
1226 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 26, NO. 7, SEPTEMBER 2008

Auction-Based Resource Allocation for Cooperative
Communications

Jianwei Huang, Zhu Han, Mung Chiang, and H. Vincent Poor

Abstract—Distributed and efficient resource allocation is criti-
cal for fully realizing the benefits of cooperative communications
in large scale communication networks. This paper proposes two
auction mechanisms, the SNR auction and the power auction,
that determine relay selection and relay power allocation in a
distributed fashion. A single-relay network is considered first,
and the existence and uniqueness of the Nash Equilibrium
(i.e., the auction’s outcome) are proved. It is shown that the
power auction achieves the efficient allocation by maximizing
the total rate increase, and the SNR auction is flexible in trading
off fairness and efficiency. For both auctions, the distributed
best response bid updates globally converge to the unique
Nash Equilibrium in a completely asynchronous manner. The
analysis is then generalized to networks with multiple relays,
and the existence of the Nash Equilibrium is shown under
appropriate conditions. Simulation results verify the effectiveness
and robustness of the proposed algorithms.

Index Terms—Cooperative communications, game theory, auc-
tion theory, resource allocation, wireless networks

I. INTRODUCTION

COOPERATIVE communications take advantage of the
broadcast nature of wireless channels, uses relay nodes

as virtual antennas, and thus realizes the benefits of multiple-
input-multiple-output communications in situations where
physical multiple antennas are difficult to deploy (e.g., small
sensor nodes). Various cooperative protocols have been pro-
posed (e.g., [1]–[5]), such as amplify-and-forward, decode-
and-forward, and estimate-and-forward. Although the physical
layer performance of cooperative communications has been
extensively studied in the context of small networks from
an information theoretic point of view, there are still many
open problems in terms of how to realize its full benefits in
large-scale networks through efficient resource allocation. In
particular, such performance optimization requires the knowl-
edge of global channel information (including that for source-
destination, source-relay, and relay-destination channels) and
heterogeneous resource constraints among users. Centralized
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information exchange and coordination, however, typically do
not scale well with the network size This motivates our study
of distributed resource allocation algorithms for cooperative
communications.

Resource allocation in cooperative networks has attracted
attention from the research community only recently. Related
work in this area can be divided into two categories: central-
ized (e.g., [6], [7]) and distributed (e.g., [8]–[12]). For exam-
ple, in [6], Nosratinia and Hunter proposed a centralized ap-
proach for grouping and partner selection to achieve maximal
network-wide diversity. In [7], Ng and Yu designed centralized
resource allocation algorithm for power control, bandwidth
allocation, relay selection and relay strategy choice in an
Orthogonal Frequency-Division Multiple Access (OFDMA)
based relay network. Bletsas et al. in [8] proposed a distributed
relay selection scheme, where one user chooses the “best”
end-to-end path among many relays based on instantaneous
channel measurements. In [9], Savazzi and Spagnolini con-
sidered distributed power control for a single user multiple
hop transmission. Himsoon et al. in [10] investigated the
relay selection and power management schemes for lifetime
extension in wireless sensor networks. Annavajjala et al. in
[11] studied the optimal power control problem for different
cooperative protocols under high Signal to Interference-plus-
noise Ratio (SINR) approximation for a single user and
multiple relays. Wang et al. in [12] investigated resource allo-
cation for cooperative transmission using Stackelberg games.
However, the above work did not consider distributed resource
allocation for multiple users (source-destination pairs) and
multiple relays, where each user is allowed to use more than
one than one relay and each relay can help more than one
users.

In this paper, we focus on answering the following two
questions: 1) “When to relay”, i.e., when is it beneficial for
a user to use the relay(s)? and 2) “How to relay”, i.e., how
should a user choose the relay(s) and how should each relay
allocate its resource (transmission power) among multiple
competing users? We address these two issues by designing an
auction-based resource allocation framework. Auction theory
[13] has recently been introduced to several areas of wireless
communications (e.g., time slot allocation [14], power control
[15], and cognitive radio networking [16]). To the best of
our knowledge, this paper is the first work that applies
auction theory in designing resource allocation schemes for
cooperative communications.

We consider two network objectives: fairness and efficiency.
Both are difficult to achieve even in a centralized fashion.
This is because users’ rate increases are non-smooth and
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non-concave in the relay’s transmission power, and thus the
performance optimization problem is non-convex. We propose
two auction mechanism, the SNR auction and the power
auction, which achieve the desired network objectives in a
distributed fashion under certain technical conditions. In both
auctions, each user decides “when to relay” based on a simple
threshold policy that is locally computable. The question of
“how to relay” is answered by a simple weighted proportional
allocation among users who use the relay. The power auction
achieves the efficiency allocation, and the SNR auction offers a
flexible approach to achieve various tradeoffs between fairness
and efficiency. Moreover, we show that the desirable outcomes
of the auctions (i.e., Nash Equilibrium) can be achieved by
users’ greedy best response updates with local information
in a completely asynchronous manner. The results are quite
general and are applicable to wireless networks with multiple
relays at different locations with different resource constraints.
Simulation results demonstrate optimality, fairness, and con-
vergence of the proposed auctions.

Next we present the system model and network objectives
in Section II. In Section III, two auction mechanisms are
proposed, their mathematical properties are analyzed, and the
algorithms for achieving the Nash Equilibrium in a distributed
fashion are shown. Extensions to the multiple relay case are
discussed in Section IV. Simulation results are shown in
Section V and we conclude in Section VI.

II. SYSTEM MODEL AND NETWORK OBJECTIVES

A. System Model

We focus our discussions on the amplify-and-forward (AF)
cooperation protocol [2] in this paper. Other cooperation
protocols can be analyzed in a similar fashion. We begin
by considering a simple system model as in Fig. 1, where
there are one relay node r and a set I = (1, ..., I) of source-
destination pairs (i.e., users). Each user i includes a source
node si and a destination node di. The case of multiple relays
will be discussed in Section IV.

We assume that different users transmit their signals us-
ing non-overlapping frequency bands and thus they do not
interfere with each other. For each user i, the cooperative
transmission consists of two phases.

In Phase 1, source si broadcasts its information so that it can
be received by both destination di and relay r, respectively,
as

Ysi,di =
√

PsiGsi,diXsi + ndi , (1)

and
Ysi,r =

√
PsiGsi,rXsi + nr. (2)

Here Psi represents the fixed transmit power of source si,
Xsi is the transmitted information symbol with unit energy at
source si, Gsi,di and Gsi,r are the channel gains from si to
destination di and relay r, respectively, and ndi and nr are
additive white Gaussian noises. Without loss of generality, we
assume that the noise level is the same for all links and is
denoted by σ2. We also assume that the transmission frame
length is small compared with the channel coherence time such
that all channel gains are fixed during the time of interest. The

Fig. 1. System model for cooperative transmission (single relay case)

signal-to-noise ratio (SNR) obtained at destination di in Phase
1 is

Γsi,di =
PsiGsi,di

σ2
. (3)

In Phase 2, relay r amplifies Ysi,r with power Pr,di and
forwards it to destination di. The received signal at destination
di in Phase 2 is

Yr,di =
√

Pr,diGr,diXr,di + n′
di

, (4)

where

Xr,di =
Ysi,r

|Ysi,r|
(5)

is the unit-energy transmitted signal that relay r receives from
source si in Phase 1, Gr,di is the channel gain from relay r
to destination di, and n′

di
is the received noise at Phase 2.

Substituting (2) into (5), we can rewrite the received signal
(4) as

Yr,di =

√
Pr,diGr,di(

√
PsiGsi,rXsi,di + nr)√

PsiGsi,r + σ2
+ n′

di
. (6)

Using (6), the relayed SNR at destination di in Phase 2 is

Γsi,r,di =
Pr,diPsiGr,diGsi,r

σ2(Pr,diGr,di + PsiGsi,r + σ2)
. (7)

Now we are ready to calculate the achievable rate at
destination di. At a given transmission time, user i has two
choices:

1) Use Phase 1 only and achieve rate (in bps/Hz)

Rsi,di = W log2 (1 + Γsi,di) , (8)

where W is the signal bandwidth.
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Fig. 2. Rate increase as a function of relay transmission power

2) Use both phases and achieve rate (at the output of
maximal ratio combining)

Rsi,r,di =
1
2
W log2 (1 + Γsi,di+Γsi,r,di) . (9)

The coefficient 1/2 is due to the fact that cooperative
transmission uses half of the resources (e.g., time slots,
frequency bands, orthogonal codes). Since Γsi,r,di is the
extra SNR increase compared with the direct transmis-
sion, we also denote

�SNRi � Γsi,r,di. (10)

Comparing these two choices, the rate increase that user i
can obtain comparing with the case of no relay is

�Ri = max {Rsi,r,di − Rsi,di, 0} , (11)

which is nonnegative since the source can always choose not
to use the relay and thereby obtain zero rate increase. �Ri is a
function of the channel gains of the source-destination, source-
relay and relay-destination links, as well as the transmission
power of the source and the relay. In particular, �Ri is a
non-decreasing, non-smooth, and non-concave function of the
relay transmission power Pr,di , as illustrated in Fig. 2.

We assume that the source transmission power Psi (for
all users i) and the relay’s total power P are fixed. The
relay determines the allocation of its transmission power
among users, P r � (Pr,di , ∀i ∈ I), such that the total power
constraint is not violated, i.e.,

P r ∈ Pr �
{

P r

∣∣∣∣∣
∑
i∈I

Pr,di ≤ P, Pr,di ≥ 0, ∀i ∈ I
}

. (12)

B. Network Objectives: Efficiency and Fairness

We consider two different network objectives: efficiency and
fairness. An efficient power allocation P efficient

r maximizes
the total rate increase of all users, i.e. solves the following
problem,

max
P r∈Pr

∑
i∈I

�Ri (Pr,di) . (13)

In many cases, an efficient allocation discriminates against
users who are far away from the relay. To avoid this, we
also consider a fair power allocation P fair

r , which solves the

following problem,

min
P r∈Pr

c (14)

subject to
�Ri (�SNRi)

∂ (�SNRi)
= cqi · 1{�SNRi>0}, ∀i ∈ I.

Here 1{·} is the indicator function, and qi is a user dependent
priority parameter. When qi = 1 for each i, all users who use
the relay will have the same marginal utility, which leads to
strict fairness among users.1 It is possible to assign different
weights to different users to achieve different Qualities of
Service. One such example is to let

qi =
W

2 ln 2 (1 + Γsi,di)
=

∂ � Ri (�SNRi)
∂ (�SNRi)

∣∣∣∣
�SNRi=0

, (15)

i.e., qi represents user i’s eagerness to gain extra SNR increase
by using the relay. The intuition behind Problem (14) is that
for all users that choose to use the relay, the corresponding
�SNR should be maximized subject to the “weighted marginal
utility equalization” condition. This can be translated into the
minimization of the common coefficient c due to the concavity
of �Ri in terms of �SNRi in the proper regime. Numerical
examples for both equal weights and different weights are
shown in Section V.

We notice that a fair or efficient allocation is Pareto optimal,
i.e., no user’s rate can be further increased without decreasing
the rate of another user. However, an efficient or fair allocation
need not fully utilize the resources at the relay, i.e.,

∑
i∈I Pr,di

can be less than P . This could happen, for example, when
the relay is far away from all users so that allowing the
relay to transmit half of the time will only decrease the total
achievable rate. This is very different from most previous
network resource allocation problems (e.g. [16]), in which the
network performance is maximized only if the resource is fully
utilized.

Since �Ri (Pr,di) is non-smooth and non-concave, both
Problems (13) and (14) are difficult to solve even in a
centralized fashion. In the rest of the paper, we will propose
two auction mechanisms, and quantify the technical conditions
under which the auction mechanisms solve the above problems
in a distributed fashion.

III. AUCTION MECHANISMS

An auction is a decentralized market mechanism for al-
locating resources. The essence of an auction is a game,
where the players are the bidders, the strategies are the bids,
and both allocations and payments are functions of the bids.
One well known auction is the Vickrey-Clarke-Groves (VCG)
auction [13], which requires gathering global information
from the network and performing centralized computations.
To overcome the limitation of the VCG auction, we propose

1Most work on cooperative networks is based on information theoretic
analysis, with the focus on calculating the achievable capacity (i.e., users’ rate
increases). Although we follow the same tradition in this paper, the proposed
algorithms can be used to achieve other network objectives, such as α-fairness,
that are more commonly used in the networking community.
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two simple auctions, the SNR auction and the power auction,
both of which have simple rules as described next.2

SNR Auction and Power Auction

• Information: Besides the public and local information
(i.e., W, P, σ2, P si

, Gsi,di), each user i also knows the
channel gains Gsi,r and Gr,di , through feedback from
relay r. The relay announces a positive reserve bid β > 0
and a price π > 0 to all users before the auction starts.

• Bids: User i submits a scalar bi ≥ 0 to the relay.
• Allocation: The relay allocates transmit power according

to

Pr,di =
bi∑

j∈I bj + β
P. (16)

• Payments: In an SNR auction, source i pays the relay
Ci = πqi � SNRi, where qi is a user-specific parameter.
In a power auction, source i pays the relay Ci = πPr,di .

A bidding profile is defined as the vector containing the
users’ bids, b = (b1, ..., bI). The bidding profile of user i’s
opponents is defined as b−i = (b1, ..., bi−1,bi+1, ..., bI), so
that b = (bi; b−i) . User i chooses bi to maximize its payoff

Ui (bi; b−i, π) = �Ri (Pr,di (bi; b−i)) − Ci (bi; b−i, π) .
(17)

For notational simplicity, we omit the dependence on β and
other system parameters.

If the reserve bid β = 0, then the resource allocation in
(16) depends only on the ratio of the bids. A bidding profile
kb (for any k > 0) leads to the same resource allocation as
b, which is not desirable in practice. That is why we need a
positive reserve bid. However, the value of β is not important
as long as it is positive. For example, if we increase β to
k′β, then users can simply scale b to k′b (for any k′ > 0),
which leads to the same resource allocation. For simplicity,
we choose β = 1 in all the simulations in Section V.

The desirable outcome of an auction is called a Nash
Equilibrium (NE), which is a bidding profile b∗ such that no
user wants to deviate unilaterally, i.e.,

Ui

(
b∗i ; b

∗
−i, π

)
≥ Ui

(
bi; b∗−i, π

)
, ∀i ∈ I, ∀bi ≥ 0. (18)

Define user i’s best response (for fixed b−i and price π) as

Bi (b−i, π) =
{

bi

∣∣∣∣bi = arg max
b̃i≥0

Ui

(
b̃i; b−i, π

)}
, (19)

which in general could be a set. An NE is also a fixed point
solution of all users’ best responses. We would like to answer
the following four questions for both auctions: 1) When does
an NE exist? 2) When is the NE unique? 3) What are the
properties of the NE? 4) How can we reach the NE in a
distributed fashion?

2Both auctions are similar to the ones proposed in [16]. However, here
we consider the problem of relay resource allocation in a multiple-hop
wireless network, which is different from the sing-hop wireless network
considered in [16]. For example, due to the unique characteristics of the
relay network, especially the non-smooth and non-concave nature of the rate
increase function (e.g., Fig. 2), calculating the best response functions here
demands a completely new method and leads to a very different threshold
policy. We also consider the multiple relay case in Section IV, whereas [16]
considers the problem of allocating resource only at a single measurement
point.

π

Bi (b− i , π)

πs
i π̂s

i

Fig. 3. User i’s best response in an SNR auction if πs
i < π̂s

i .

A. SNR Auction

Let us first study the users’ best responses (e.g., (19)) in
the SNR auction. For each user i, there exist two critical price
values, πs

i and π̂s
i , where

πs
i � W

2qi ln 2
(

1 + Γsi,di+
PGr,di

Psi
Gsi,r

(Psi
Gsi,r+PGr,di

+σ2)σ2

) , (20)

and π̂s
i is the smallest positive root of

gs
i (π) � πqi (1 + Γsi,di)

− W

2

(
log2

(
2πqi ln 2

W
(1 + Γsi,di)

2

)
+

1
ln 2

)
. (21)

Function gs
i (π) represents the maximum payoff a user can

achieve if it decides to use the relay. It is clear that when
gs

i (π) < 0, the user is better off by not using the relay. Both
πs

i and π̂s
i can be calculated based on local information (i.e.,

no information exchange is needed among different users), and
one could be larger than the other depending on the specific
system parameters.
Theorem 1: In an SNR auction, user i’s unique best re-

sponse function is

Bi (b−i, π) = fs
i (π)

⎛
⎝∑

j �=i

bj + β

⎞
⎠ . (22)

If π̂s
i > πs

i , then (23). If π̂s
i ≤ πs

i , then fs
i (π) = ∞ for

π < π̂s
i and fs

i (π) = 0 for π ≥ π̂s
i .

Let us consider the intuition behind (22) and (23). First
consider the case where π̂s

i > πs
i , in which case Bi (b−i, π)

is illustrated in Fig. 3. The price π̂s
i determines when it is

beneficial for user i to use the relay. With a price larger than
π̂s

i , user i cannot obtain a positive payoff from the auction
no matter what bid it submits; thus it should simply use
direct transmission and achieve a rate of Rsi,di . As a result,
Bi (b−i, π) is discontinuous at π̂s

i . When π ∈ (πs
i , π̂

s
i ), user

i wants to participate in the auction, and its best response
depends how much other users bid (b−i). When the price is
smaller than πs

i , user i becomes so aggressive that it demands
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fs
i (π) =

⎧⎪⎪⎨
⎪⎪⎩

∞, π ≤ πs
i

(Psi
Gsi,r+σ2)σ2

PGr,di
Psi

Gsi,r

W
2πqi ln 2−1−Γsi,di

−(Psi
Gsi,r+PGr,di

+σ2)σ2
, π ∈ (πs

i , π̂
s
i )

0, π ≥ π̂s
i

. (23)

a large SNR increase that cannot be achieved even if all the
resource is allocated to it. This is reflected by an infinite bid
in (23). Next we consider the second case where π̂s

i ≤ πs
i .

In this case, user i either cannot obtain a positive payoff or
cannot achieve the desired SNR increase, and thus the best
response is either 0 or ∞. A detailed proof of Theorem 1 can
be found in Appendix A.

Combining (16) and (22), we know that if an NE exist, the
relay power allocated for user i is

Pr,di (π) =
fs

i (π)
fs

i (π) + 1
P, (24)

and
∑

i∈I
fs

i (π)
fs

i (π)+1 < 1. The strict inequality is due to the
positive reserve bid β, and later we will show that the resulting
resource waste can be made arbitrarily small under appropriate
conditions.

Next, we need to find the fixed point of all users’ best
responses, i.e., the NE. A trivial case would be π̂s

i ≤ πs
i for

all users i, in which case there exists a unique all-zero NE
b∗ = 0 when π ≥ maxi π̂s

i . The more interesting case would
be the following.
Definition 1: A network is SNR-regular if there exists at

least one user i such that π̂s
i > πs

i .
In an SNR-regular network, at least one user is interested

in using the relay. A randomly generated network with many
users and a relay will be SNR-regular with high probability,
unless all users have good direct gains or the relay is far away
from the users.
Theorem 2: Consider an SNR auction in an SNR-regular

network. There exists a threshold price πs
th such that a unique

NE exists if π > πs
th; otherwise, no NE exists.

A proof of Theorem 2 is given in Appendix B. Unlike the
results in [16], the unique NE in Theorem 2 might not be a
continuous function of π, due to the discontinuity of the best
response function as shown in Fig. 3. This has been observed
in the simulation results described in Section V. In particular,
the unique NE could be all zero for any price π > πs

th, even
if the network is SNR-regular.

It can be seen that the “weighted marginal utility equal-
ization” property of a fair allocation (i.e., the constraint in
Problem (14)) is satisfied at the NE of the SNR auction.
However, there is always some “resource waste” due to the
positive reserve bid β (i.e., some power will never be allocated
to any user). Nevertheless, by choosing a price π larger than
but very close to πs

th, we could reduce the resource waste to
a minimum and approximate the fair allocation. Formally, we
define a reduced feasible set parameterized by δ as

Pδ
r �

{
P r

∣∣∣∣∣
∑
i∈I

Pr,di ≤ P (1 − δ) , Pr,di ≥ 0, ∀i ∈ I
}

.

(25)

Theorem 3: Consider an SNR auction in an SNR-regular
network, where fs

i (π) is continuous at πs
th for each user i,

and positive and finite for at least one user. There exists a
δ′ > 0 such that for any 0 < δ < δ′, there exists a price πs,δ

under which the unique NE achieves the fair allocation P fair
r

with a reduced feasible set Pδ
r .

A proof is given in Appendix C. A sufficiently small δ
makes sure that we deal with a regime in which fs

i (π) is
continuous for all users. This is also desirable in practice since
we want to minimize the amount of resources wasted.

Finally, we want to mention that the threshold price πs
th

is difficult to find analytically. This means that the price π
needs to be adjusted through a “trial-and-error” process. In
particular, the price needs to be increased when users’ bids are
too large and decreased when the resource waste due to β is
too large. Since users’ best responses in (23) are monotonically
decreasing in price, a bi-section search of the price can lead
to the desirable outcome.

B. Power Auction

For a power auction, we can also derive a closed-form
solution for the best response functions, which are much more
complicated compared with those for the SNR auction. To sim-
plify the notations, we define P̃si,r � PsiGsi,r. Furthermore,
we define two functions (zi (π) and gp

i (π)) and two critical
prices (πp

i and π̄p
i ) in (26) to (29) (where (26) and (27) are

located at the top of the following page):

π̄p
i � WPsiGr,diGsi,r

2σ2 ln 2
(
P̃si,r + σ2

)
(1 + Γsi,di)

, (28)

and

gp
i (π) =

W

2
log2

⎛
⎝1 + Γsi,di +

zi (π) P̃si,r

σ2
(
zi (π) + P̃si,r + σ2

)
⎞
⎠

− Rsi,di − π
zi (π)
Gr,di

. (29)

Proposition 1: gp
i (π) is strictly decreasing in π ∈ [πp

i , π̄
p
i ] .

A proof is given in Appendix D. It can also be shown
that gp

i (0) = W
2 log2

(
1 + Γsi,di+

Psi
Gsi,r

σ2

)
− Rsi,di and

gp
i (π̄p

i ) < 0. If gp
i (0) > 0, then there exists a unique root for

gp
i (π) within (0, π̄p

i ], and we denote it as π̂p
i . If gp

i (0) ≤ 0,
we can simply let π̂p

i = 0. Then we have the following result:
Theorem 4: In a power auction, user i’s unique best re-

sponse function is

Bi (b−i, π) = fp
i (π)

⎛
⎝∑

j �=i

bj + β

⎞
⎠ . (30)
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z1,i = (P̃si,r + σ2)
(
P̃si,r + 2σ2 (1 + Γsi,di)

)
,

z2,i(π) = 4
(
P̃si,r + σ2 (1 + Γsi,di)

)(
P̃si,r + σ2

) (
W

2π ln 2
P̃si,rGr,di − σ2

(
P̃si,r + σ2

)
(1 + Γsi,di)

)
,

zi (π) =
−z1,i +

√
z2
1,i + z2,i(π)

2
(
P̃si,r + σ2 (1 + Γsi,di)

) . (26)

πp
i �

WP̃si,rGr,di

(
PsiGsi,r + σ2

)
2 ln 2

[
σ2 (1 + Γsi,di)

(
PGr,di + P̃si,r + σ2

)
+ P̃si,rPGr,di

] (
PGr,di + P̃si,r + σ2

) , (27)

If π̂p
i > πp

i , then

fp
i (π) =

⎧⎪⎨
⎪⎩

∞, π < πp
i

zi(π)
PGr,di

−zi(π) , π ∈ [πp
i , π̂

p
i ]

0, π > π̂p
i

. (31)

If π̂p
i ≤ πp

i , then fp
i (π) = ∞ for π < π̂p

i and fp
i (π) = 0 for

π ≥ π̂p
i .

The proof of Theorem 4 is similar to that of Theorem 1
and thus is omitted due to space limitations. Theorem 4 is
applicable for the general SNR regime. In the case of low
SNR, i.e., when Γsi,di and �SNRi (bi, b−i) are small for all
i, we have

W log2 (1 + Γsi,di+ � SNRi (bi, b−i))

≈ W

ln 2
(Γsi,di+ � SNRi (bi, b−i)) . (32)

In this case, we can show that π̂p
i = 0 when Gsi,di > Gsi,r. In

other words, when the direct channel gain between source and
destination is larger than the channel gain between source and
relay, a user will never use the relay in the low SNR regime.

In terms of the existence, uniqueness and properties of the
NE, we have the following results, which are similar in spirit
to Theorems 2 and 3 for the SNR auction. The detailed proofs
are omitted.
Definition 2: A network is power-regular if π̂p

i > πp
i for at

least one user i.
Theorem 5: Consider a power auction in a power-regular

network. There exists a threshold price πp
th > 0 such that a

unique NE exists if π > πp
th; otherwise, no NE exists.

Theorem 6: Consider a power auction in a power-regular
network, where fp

i (π) is continuous at πp
th for each user i,

and positive and finite for at least one user. There exists a
δ′ > 0 such that for any 0 < δ < δ′, there exists a price πp,δ

under which the unique NE achieves the efficient allocation
P efficient

r with a reduced feasible set Pδ
r .

We can see that for both auctions, the conditions for the
existence, uniqueness, and effectiveness (fairness for SNR
auction and efficiency for power auction) are quite similar.
This is due to the linearity of the best response functions in
both cases, which again is due to the weighted proportional
allocation rule of the relay power in (16).

C. Distributed Iterative Best Response Updates

The last issue we want to address is how the NE can
be reached in a distributed fashion. It is clear that the best
response function in (23) can be calculated in a distributed
fashion with limited information feedback from the relay.
However, each user does not have enough information to
calculate the best responses of other users, which prevents
it from directly calculating the NE. Nevertheless, the NE can
be achieved in a distributed fashion if we allow the users to
iteratively update their bids based on best response functions
in an asynchronous fashion.

Let us first consider the synchronous updates, where users
update their bids b (t) at time t according to the best response
functions bi (t) = Bi (b−i (t − 1) , π), based on other users’
bids b−i (t − 1) at time t − 1. Taking the SNR auction as an
example, each user updates according to

bi (t) = fs
i (π)

⎛
⎝∑

j �=i

bj (t − 1) + β

⎞
⎠ . (33)

To implement (33) directly, each user i needs to know the
sum of all other users’ bids, which may not be possible in
practice. However, we can show that (33) can be written in
an equivalent form as

bi (t) = fs,d
i (π, t − 1) bi (t − 1) , (34)

where (35) applies. It can be seen that fs,d
i (π) can be calcu-

lated locally by user i. When π ∈ [πs
i , π̂

s
i ], fs,d

i (π) depends
on the difference between �SNRi (bi (t − 1) , b−i (t − 1)) and(

W
2π ln 2 − 1 − Γsi,di

)
, and fs,d

i (π) does not equal 1 unless
the two terms are the same. For the power auction, we can
similarly show that the best response update can be written as

bi (t) = fp,d
i (π, t − 1) bi (t − 1) , (36)

where fp,d
i (π, t − 1) is similar to (35) (with more complicated

notation) and is also locally computable.
In practice, users may not update their bids in each time slot.

Therefore, we need to prove the convergence of the algorithm
under asynchronous updates. The complete asynchronous best
response update algorithm is given in Algorithm 13, where

3[x]ba = max {min {x, b} , a}. fd
i = fs,d

i or fp,d
i depending on which

auction the users participate in.
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fs,d
i (π, t − 1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∞, π < πs
i

P Gr,di
Psi

Gsi,r

�SNRi(bi(t−1),b−i(t−1))
−σ2(PGr,di

+Psi
Gsi,r+σ2)

P Gr,di
Psi

Gsi,r

W
2πqi ln 2−1−Γsi,di

−σ2(PGr,di
+Psi

Gsi,r+σ2)
, π ∈ [πs

i , π̂
s
i ]

0, π > π̂s
i

(35)

each user i updates its bid only if the current time slot belongs
to a set Ti, which is an unbounded set of time slots. For
example, Ti = {1, 3, 7, ...} means that user i updates bi at
time slot 1, 3, 7, etc. We make a very mild assumption that
the asynchronism of the updates is bounded, i.e., there exists
a finite but sufficiently large positive constant B (called the
asynchronism measure [17, pp. 481]) such that

∀t1 ∈ Ti, ∃t2 ∈ Ti, t2 − t1 ≤ B, ∀i ∈ I. (37)

From (37), each user updates its bid at least once during any
time interval of length B slots. The exact value of B is not
important and need not be known by the users.

Algorithm 1 Asynchronous Best Response Updates of Bids
1: t = 0.
2: Each user i randomly chooses a feasible bi (0) ∈

[
bi, b̄i

]
.

3: t = t + 1.
4: for each user i ∈ I
5: if t ∈ Ti then
6: bi (t) =

[
fd

i (π, t − 1) bi (t − 1)
]b̄i

bi
.

7: end if
8: end for
9: Go to Line 3.

Theorem 7: If there exists a unique nonzero NE in the SNR
or power auction, there always exists a lowerbound bid vector
b = {bi}i∈I and an upperbound bid vector b̄ =

{
b̄i

}
i∈I ,

under which Algorithm 1 globally converges to the unique
NE.

In practice, it is sufficient to choose b to be a sufficiently
small and positive vector and b̄ to be a sufficiently large and
finite vector. To prove Theorem 7, we can first verify that the
best response update in (33) is in fact a standard interference
function [19], and the rest of the proof is similar to that of
Theorem 4 in [19].

IV. EXTENSIONS TO MULTIPLE RELAY NETWORKS

The proposed auction-based resource allocation algorithms
can be generalized to networks with multiple relays. Let
us define the set of relays as K = {1, ..., K}. Each relay
k ∈ K announces a price πk and a reserve bid βk, without
knowing the prices and reserve bids of other relays. Each user
i ∈ I submits a nonnegative bid vector bi = {bik}k∈K, one
component for each relay. Based on the bids, relay k allocates
user i with transmission power

Prk,di =
bik∑

j∈I bjk + βk
Pk, (38)

where Pk is the fixed total transmission power of relay k. This
leads to an SNR increase of user i of

�SNRik = Γsi,rk,di =
Prk,diPsiGrk,diGsi,rk

σ2(Prk,diGrk,di + PsiGsi,rk
+ σ2)

.

(39)
The total information rate that user i achieves is

Rsi,r,di =
W log2 (1 + Γsi,di +

∑
k �SNRik)∑

k 1{�SNRik>0} + 1
. (40)

This includes a special case in which user i does not use
any relay (i.e., �SNRik = 0 for all k ∈ K). It is clear that
�SNRik > 0 if and only if bik > 0. Notice that using more
relays leads to higher total SNR increase

∑
k �SNRik , but also

leads to a smaller coefficient 1/
(∑

k 1{�SNRik>0} + 1
)
. User

i needs to compare the total achievable rate under difference
choices of relays, and choose one that yields the highest rate
increase.

We first consider the SNR auction where user i’s payment
is Ci =

∑
k πkqik � SNRik.

Theorem 8: In an SNR auction with multiple relays, a user
i either does not use any relay, or only uses one relay rk(i) with
the smallest weighted price, i.e., k(i) = arg mink∈K πkqik .

Theorem 8 can be proved by examining the first order
conditions that need to be satisfied at the NE. In case there
are multiple relays that announce the same smallest weighted
price, user i can randomly choose one of them. The choice of
relay can be made by a user before knowing other users’ bids.
This implies that we can divide a multiple-relay network into
K + 1 clusters of nodes: each of the first K clusters contains
one relay node and the users who use this relay, and the last
cluster contains users that do not use any relay. Then we can
analyze each cluster independently as a single-relay network
as in Section III-A.

Now consider the power auction where user i’s payment
is Ci =

∑
k πkPrk,di . There are several key differences here

compared with the SNR auction. First, a user may choose to
use multiple relays simultaneously here. User i’s best response
can be written in the following linear form:

Bi,k (b−i,k, π) = fp
i,k (π)

⎛
⎝∑

j �=i

bj,k + βk

⎞
⎠ , ∀k ∈ K. (41)

There are two key differences here compared with the single-
relay power auction. First, to calculate fp

i,k (π), user i needs

to consider a total of
∑K

l=0

(
K
l

)
cases of choosing relays.

For example, when there are two relays in the network, a
user needs to consider four cases: not using any relay, using
relay 1 only, using relay 2 only, and using both relays. For
the given relay choice in case n, it calculates the linear
coefficients fp,n

i,k (π) for all k in closed-form (also involves
threshold policy similar as in the SNR auction) and the
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Fig. 4. A two-user cooperative network

corresponding rate increase �Rn
i . Then it finds the case

that yields the largest payoff, n∗ = argmaxn �Rn
i , and

sets fp
i,k (π) = fp,n∗

i,k (π) ∀k. Second, the linear coefficient
fp

i,k (π) is dependent on the prices announced by all relays.
For example, a large πk or a small πk′ (k′ 
= k) may lead to
fp

i,k (π) = 0, i.e., user i chooses not to use relay rk.
Similar to the single relay power auction, we can also

calculate a threshold price πp
k,th for relay rk. In this case,

we assume that all relays except rk announce infinitely high

prices, and then calculate πp
k,th such that

∑
i∈I

fp
i,k(πk)

fp
i,k(πk)+1

< 1

when πk > πp
k,th, and

∑
i∈I

fp
i,k(πk)

fp
i,k(πk)+1

≥ 1 when πk ≤ πp
k,th.

Corollary 1: In a power auction with multiple relays, there
exists an NE if πk > πp

k,th for each k.
On the other hand, necessary condition for the existence

of an NE as well as conditions for uniqueness are not
straightforward to specify, and are left for future research.

Finally, note that if there exists a unique NE in the SNR auc-
tion or power auction with multiple relays, the asynchronous
best response updates of the users will globally converge to
that NE.

V. SIMULATION RESULTS

For illustration purposes, here we provide simulation results
for a single relay network. We first simulate two auction
mechanisms for a two-user network. As shown in Fig. 4, the
locations of the two sources (s1 and s2) and two destinations
(d1 and d2) are fixed at (200m,-25m), (0m,25m), (0m,-25m),
(200m,25m). The x coordinate of the relay node r at 80m,
and its y coordinate varies within the range [-200m,200m]. In
the simulation, the relay moves along the dotted line. The
propagation loss factor is set to 4, and the channel gains
are distance based (i.e., time-varying fading is not considered
here). The transmit power between a source and its destination
is Pi = 0.01W, the noise level is σ2 = 10−11W, and the total
power of the relay node is P = 0.1W.

In Fig. 5, we show the individual rate increases of both users
in both auctions. The weights in the SNR auction are chosen as
qi = 1 for each user i. We first consider the power auction. The
individual rate increases under the power auction are similar as
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Fig. 5. Individual rate increase vs. relay location (y-axis) for an SNR auction
and a power auction (users have equal weights in the SNR auction).

that achieved under a VCG auction (not shown here) and thus
are efficient. Since the relay movement trajectory is relatively
closer to source s2 than to source s1, user 2 achieves an overall
better performance compared with user 1. In particular, user 2
achieves a peak rate increase of 1.35 bps/Hz when the relay is
at location 25m (y-axis), compared with the peak rate increase
of 0.56 bps/Hz achieved by user 1 when the relay is at location
-25m. Things are very different in the SNR auction, where
the resource allocation is fair. In particular, since the distance
between a source and its destination is the same for each of
the users, both users achieve the same positive rate increases
when they both use the relay. This is the case when the relay
is between locations -60m and 10m. At other locations, users
simply choose not to use the relay since they cannot both
get equal rate increase while obtaining a positive payoff. This
shows the tradeoff between efficiency and fairness.

In Fig. 6, we show the individual rate increases for two
auctions, with the weights in the SNR auction set to q1 =
0.5 and q2 = 1. Here user 2 achieves a higher rate increase
than user 1 in the SNR auction, due to its higher weight. By
adjusting the weights of different users, the SNR auction can
achieve different tradeoffs between fairness and efficiency.

Next, we consider the case where there are 20 users in
the network, with their source nodes and destination nodes
randomly and uniformly located within the square field that
has the same range of [-150m,150m] on both the x-axis and
the y-axis. A single relay is fixed at the location (0m,0m). We
change the total transmission power P of the relay from 0.04
W to 1 W. Figs. 7 and 8 show the corresponding simulation
results. Each point in the figures represents the averaged result
over 100 randomly generated network topologies. All users
have the same weights in SNR auction. With an increasing
amount of resource at the relay node, the total network rate
increase improves in both auctions (Fig. 7), and the power
auction achieves higher rate increase than the SNR auction.
Fig. 8 shows the variance of the rate increase (among the
users with positive rate increase), and it is clear that the SNR
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auction achieves a fairer resource allocation as indicated by
the almost zero variance in all cases.

Finally, we show the convergence of Algorithm 1. We
consider a three user network, where the three transmitters are
located at (100m,-25m), (-100m,25m) and (100m,5m), and the
three receivers are located at (-100m,25m), (100m,25m) and
(-100m,5m). The relay is located at (0m,-2m). We simulate
the SNR auction in this case. Three users randomly and
independently choose to update their own bids in each time
slot with probability 0.1, 0.5 and 1, respectively. Convergence
is clearly observed.

VI. CONCLUSIONS

Cooperative transmission can greatly improve communica-
tion system performance by taking advantage of the broadcast
nature of wireless channels and cooperation among users.
In this paper, we have proposed two auction mechanisms,
the SNR auction and the power auction, to distributively
coordinate the relay power allocation among users. Under
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a fixed price announced by a single relay, we have shown
that although each user has a non-smooth, non-concave utility
function, its best response function can nevertheless explicitly
be calculated locally based on a simple threshold policy. The
existence and uniqueness of the Nash equilibrium in both
auctions has been proved using nonnegative matrix theory.
Furthermore, under properly chosen prices, the power auction
has been shown to achieve the efficient allocation, and the
SNR auction has been seen to be flexible in achieving various
tradeoffs between fairness and efficiency depending on the
priority weights. Furthermore, we have shown that users
can achieve the unique NE in a completely distributed and
asynchronous fashion. We have also shown that the main
properties of the two auctions are applicable for networks with
multiple relays at different locations.

APPENDIX

A. Proof of Theorem 1

In an SNR auction, user i’s payoff function is

Ui (bi, b−i, π) = �Ri (Pr,di (bi; b−i))−πqi�SNRi (bi, b−i) ,
(42)
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� Ri (Pr,di (bi; b−i)) = max
{

W

2
log2 (1 + Γsi,di+ � SNRi (bi, b−i)) − Rsi,di , 0

}
(43)

where (43) is true. The best response function is

Bi (b−i, π) = arg max
bi≥0

Ui (bi, b−i, π) . (44)

The difficulty of finding Bi (b−i, π) is due mainly to the
max operation in (43), which leads to non-smoothness and
non-concavity of the payoff function. Next, we solve for
Bi (b−i, π) in two steps.

First, by temporarily ignoring the max operation, we solve
for the following modified best response function,

B̃i (b−i, π) = arg max
bi≥0

Ũi (bi, b−i, π) , (45)

where the modified payoff function is

Ũi (bi, b−i, π) =
W

2
log2 (1 + Γsi,di+ � SNRi (bi, b−i))

− Rsi,di − πqi � SNRi (bi, b−i) . (46)

Differentiating Ũi (bi, b−i, π) with respect to bi, we have

∂Ũi (bi, b−i, π)
∂bi

=
∂ � SNRi (bi, b−i)

∂bi

×
(

W

2 ln 2 (1 + Γsi,di+ � SNRi (bi, b−i))
− πqi

)
. (47)

It is clear that ∂ � SNRi (bi, b−i) /∂bi is strictly positive.
Furthermore, the term in the brackets on the right hand side of
(47) is strictly decreasing in bi. If the price is appropriate such
that there exists a bi so that the term in the brackets equals
zero, we have found the best response. If the price is too high
(or too low), the best response is 0 (or ∞). In summary, we
can show that the unique best response B̃i (b−i, π) in this case
can be written as

B̃i (b−i, π) = f̃s
i (π)

⎛
⎝∑

j �=i

bj + β

⎞
⎠ , (48)

where the equation on the top of the following page is true. πs
i

is defined in (20) and π̄s
i = 1/(2qi ln 2

(
1 + ΓDT

si

)
) > πs

i . As
a result, we can calculate the maximum value of the modified
payoff function, Ũi

(
B̃i (b−i, π) , b−i, π

)
, which turns out to

depend only on the price π,

Ũmax
i (π) =

⎧⎨
⎩

gs
i (πs

i ) , π < πs
i

gs
i (π) , π ∈ [πs

i , π̄
s
i ]

gs
i (π̄s

i ) , π > π̄s
i

(49)

where the function gs
i (·) is defined in (21).

Next, we consider the max operation in (43) and consider
the original payoff function Ui (bi; b−i, π) as in (42). We
notice that user i can always submit a zero bid and achieve a
zero payoff. This implies that the difference between the best
response function Bi (b−i, π) and the modified one B̃i (b−i, π)
occurs in the prices range where Ũmax

i (π) < 0. It can
be verified that gs

i (π) is strictly decreasing over (0, π̄s
i ],

with gs
i (π̄s

i ) < 0 and limπ→0 gs
i (π) > 0. Thus using bi-

section search, we can find a unique price π̂i ∈ (0, π̄s
i ) such

that gs
i (π̂s

i ) = 0. Then for any price π > π̂s
i , we have

Ũmax
i (π) < 0, which implies that Bi (b−i, π) = 0. Together

with the result in (49), we have proved the theorem. �

B. Proof of Theorem 2

Based on (22), we know that an NE b∗ is a nonnegative
solution of the following set of linear equations:

(I − F s (π)) b = f s (π) β, (50)

where I is an I × I identity matrix, F s (π) is an I × I
matrix whose (i, j)th component equals to fs

i (π) for i 
= j,
and diagonal terms equal to zero, and f s (π) is an I × 1
vector whose ith component equals fs

i (π). It is clear that
there exists a unique NE if and only if the spectral radius
of the nonnegative matrix F s (π) (defined as ρ (F s (π))) is
less than 1, in which case the unique NE is b∗ =

∑∞
n=0

(F s (π))n
fs (π) β. By using nonnegative matrix theory [18],

we can show that ρ (F s (π)) is a decreasing function of π, and
we can find a threshold πs

th such that ρ (F s (π)) < 1 when
π > πs

th, and ρ (F s (π)) ≥ 1 otherwise. Details are omitted
due to space limitations. �

C. Proof of Theorem 3

Here we follow the notations used in the proof of Theorem
2. Since fs

i (π) is continuous at πs
th for all users, we can

show that ρ (F s (π)) is also continuous at πs
th. Moreover,

since fs
i (π) is positive and finite for at least one user, we

can show that ρ (F s (π)) can be made arbitrarily close but
smaller than 1 with properly chosen price. This means that the
summation

∑
i b∗i (where b∗ =

∑∞
n=0 (F s (π))n

f s (π) β is
the unique NE) can be made arbitrarily large, and the resource
waste factor βP/ (

∑
i b∗i + β) can be made arbitrarily small.

�

D. Proof of Proposition 1

Let us define the modified payoff function as

Ũi (Pr,di , π) =
W

2
log2 (1 + Γsi,di+ � SNRi (Pr,di))

− Rsi,di − πPr,di . (51)

We can show that the unique value of Pr,di that maximizes
Ũi (Pr,di) is

P ∗
r,di

(π) = arg max
Pr,di

≥0
Ũi (Pr,di , π) =

zi (π)
Gr,di

, ∀π ∈ [πp
i , π̄

p
i ] ,

(52)
with P ∗

r,di
(πp

i ) = P and P ∗
r,di

(π̄p
i ) = 0. Furthermore,

gp
i (π) = Ũi

(
P ∗

r,di
(π) , π

)
.

Assume that gp
i (π) is not strictly decreasing with π ∈

[πp
i , π̄

p
i ] . Then there exists a π′ < π′′, such that gp

i (π′) ≤
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f̃s
i (π) =

⎧⎪⎪⎨
⎪⎪⎩

∞, π < πs
i

(Psi
Gsi,r+σ2)σ2

P Gr,di
Psi

Gsi,r

W
2πqi ln 2−1−Γsi,di

−(Psi
Gsi,r+PGr,di

+σ2)σ2
, π ∈ [πs

i , π̄
s
i ]

0, π > π̄s
i

gp
i (π′′), i.e, Ũi

(
P ∗

r,di
(π′) , π′

)
≤ Ũi

(
P ∗

r,di
(π′′) , π′′

)
.

However, from (51) and the optimality of P ∗
r,di

(π) we

know that Ũi

(
P ∗

r,di
(π′) , π′

)
≥ Ũi

(
P ∗

r,di
(π′′) , π′

)
>

Ũi

(
P ∗

r,di
(π′′) , π′′

)
, which leads to a contradiction. This

completes the proof. �
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