if the request comes through a public protocol, such as HTTP. In
the case that the protocol is close, the location can still be found
through a taint analysis on the client program which generates the
request: we can track the data tainted by a username across the
client until they are reflected on the payload of a network output.
Whenever such data match a value tainted by a field after they are
received by the application, we know that the field is for specify-
ing a subject. Another problem for detecting subjects comes from
the keywords that define special types of subjects such as anyone.
An example is the keyword All used by Apache. These keywords
may not be involved in any dataflow operations during a transac-
tion and could act like permissions. We describe an approach to
recognize them in Section 3.3.

Objects such as directory names and file names can be deter-
mined from the parameters of relevant API functions such as fopen()
and ReadFile(). ConfigRE recognizes a directory field if the
field taints a string that is appended with another string tainted by
the request, and then used together as a parameter of an API call
for specifying the directory path and the name of a file. Note that it
is important to have the parameter tainted by the request, because
otherwise the API call may not relate to the transaction at all: for
example, it can be just an operation for opening a configuration file.
Another behavior signature that characterizes an object is as fol-
lows: a string tainted by the request matches another string related
to a field, and then the former is used as a file name or a directory
for an API call. This behavior is also sufficient for concluding that
the field is for defining an object. In some cases, multiple fields can
be found to collectively define an object. An example is ‘usr’ and



‘www’ in Figure 2. When this happens, we merge these fields into
a single field and add back the delimiter that separates them.

The techniques for detecting subjects and objects are based upon
dataflow analysis. This also works for some types of permissions.
For example, once we notice that a directory field is always used to
encapsulate a file name tainted by a request before the file can be
opened, and an attempt to directly retrieve its parent directory3 is
blocked, we know that the subject is not allowed to access the files
outside the directory. Such a permission is called home-directory
permission. However, discovering other types of permissions re-
quires more efforts than dataflow analysis. Specifically, though the
taint analysis can find from the execution path a set of branch con-
ditions tainted by configuration fields, we do not know whether
these conditions affect the success of a transaction, as our analysis
only observes one execution path. Therefore, the fields associated
with these conditions can only be treated as candidate permissions,
and a further study is required to determine whether they are indeed
permissions. This is achieved in our research through identifying
these fields’ alternative values and rerunning the application over
them, which are elaborated in Section 3.3.

ConfigRE is also designed to discover the configuration settings
for multiple subject/object pairs. As an example, consider a re-
quest for downloading index.htm from /web/doc2. During
the transaction for processing that request, ConfigRE observes that
the part of the request related to directory name has also been com-
pared with ‘/web/doc1’. This prompts us to adjust the request
to explore the security configuration for that directory. Such an ad-
justment can be done automatically using symbolic execution [15].

3.3 Detection of Permission Structures
Since the determination of permissions in the second step is in-

conclusive, we need to further study candidate permission fields to
understand whether they indeed control the interactions between
subjects and objects. For this purpose, we developed a technique
which first identifies the alternative values for these fields and then
reruns the application over these values to investigate their accumu-
lated effects on a transaction. Below we elaborate this approach.

Discovery of alternative values. Evaluation of an application us-
ing different values of a field can tell us whether a transaction is
under the field’s control. For example, once we switch ‘Yes’ to
‘No’ in Figure 2, an attempt to read a file under ‘/usr/www/’
will no longer get through, which suggests that the field is a per-
mission. To discover these values, we first need to identify which
fields can be used in this game. Some fields cannot be changed
without affecting other fields. Consider a field that serves as other
fields’ parent node in the semantic tree: any change that happens
to its content could affect all its descendant nodes and even com-
pletely alter the structure of the tree. On the other hand, inner nodes
of the semantic tree usually represent the name of a configuration
setting, such as ‘FileAccess’ in Figure 2, while the value of
the setting is represented by the tree’s leaves. Given these consid-
erations, our current design of ConfigRE only explores alternative
values for the candidate permission fields on the leaves. For those
on the internal nodes, we evaluate them under two scenarios: either
leaving them there intact, or removing them along with all their de-
scendants. This treatment may cause configuration errors, which
however, can be easily identified from an application’s error report.

For a leaf field annotated as a candidate permission, ConfigRE
takes the following approach to discover its alternative values. It
detects the instructions that compare the field with a constant, and
then changes the content of the field to a random value to cause the

3An example is using the file name like ‘/../’.

operation to fail. This forces the application to try all legitimate
values for that field one by one until none of them matches, which
can be observed from a configuration error reported by the applica-
tion. For the example in Figure 2, our approach changes ‘Yes’ to a
random string, which makes the execution reveal ‘No’. In this way,
we can capture all the values associated with a field.

Generation of permission structures. Using the alternative val-
ues of candidate permission fields, ConfigRE automatically modi-
fies configuration files and reruns an application upon them. Our
approach exhaustively tests all combinations of these fields’ alter-
native values, and the two scenarios for evaluating internal nodes to
understand the influences of these fields on a transaction. Accord-
ing to the outcomes of the test, these configurations are classified
into three categories: those making the transaction successful are
kept in a permit set P , those accepted by the application but caus-
ing the request to be denied are put in a denial set D, and the rest
are thrown away because of configuration errors.

The configurations in P and D may include the fields unrelated
to permissions. Identification of these fields in ConfigRE is based
upon the observation that their values, once altered, do not change
the outcomes of the test. Specifically, we first pick up from P or
D a permission vector — a conjunction of the fields which makes
the test transaction either succeed or fail. Then, we examine every
permission field on that vector. For a specific field, its content is
changed to all other values it can take one by one for checking
whether any of these changes also causes the vector to be moved
to the set other than its origin. For example, in Figure 2, once we
change ‘Yes’ at Line C3 to ‘No’, the field that holds these values
will be moved from the permit set to the denial set. If this does
not happen to that field for all the values it can take, and for every
vector from both sets that involves that field, we conclude that its
value is not important for an access-control decision, and therefore
remove the field from P and D. In this way, all the fields unrelated
to permission can be eliminated from both sets. As a result, the
permission structure can be represented as the disjunction of all the
vectors in P for allow and the disjunction from D for denial.

Discussion. As we described above, an internal node and its sub-
tree can be taken away from a configuration file during the rerun
to determine whether it is a permission field. This, however, could
cause a subject or object field to be removed when the field happens
to be the node’s descendent. An example is ‘Allow’ in Figure 3.
When this happens, some permission vectors will no longer relate
to any subject or object in the configuration file. In our research,
we drop all the vectors that are not associated with objects, because
they do not reflect the targets of access control. On the other hand, a
permission not attached to a specified subject can be interpreted as
being applied to the unknown (or anonymous) user, and therefore
is kept in our permission structures.

Our permission analysis technique can also help detect special
subjects such as ‘All’. Such subjects may not be detected by
dataflow analysis, and instead, they could be annotated as candi-
date permission fields because they could affect branch conditions
of a transaction, as a permission field does. The semantic meanings
of these fields can be uncovered in the step for detecting alternative
values, which observes that the values these fields accept are actu-
ally used like subjects: for example, they can be the parameter for
gethostbyname().

3.4 Generation of Specification Languages
The last step of ConfigRE is to convert the knowledge about

subjects, objects and permission structures acquired from previ-
ous steps into a means for identifying security policies specified



in other instances of the applications. This is achieved in our re-
search through automatically generating a language that parses the
configuration files of these instances to recognize the fields related
to a policy definition, which are used to identify a security policy.

Since the language is for scanning a configuration file, it should
include a sufficient amount of syntactic information for connecting
semantically related fields together. To generate such a language,
our approach correlates two connected nodes in a semantic tree
with delimiters, and then creates a BNF grammar for recognizing
these nodes’ semantic relations, as described by the tree, from their
syntactic relations, as revealed by these delimiters. For example,
consider the semantic tree in Figure 2. Two semantically-related
nodes ‘FileAccess’ and ‘Yes’ are connected through the delim-
iter ‘\n’, and ‘FileAccess’ is further linked to ‘Directory’
through a delimiter pair ‘{’ and ‘}’. The language we generated for
this example, as illustrated in the Figure, describes such a relation
for every pair of connected nodes in the tree.

Preprocessing. To prepare for language generation, ConfigRE makes
the following moves. For every node annotated as subject, object
or confirmed permission, our approach first extracts from the se-
mantic tree all its ancestor nodes to build a new tree. The tree is
further generalized: the specific contents of subject or object nodes
are removed and alternative values for leaves are added. In ad-
dition, the subtrees of the root’s child nodes can also be merged
if two such nodes are identical. For example, Figure 3 illustrates
a subtree built from a merger between the subtrees for directory
‘/web/doc1’ and ‘/web/doc2’. Our approach further exam-
ines every edge of the tree and tries to identify a set of delimiters
that connect its two end nodes: for example, in Figure 3, the new
line character ‘\n’ connects all the fields on a line together, and
the paired delimiters, ‘Directory’ and ‘〈/Directory’, links
the node ‘〈Directory’ with ‘Order’, ‘Allow’ and ‘Deny’.
If there exist multiple such delimiters or pairs, we select the one
with the shortest range, which is defined as the interval the ap-
plication scanned for the delimiter. In some cases, the syntactic
relation between two nodes is established by more than one delim-
iter or delimiter pair. Consider the example in Figure 2. The node
‘Directory’ is connected to ‘IPPrefix’ and ‘FileAccess’
by multiple delimiters: first, ‘\n’ is used to combine ‘Directory’,
‘/usr/www’ and ‘{’ togather, and then, the paired delimiters ‘{’
and ‘}’ connects the root to other fields. ConfigRE adopts an al-
gorithm that first tries to establish a direct relation between two
nodes, and if fails, continues to seek indirect relations: it finds the
delimiter whose range includes the parent node of these two nodes
(‘\n’ in the example); then, our approach searches within the range
for the head of paired delimiters that can be used to link the parent
node to its child. Such delimiters are annotated to the edge. In ad-
dition to the delimiters that embrace two nodes, we also add onto
the edge the delimiters between these two nodes. As a result, we
get a tree for language generation, which we call knowledge tree or
K-tree. Figure 2 gives an example.

Language generation. From a K-tree, ConfigRE automatically
generates a specification language. The grammar of the language
can be described as a 3-tuple 〈Σ, V, R〉, where Σ is a finite set of
terminal symbols, V a set of nonterminals and R a set of produc-
tion relations. ConfigRE first adds the delimiters and the values of
the fields in the K-tree to Σ. Note that for the fields representing
subjects or objects, their specific contents are removed and replaced
with labels subject or object. Also placed into Σ is a special ter-
minal, ε for empty.

The rest of the grammar is built through a breadth-first traver-
sal of the K-tree. Starting from the root n0,0, our approach des-

ignates a nonterminal Ai,j to ni,j , the jth node on the ith level
of the K-tree, if the node is not a leaf. The production relation of
the symbol is in the following form: Ai,j → Si,jUi,jTi,j , where
Si,j represents a start symbol, Ui,j is a nonterminal for describ-
ing the relations among the non-leaf children of ni,j , and Ti,j is
an end symbol. ConfigRE determines the start symbol using the
field of node ni,j , the leaf directly attached to that node and the
delimiters connecting them. If there is a pair of delimiters that em-
braces the node’s subtree, the head of the pair also becomes part
of Si,j . The end symbol Ti,j is a delimiter (or the tail of a de-
limiter pair) that connects the node to all its children. The pro-
duction relation of Ui,j is determined by the relations among the
non-leaf children of ni,j as described by the permission structure.
For the example in Figure 3, let A2,1, A2,2 and A2,3 be the nonter-
minals for ‘Order’, ‘Allow’ and ‘Deny’ respectively; according
to the permission vectors that contain the combinations of the fields
(‘Order’, ‘Allow’), (‘Order’, ‘Deny’), (‘Order’), (‘Allow’),
(‘Deny’) and empty, following production relation is constructed:
U10 → A2,1A2,2|A2,1A2,3|A2,1|A2,2|A2,3|ε. For simplicity of
presentation, we also assign a nonterminal to the leaf with multiple
alternative values. This process continues until every node of the
K-tree has been described by the language.

As an example, we present in Figure 2 a grammar for the config-
uration of the HTTP server. The grammar is constructed in the fol-
lowing way. After ConfigRE encounters the node ‘Directory’,
it gives the node a nonterminal A1,0, determines the start symbol
S1,0 →Directory object { \n, the end symbol T1,0 →‘}’,
and the production of U1,0 that describes the relation among the
node’s internal child nodes. These children include ‘IPPrefix’
and ‘FileAccess’, which are given new nonterminals A2,0 and
A2,1 respectively. The production rule is U1,0 → A2,0IA2,1,
where I is a nonterminal for ignoring all delimiter terminals be-
tween two nonterminals. Note this is sufficient for skipping all
the configuration settings unrelated to access control, because a
lexicon analyzer used in a language parser can automatically by-
pass all the characters not in the terminal set. ‘IPPrefix’ and
‘FileAccess’ only have leaf nodes as their children, and the end
symbols associated with them is ‘\n’. The production of A2,1 also
involves a nonterminal B, as the child of ‘FileAccess’ has al-
ternative values ‘Yes’ and ‘No’. The grammar for Apache config-
urations is described in Section 4.

Configuration scanning. A language can be conveniently con-
verted into a configuration scanner using the standard parser gener-
ator such as BISON [13]. Such a scanner recognizes terminals from
a configuration file using a lexicon analyzer such as FLEX [1], and
then identifies the access control components related to a policy
definition. These components are used to determine an access con-
trol policy.

4. EVALUATION
In this section, we describe our experimental study of ConfigRE.

The objective of this study is to evaluate the effectiveness of our
technique in recovering the specifications for applications’ security
configurations. To this end, we ran our prototype system against 6
real applications as demonstrated in Table 1. Our study involves ex-
traction of the semantic information of these applications’ access-
control settings, generation of specification languages and evalua-
tion of the configuration scanners automatically constructed from
the languages. The experiments were conducted on a Linux work-
station installed with Rehat Enterprise 4. The host has 2.40GHz
Core 2 Duo processor and 3GB memory. Due to the space limit,
here we use Apache and Bftpd as two examples to explicate this



apache bftpdbftpd.conf     
C1   global{
C2       DENY_LOGIN=”no”
C3       RATIO=”none”
            ...
C4   }
C5    user temp{
C6        ROOTDIR=”/root/temp”
C7        DENY_LOGIN=”no”
             ...
C8    }
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Figure 4: K-trees for Apache and Bftpd.

study. The results for other applications can be found in a longer
version of the paper [29].

Table 1: Effectiveness of ConfigRE.
Programs Types Test req Tot # of fields # of sec fields Detected
Apache HTTPD GET 51 21 21
pServ HTTPD GET 18 2 2
Null-HTTPd HTTPD GET 21 2 2
vsftpd FTPD login, get 16 4 4
Bftpd FTPD login, get 18 10 10
Napster P2P P2P

download
21 2 2

4.1 Access Control Configurations
In the first experiment, we ran our prototype on these applica-

tions to partition their configuration files into fields, extract those
that represent subjects, objects and permissions, and identify their
permission structures. Table 1 illustrates some experimental set-
tings and outcomes, including the names and types of the appli-
cations, the test requests used in the experiment, total number of
the fields in configuration files, the number of the fields related to
access control and the number of these fields ConfigRE detected.
From the table, we can see that our prototype successfully captured
all the security-related fields.

Apache. We evaluated our prototype using an Apache server with
security configurations as described in Figure 3. Apache allows
the user to specify security policies for individual directories and
files through a set of directives. The main directives for access
controls are Order, Allow and Deny. Allow permits a remote
subject to read a local file and Deny blocks such a request. Order
defines the order in which Apache checks the permission rules for
a request and the permissions for unspecified subjects: if the value
of the directive is ‘Allow, Deny’, then the server drops all the
requests not explicitly specified by an Allow rule; if the value is
‘Deny, Allow’, requests will be processed unless they are ex-
plicitly denied. These permissions are defined under the directives
〈Directory for directories or 〈Files for individual files.

Our prototype detected delimiters of the configuration file and
used them to partition the file into fields. An interesting observa-
tion here is that Apache does not treat ‘〈’ and ‘〉’ as normal de-
limiters and as a result, our approach took ‘〈’ as part of a directive
field and failed to catch ‘〉’. Fortunately, this did not affect the
follow-up analysis. In the second step, those fields were tainted
for analyzing how the server processed a GET request. This anal-
ysis revealed subjects, objects and candidate permissions. Among
these candidate fields were Options and FollowSymLinks,
which were found to be unrelated to access control during the re-
run stage. Alternative values ‘Deny, Allow’, ‘Allow, Deny’
and ‘mutual-failure’ were also detected. The access-control

components and permission structures identified by our prototype
are described in Table 2.

Bftpd. Bftpd [2] is a small FTP server which has been widely used
on a variety of platforms including Linux, BSD and routers. Like
many other FTP server, Bftpd supports both anonymous user ac-
cess and local user access. In the latter case, it lets the users of
an operating system (OS) access files and directories using their
privileges bestowed by the OS. The interesting part of this FTPD is
that it can be configured to overrule a user’s OS permissions. For
example, one’s root directory can be redefined, which could en-
able her to download the files from a directory she cannot access
with her OS privileges. Though Bftpd enforces some restrictions
to this potentially dangerous functionality, for example, forbidding
one to set /root as a user’s home directory, its security implica-
tions remain. In our experiment, we evaluated our prototype using
a configuration file containing such settings. The fragment of the
file is presented in Figure 4.

The fragment contains a set of global configurations defined un-
der the keyword ‘global’. They are applied to every user but can
be overridden once the same settings are explicitly specified for
that user. Consider the example in Figure 4. ‘DENY LOGIN’ ap-
pears under both ‘global’ and user temp to specify whether
the user is not allowed to login. The latter supersedes the former.
Actually, this setting and ‘ROOTDIR’, which changes one’s root di-
rectory, are the main access-control configurations Bftpd provides
to adjust a user’s OS-defined read privilege.

Our prototype analyzed Bftpd using a test request for download-
ing a file. This analysis detected the field ‘temp’ as a subject from
a match that happened between the field and part of the request
related to username, and ‘/root/temp’ as an object from the ob-
servation that it was used to encapsulate the value tainted by the
request as a directory path for opening a file. We also found al-
ternative value for the field ‘no’, which is ‘yes’, and permission
fields and permission structures, as illustrated in Table 2.

Our approach effectively captured the relations between two
DENY LOGIN fields defined under ‘global’ and ‘user’ through
reruns: the second setting overrules the first one, but when the for-
mer is not there, the latter takes effects. The field ROOTDIR was
confirmed as a permission and a parent of the object. As a result,
all the permission vectors not including it were removed. Another
interesting observation is that a field seemingly unrelated to secu-
rity, RATIO, was also identified as a permission. The field is for
specifying upload/download ratio. In our experiment, we found
that removal of the field did not incur any configuration errors but
caused the processing of the request to fail. Therefore, it can be
deemed as an implicit permission field.



Table 2: Apache and Bftpd. Here we list both the fields identified as access control components (highlighted items) and their parent nodes in semantic
trees. Note that production relations like Rule 3 are constructed in a recursive manner for continually scanning a configuration file after recognizing
a security policy until the end of the file.

App Subjects/Objects/Permissions Structures Languages
Apache Subjects:

〈Directory Allow from 192.168.0.0/24
〈Files Allow from 192.168.1.0/24
〈Directory Deny from 192.168.2.0/24

Objects:
〈Directory /web/doc1
〈Files sensitive.htm
〈Directory /web/doc2

Permissions:
p1:〈Directory Order allow,deny
p2:〈Directory Order deny,allow
p3:〈Directory Order mutual-failure
p4:〈Directory Allow from
p5:〈Directory Deny from
p6:〈Files Order allow,deny
p7:〈Files Order deny,allow
p8:〈Files Order mutual-failure
p9:〈Files Allow from
Home Directory Permission

• Directory Permit:
(p4)∨ (p4 ∧p3)∨ (p4 ∧

p2)∨(p4∧p1)∨(p2)∨(ε)

• Directory Denial:
(p1)∨(p3)∨(p5)∨(p5∧

p3)∨ (p5 ∧p2)∨ (p5 ∧p1)

• Files Permit:
(p9)∨ (p9 ∧p8)∨ (p9 ∧

p7)∨(p9∧p6)∨(p7)∨(ε)

• Files Denial:
(p6) ∨ (p8)

1. Σ = { 〈Directory, 〈/Directory, ‘\n’, Order, allow,deny, deny,allow, mutual-
failure, Deny, from, Allow, 〈Files, object, subject, 〈/Files}

2. V = {A00, A10, U10, A21, B21, A22, U22, A23, A23, A11, U11, A25,
B25, A26, U26, U25, A26, I }

3. A00 → A10A00|A11A00|I|ε
4. A10 → 〈Directory object ‘\n’ U10 〈/Directory ‘\n’
5. U10 → A21IA22|A21IA23|A21|A22|A23|I|ε
6. A21 → Order B21 ‘\n’
7. B21 → allow,deny | deny,allow | mutual-failure
8. A22 → Allow U22 ‘\n’
9. U22 → from subject

10. A23 → Deny U23 ‘\n’
11. U23 → from subject
12. A11 → 〈Files object U11 〈/Files ‘\n’
13. U11 → A25IA26

14. A25 → Order B25 ‘\n’
15. B25 → allow,deny | deny,allow | mutual-failure
16. A26 → Allow U26 ‘\n’
17. U26 → from subject
18. I → ε | I ‘\n’

Bftpd Subjects:
user temp

Objects:
user ROOTDIR /root/temp

Permissions:
p1: global DENY LOGIN no
p2: global DENY LOGIN yes
p3: global RATIO none
p4: user DENY LOGIN no
p5: user DENY LOGIN yes
p6: user ROOTDIR
Home Directory Permission

• Permit:
(p1 ∧ p3 ∧ p4 ∧ p6) ∨

(p2 ∧p3 ∧p4 ∧p6)∨ (p3 ∧
p4 ∧p6)∨ (p2 ∧p3 ∧p6)∨
(p3 ∧ p6)

• Denial:
(p4 ∧ p6) ∨ (p2 ∧ p4 ∧

p6)∨(p1∧p4∧p6)∨(p1∧
p5 ∧p6)∨ (p2 ∧p5 ∧p6)∨
(p5∧p6)∨(p3∧p5∧p6)∨
(p2 ∧p3 ∧p5 ∧p6)∨ (p1 ∧
p3 ∧ p5 ∧ p6)∨ (p2 ∧ p3 ∧
p6) ∨ (p6) ∨ (p2 ∧ p6) ∨
(p1 ∧ p6)

1. Σ = {‘{’, ‘\n’, ‘}’, ‘=’, ‘”’, object, subject, global, DENY LOGIN, yes, no,
RATIO, none, user, ROOTDIR}

2. V = {A00, A10, U10, A20, B20, A21, A11, U11, A23, A24, B24, I }
3. A00 → A10IA11

4. A10 → global ‘{’ ‘\n’ U10 ‘}’ ‘\n’
5. U10 → A20IA21|A20|A21|ε
6. A20 → DENY LOGIN ‘=’ ‘”’ B20 ‘”’ ‘\n’
7. B20 → yes | no
8. A21 → RATIO ‘=’ ‘”’ none ‘”’ ‘\n’
9. A11 → user subject ‘{’ ‘\n’ U11 ‘}’ ‘\n’

10. U11 → A23A24|A24

11. A23 → ROOTDIR ‘=’ ‘”’ object ‘”’ ‘\n’
12. A24 → DENY LOGIN ‘=’ ‘”’ B24 ‘”’ ‘\n’
13. B24 → yes | no
14. I → ε | ‘{’ I| ‘\n’ I| ‘}’ I| ‘=’ I| ‘”’ I

4.2 Languages and Scanners
After identifying the access control components of the applica-

tions, our prototype continued to generate specification languages
for their security-related configurations. Based upon these lan-
guages, scanners for recognizing access control policies from these
applications’ configuration files were also automatically created,
and evaluated in our experiments. Again, we use Apache and Bftpd
as examples here to elaborate this study.

Languages. ConfigRE first created a K-tree for each application
through annotating its semantic tree with the delimiters that linked
semantically-related fields together. The K-trees for Apache and
Bftpd are illustrated in Figure 4. From the K-trees, our proto-
type automatically generated specification languages for the appli-
cations. As an example, Table 2 describes the languages for Apache
and Bftpd, which accurately capture the syntactic relations among
individual access control components detected from these applica-
tions.

Evaluations of scanners. The languages generated by the pro-
totype were automatically converted into scanners by yacc [4].
These scanners were tested in our experiments on other configu-
ration files of these applications. In particular, we ran the scanner
for Apache on a configuration file used by a major university’s web
server, which contained 1341 lines of settings. Our scanner suc-
cessfully detected all configuration settings except those involving
SSL authentications and a policy that denies access to a file. This

is because both of them did not appear in the configuration file the
prototype used to generate the language. We manually checked the
access control policies the scanner identified, and found all of them
were correct.

We further evaluated other scanners using synthesized configu-
ration files. These files were constructed in a way that mingles the
settings related to access control with those not. Specifically, we
injected the configuration commands unrelated to security to those
that define access control components. We also randomly picked
up the names or addresses for subjects and objects. From the ex-
periments, we found that the scanners always correctly detected the
security policies from these files, as long as similar configurations
appeared in the files used for extracting configuration knowledge.

5. RELATED WORK
Misconfigurations are well-recognized to be one of the most se-

rious operator mistakes that affect performance, availability and
security of a computing system. This problem has been exten-
sively studied under the scenarios of configuration management.
For example, Glean infers correctness constraints for Registry [16];
Strider [30] compares the registry of a system with a “healthy” reg-
istry to detect potential misconfiguration; PeerPressure [28] further
extends the idea of Strider to correct misconfigurations through dif-
ferential analysis and statistical approaches. Other important re-
search includes Validation [21] and Chronus [31]. More recent
work is focused on automatic generation of correct configuration



files for a system using custom declared specifications. Examples
include the approach proposed by Zheng, et al [34], Cfengine [7],
LCFG and SmartFrog [5]. Besides the efforts from the research
community, software manufacturers also offer tools for checking
configurations through retrieving a database of known misconfig-
urations. A prominent example is the Microsoft Baseline Security
Analyzer [3]. Most of these approaches assume a priori knowledge
about system configurations in some forms, for example, correct
registries [30, 28], configuration templates [34] and the database of
known misconfigurations. Our approach aims at automatically dis-
covering such knowledge from an application’s executables. This is
of particular importance for checking the applications whose con-
figuration specifications are not well documented or even close.

Closely related to our research is the problem of protocol reverse
engineering, which has been intensively studied recently [12, 8,
18, 32]. Most of existing approaches are for automatic extraction
of protocol fields. For example, Discover [12] employs clustering
algorithms to recover fields from network traffic; Polyglot [8], Aut-
oformat [18] and the approach proposed by Wondracek et al [32]
all utilize dynamic taint analysis to detect protocol fields from the
applications knowing how to parse the protocol. Different from
these approaches, ConfigRE is designed for automatic reverse en-
gineering of program configurations, which requires semantically
understanding the roles played by individual fields in defining an
access-control policy. Wondracek et al [32] also discussed using
the parameters of API functions to understand the semantic mean-
ing of some protocol fields such as file name. However, this is
insufficient for our purpose because we also need to recognize the
semantic relations among individual fields, for example, the context
(such as the field 〈Files) under which the file name is specified.
In addition, our approach bridges the syntax-semantic gap to auto-
matically generate a language for misconfiguration detection. On
the other hand, those existing techniques can be used in configu-
ration reverse engineering for partitioning configuration files into
fields, as we did in our research.

Techniques for instruction-level taint tracking have been inten-
sively studied in these years. Numerous approaches have been
proposed. Prominent examples include TaintCheck [23], Taint-
Trace [9], Memcheck [26], RIFLE [27] and LIFT [25]. These tech-
niques are widely applied to analyze software vulnerabilities [6,
11], study malware [33], reverse engineer protocols [8, 32] and
generate protocol replayer [22]. While most of existing approaches
are based upon dataflow analysis, techniques for control-flow based
taint analysis have also been proposed. Examples include Dytan [10]
and the technique for dynamic spyware analysis [14]. These exist-
ing techniques can serve to improve the taint analyzer used in our
approach.

6. DISCUSSION
Our research on ConfigRE made the first step towards automatic

extraction of configuration knowledge from an application. In this
section, we discuss its limitations and the future research our work
could inspire.

The basic idea behind ConfigRE is general: it can be used to
handle not only text-based configuration files but also binary-based
files. However, our current implementation is oriented towards
text-based configurations for two reasons: first, the field extraction
technique is for processing text-based input streams; second, lan-
guage generation does not consider the delimiters specific to binary
configurations such as length fields. Research on the first problem
can benefit from the existing approaches for parsing binary proto-
cols [8, 32] though more work is expected to improve their effec-
tiveness. We will also improve our design for language generation

to accommodate the features of binary configuration, which can
lead to the solution to the second problem.

ConfigRE relies on control-flow based taint analysis to detect
configuration fields’ semantic relations. Control-flow taint analysis
is well-known to be hard, as it could cause a large amount of irrel-
evant data to be mistakenly tainted. Our current mitigation of the
problem is empirical, and could cause false positives, i.e., taint of
unrelated data, or false negatives, missing of the data that should be
tainted. Note that the false positives can be mitigated in the third
step of our approach, where candidate permission fields undergo a
rerun test. An improvement can be achieved through incorporating
into our approach existing control-flow taint analysis techniques,
such as Dytan [10].

In the presence of a large number of alternative values, the tech-
nique based upon rerun can become problematic, as far as perfor-
mance is concerned. A potential solution is to utilize static analysis
to check whether a field indeed affects the accomplishment of a
transaction, and rerunning an application only in the cases static
analysis fails.

An important problem worth intensive effort is the coverage of
an analysis: if some authorization settings do not appear in the con-
figuration files used in the analysis, their specifications may not be
discovered by our current approach. A technique that extracts an
entire authorization specification will be a step forward. Efforts
on this direction can be assisted by the existing techniques for ex-
ploring multiple executions [20]. However, these techniques are
pretty heavyweight, very time-consuming even for the programs of
moderate sizes. How to take advantage of configuration features to
improve their efficiency can be a nontrivial problem.

The current design of ConfigRE only considers the interactions
between the remote client and the local file system. There are many
other security-related configuration issues the follow-up research
could embark on: an example is discovery of the security settings
for downloading and executing a remote script. Another interesting
question is how to automatically detect the hidden configurations
of less than innocent programs such as Trojan horses. This can be
a very challenging problem, because these programs may contain
obfuscated code to discourage a binary analysis.

The prototype we implemented is not fully automatic. Human
intervention is needed to check the configuration fields it extracts.
This problem comes from the fact that existing field-extraction tech-
niques [8, 18, 32], which we built our prototype upon, cannot guar-
antee to correctly identify all configuration fields: occasionally,
they could miss some delimiters necessary for field identification.
As a result, we had to manually examine the fields discovered by
our prototype to eliminate the problems such as merger of two
fields into one. Moreover, the test request used in our research
was also manually adjusted to explore the security configurations
for multiple subject/object pairs. Such an adjustment is based upon
the information automatically discovered during an analysis, and
can be fully automated, as discussed in Section 3.2.

7. CONCLUSION
Knowledge of configuration file formats can have significantly

security implication. For example, it lays the foundation for au-
tomatic detection of security misconfigurations. However, such
knowledge is not well-documented for many applications, and be-
comes increasingly inaccessible due to the use of graphic user inter-
faces for indirect configurations. Effective solution to this problem
relies on automatic analysis of an application to reverse engineer
its configuration specification. As a first step toward this end, we
present in this paper a new technique called ConfigRE. Our ap-
proach first identifies individual configuration fields and their se-



mantic relations, and then detects the fields related to access control
components such as subjects, objects and permissions. Using such
information, ConfigRE automatically generates a specification lan-
guage for access control configurations. The language is further
converted into a scanner to check configuration files for the security
policies specified in an application. We evaluated ConfigRE using
real applications, which demonstrates the efficacy of our technique.
The future research includes extending our current design to handle
binary-based configurations and the policy specifications for more
complicated activities such as executing a script.
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