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Abstract— Accurate identification of network applications is
important to many network activities. Traditional port-based
technique has become much less effective since many new
applications no longer use well-known port numbers. In this
paper, we propose a novel profile-based approach to identify
traffic flows belonging to the target application. In contrast
to classifying traffic based on statistics of individual flows in
previous studies, we build behavioral profiles of the target
application, which describe dominant patterns of the application.
Based on the behavioral profiles, a two-level matching is used in
identifying new traffic. We first determine if a host participates
in the application by comparing its behavior with the profiles.
Subsequently, for each flow of the host we compare if it matches
with the patterns in the profiles to determine which flows belong
to this application. We demonstrate the effectiveness of our
method on campus traffic traces. Our results show that one can
identify the popular P2P applications with very high accuracy.

I. INTRODUCTION

Accurate identification of network applications is important
in many areas such as network planning, quality of service
(QoS) and access control. To identify network applications,
the simplest method is to use transport layer port numbers,
since many services are supposed to run on well-known ports.
However, nowadays this traditional port-based technique has
become much less accurate for many reasons. For instance,
some popular new applications, such as P2P applications, do
not rely on predefined well-known ports. Another reason is that
firewalls block some unauthorized or unknown applications, so
some applications are tunneled through port 80 to circumvent
firewalls. Another approach is payload-based analysis, which
search packet payloads for signatures of known applications.
This approach is employed in some commercial network man-
agement products. However, finding appropriate signatures for
some applications (in particular, newly released applications),
and maintaining an up-to-date signatures for various applica-
tions are daunting tasks. Moreover, payload-based method is
ineffective when traffic is encrypted.

Recently, some novel approaches ([7], [14], [16]) try to
classify network traffic relying on statistical observations of
the flows. These approaches develop discriminating criteria
based on the statistical observations (such as the packet size
distribution per flow, flow duration, and the statistics of the
inter-arrival times between packets in flows, etc.), and then
employ clustering, classification and other machine learning

techniques to classify traffic. These methods provide a promis-
ing alternative for traffic classification.

There are two challenges in identifying applications using
flow properties. First, different flows in the same application
may have different flow statistics, especially when patterns of
some new applications are increasingly complex. For example,
in the P2P file-sharing applications, some flows are used to
get peer information, other flows are to negotiate between
peers, and other flows are involved in the actual file transfer.
These various kinds of flows have different statistics and even
different transport protocols (TCP or UDP). Second, the flows
in different applications may have similar statistics. There will
be false positive if only per-flow statistics is used.

In this paper, we propose a new approach to identify
network applications, and our approach has two novelties. The
first one is profile-based. That is, in addition to observing
statistics of individual flows, we build profiles for a given
application, which describe communication patterns of this
application. The second one is two-level matching. The first
level determines if a host participates in a given application
by comparing its behavior with the profiles of this application.
Since a host may take part in different applications at the same
time, we then compare each flow of the host with the profiles
to determine which flow belongs to this application and which
one does not.

The two properties of our approach can improve the ac-
curacy of identifying network applications. As we have men-
tioned, new applications are increasingly complex and differ-
ent kinds of flows within an application may have different
properties. Profiles are the set of most significant properties
of this application. Comparing a host’s behavior with the
profiles is equivalent to look at properties of multiple flows of
this host, which contain more information than a single flow.
Moreover, although flows in different applications may have
similar statistics, in our two-level matching, we first locate
those hosts that participate in the application and then classify
their flows, which can reduce false positive.

To build behavioral profiles for network applications, the
first step is to choose appropriate features that are used in
profiles. After that, we observe properties of flows that are
contained in the target application. Since manually extracting
properties from large numbers of flows is difficult and time
consuming, we use a data mining technique named association



mining in this step. Having obtained the association rules, we
look back at the behavior of those hosts that participate in the
application and construct profiles. Finally, in the application
identification step, matching is implemented in two levels, host
level and flow level.

The rest of the paper is organized as follows. We describe
related work in Section II. Before describing our approach
in detail, we first give an example of application profiles
in Section III. After that, we discuss the flow features that
are chosen to construct application profiles in Section IV,
and explain how to build behavioral profiles for the target
application in Section V. In Section VI, we describe the
two-level matching method to identify the application in new
traffic. Experimental results are given in Section VII. Finally,
we conclude our paper in Section VIII.

II. RELATED WORK

Due to its fundamental nature, the field of traffic classi-
fication has received continuous interest. Some traffic clas-
sification approaches develop discriminating criteria based on
statistical observations of various flow properties in the packet
traces. Based on these statistical observations, these studies
employ classification, clustering and other machine learning
techniques to assign flows to classes. Roughan et al. in [16]
classify traffic flows into four classes suitable for quality
of service applications. They demonstrate the performance
of Nearest Neighbor and Linear Discriminant Analysis algo-
rithms. Moore et al. in [14] apply Bayesian analysis techniques
to categorize traffic by application.

In addition to these trained classification techniques, unsu-
pervised clustering methods are also used in several studies.
The work of Campos et al. in [9] applies a number of different
hierarchical clustering methods presented as dendrograms to
identify groups of similar communication patterns. Similarly,
in [13], McGregor et al. seek to identify traffic with similar
observable properties and apply a probabilistic clustering
method (the EM algorithm) to this problem.

In [5], Bernaille et al. evaluate the feasibility of application
identification at the beginning of a TCP connection. This
approach distinguishes the behavior of an application by
observing the size and the direction of the first few packets
of the TCP connection. Most of these studies which apply
machine learning techniques only focus on statistics of a single
flow, while our approach observes patterns of multiple flows.

Another promising traffic classification approach is shown
in [11], which is closer to our work. Instead of classifying
individual flows, Karagiannis et al. propose to associate In-
ternet hosts with applications, and then classify their flows
accordingly. They attempt to capture the inherent behavior
of a host at three levels of increasing detail: the social, the
functional and the application level. This approach mainly
focuses on higher level communication patterns such as the
number of source ports a particular host uses for commu-
nication, and does not make use of flow statistics that we
utilize. Concurrent to [11], Xu et al. in [18] use information

theoretic and data mining techniques to build behavior profiles
of Internet backbone traffic.

The stunning growth of P2P traffic has drawn more attention
from researchers recently. Several studies emphasize on iden-
tification of P2P traffic, such as the signature-based payload
methodology in [17] and the identification method by transport
layer characteristics in [10]. In [6], Collins et al. propose a set
of tests for identifying masqueraded peer-to-peer file-sharing
applications.

III. AN EXAMPLE OF APPLICATION PROFILE

Before describing our approach in detail, we first give an
example of application profiles in this section. We take a
popular peer-to-peer file-sharing application, BitTorrent, as
an example. The BitTorrent network consists of clients and
a centralized server. Clients (named downloaders) connect
to each other directly to send and receive pieces of a file.
The central server (named tracker) coordinates the action
of the downloaders. Instead of describing protocol details,
here we focus on flow properties of communication between
downloaders and between the downloader and the tracker. We
also describe corresponding payload signatures in different
traffic, which are used in training and validation. However,
payload signatures are not contained in application profiles.

There are roughly four kinds of traffic in a BitTorrent ap-
plication: 1) users download the .torrent files, 2) downloaders
periodically check in with the tracker, 3) peers communicate
with each other, and 4) communication between DHT nodes.
To download a file, a user should first get the corresponding
.torrent file. This step is usually done over HTTP and com-
pleted in one connection, so this kind of traffic is negligible.

Downloaders periodically check in with the tracker to keep
it informed of their progress and receive lists of peers, which
operates over TCP. Many of these flows have the signature of
“get /anounce?” in the payload. We call the direction from the
connection initiator to the acceptor request direction, and the
reverse direction response direction. For some of the flows,
in addition to the three-way handshake in TCP connection
establishment and the four-way handshake in connection ter-
mination, there is one packet in the request direction and one
packet in the response direction, and the sizes of the request
packets in different flows are similar. Properties of these flows
can be summarized as the following rule:
rule1: TCP, the same source IP, 5 request packets, 4 response
packets, fixed size in request bytes

Rule1 means that there are some TCP connections, which
are sent from the same source IP address. Each connection has
5 request packets and 4 response packets, and the total number
of bytes in these request packets are fixed. Other flows may
have different properties. For example, the packet number in
TCP connection termination is less than 4, so the numbers
of request packets or response packets are different from the
ones in rule1. Properties of these flows can be represented by
another rule.

The third kind of traffic is between downloaders. Down-
loaders upload and download files from each other via direct



connections. In the original protocol, this traffic operates over
TCP. Later in some extended versions, UDP is also used. Most
of these flows have the payload signature “bittorrent protocol”.
An example of flow properties of this kind of traffic is in rule2.
Rule2 represents properties of those flows that are used to
download files, so they have large flow duration, large number
of response packets and response bytes.
rule2: TCP, the same source IP, the number of response
packets > 400, the number of response bytes > 100000, flow
duration > 20 second

The fourth kind of traffic is communication between DHT
nodes. In trackerless DHT protocol ([1]), BitTorrent uses a
“distributed sloppy hash table” (DHT) for storing peer contact
information for “trackerless” torrents. In effect, each peer
becomes a tracker. BitTorrent clients include a DHT node,
which is used to contact other nodes in the DHT to get
the location of peers to download from. This protocol is
implemented over UDP. Payload signature “d1:ad2:id20:” and
“d1:rd2:id20:” present in this kind of traffic. Several examples
of flow properties are as follows:
rule3: UDP, the same source IP, the same source port, 1
request packet, 1 response packet, fixed size in request bytes,
fixed size in response bytes
rule4: UDP, the same source IP, the same source port, 1
request packet, 0 response packet, fixed size in request bytes
rule5: UDP, the same source IP, the same source port, 2
request packets, 2 response packets, fixed size in request bytes

Rule3 is one example for the “GET PEERS” request in
DHT protocol. All flows are from the same source IP address
and the same source port number. There are one request packet
and one response packet, and both have the fixed number of
bytes in all flows. Rule4 is the case that there is no response
for the “GET PEERS” request, so the number of response
packet is 0. Rule5 is an example for an “ANNOUNCE PEER”
message after the “GET PEERS” request, so there are two
request packets and two response packets.

From the above example, we can find that the complex
applications (such as P2P applications) have several types of
traffic which is different from each other. There are even
different cases in each type of traffic. We summarize the
properties of the flows in each type of traffic in rules like rule1
- rule5. Flow properties include the transport layer information
(such as protocol, whether all flows use the same IP address
and/or the same port number) and statistical information (such
as the number of packets, the number of bytes and flow
duration etc.). Profiles of an application are a set of such rules,
which characterize the most important communication patterns
of this application.

IV. FLOW FEATURES COLLECTION

To build profiles, the first question is to determine what
features should be chosen to construct profiles and how to
collect these features. As we have mentioned, application
profiles are a set of rules and each rule summarizes the
common properties shared by a number of flows in the appli-
cation, which include transport layer properties and statistical

statistics meaning
duration flow duration
rpack(ppack) number of packets in request(response) direction
rbyte(pbyte) number of bytes in request(response) direction
rsizeavg(psizeavg) average packet size in request (response)

direction
rsizevar(psizevar) variance of the packet size in request (response)

direction
rduravg(pduravg) average inter-arrival time between packets

in request (response) direction
rdurvar(pdurvar) variance of inter-arrival time between packets

in request (response) direction
rhbyte1(phbyte1) size of the first data packet in request (response)

direction
rhbyte2(phbyte2) size of the second data packet in request

(response) direction

TABLE I

THE FLOW STATISTICS.

properties. We focus on properties of bidirectional flows,
also known as connections. The reason is that we need to
differentiate statistical observations of the request and the
response direction, which are different in many applications.
Typically, a flow is defined by the five tuples: {srcIP, destIP,
srcPort, destPort, protocol}. We use the five tuples to study
transport layer properties. In addition, flow statistics are also
chosen as flow features to study statistical properties. Previous
studies ([14], [19]) investigate the issue of feature selection
and dimension reduction in traffic classification. Based on the
previous studies and our own experiences, we choose several
flow statistics, as summarized in Table I.

With the exception of flow duration, the other flow statistics
are calculated in the request and response direction separately.
For the number of bytes (or packet size), we only calculate
the payload size, since the sizes of IP and TCP/UDP headers
are not important for application identification. Besides the
flow statistics that are commonly used, we add four additional
statistics to represent the size of the first (second) data packet
in the request (response) direction, as shown in the last two
rows of Table I. The first data packet means the first packet
after the three-way handshake in TCP connection establish-
ment. For UDP protocol, its first packet is also the first data
packet. The first few packets in connections are important
for application identification since they usually capture the
application’s negotiation stage.

The flow features that are chosen to construct application
profiles are the five tuples plus all the flow statistics summa-
rized in Table I. To collect the flow features, we process packet
traces with Bro ([15]), an open-source network intrusion
detection system. All the flow statistics can be updated on-
line in a streaming fashion, which means that we do not need
to store data per packet, but rather per connection. For a series
of data Xj , its average and variance can be easily calculated
in a streaming fashion using the following equations:

Xj+1 =
1

j + 1
Xj+1 +

j

j + 1
Xj (1)

var(Xj+1) =
j − 1

j
var(Xj) +

1
j + 1

(Xj+1 − Xj)2 (2)



where Xj and var(Xj) are the average and variance of the
first j samples of data. Xj can represent the packet size and
the inter-arrival time between packets of a flow.

V. APPLICATION PROFILES

In this section, we explain how to build profiles for a given
application. To build application profiles, training traces are
needed. In the training traces, we know in advance which
traffic belongs to this application and which does not. Having
the training trace, we extract common properties shared by
some flows of the application. Finally, we build application
profiles based on the resulted flow properties.

A. Training Traces

We first provide a quick description of the datasets used
in our study. The datasets are packet traces collected in the
gateway of our department. We captured the packet header and
the first 42 bytes of payload of the traffic through the gateway.
For privacy considerations, we anonymize all the IP addresses.
Based on the requirement of the network administrator, we
also strip the payloads of some well-known applications which
may reveal the url, email address, and other information. These
packet traces are used for training and validation.

We first use Bro to process the packet traces to get connec-
tion records. Each connection record contains the flow features
that are used to construct profiles. To serve as training traces,
the connections that belong to the target application should be
labelled. For application identification, we only need to label
those connections that participate in the application, and do
not need to determine the applications of other connections.
However, in traffic classification, all connections should be
labelled as one target class, which is more difficult.

Determining the true “applications” of the connections is
a difficult task. We combine several methods to identify the
target application, including payload-based method, {IP, port}
pairs, and even manual analysis. In payload-based method,
protocol signatures are identified either from previous studies
([11], [17]) and public documents, or by reverse-engineering.
We add functions to Bro such that it matches the signatures
of a given application in packet payloads and labels the
corresponding connection records. For example, the signature
of BitTorrent is represented by this regular expression: “∧get
/announce\? | bittorrent protocol | d1:ad2:id20: | d1:rd2:id20:
| ∧azver”.

Not all flows in the target application have traceable sig-
natures. We use {IP, port} pairs and even manual analysis
to assist identification. {IP, port} pairs associate a particular
IP address and a specific port with one application, since the
service reflected at a specific port for a specific IP does not
change within a short period. For example, if connection C1
and C2 have the same source IP and the same source port
and within the same time interval, then we consider that C1
and C2 are involved in the same application. Note that this
method may have problem in some case of Network Address
Translation (NAT), which does not appear in our datasets.

B. Extract Flow Patterns

As we have mentioned, network applications have different
types of traffic, and flows in each type of traffic share some
common properties. We call these common properties flow
patterns, as summarized in rule1 - rule5. Manually extracting
flow patterns from large numbers of flows is hard and time-
consuming. We use data mining techniques for the extraction
of frequent itemsets and association rules ([8]) in this step.
Association rule mining is to find inter-relationships (corre-
lations) between members of a data set. The application of
association rule mining to network traffic is widely deployed
in the realm of network security, especially intrusion detection
([12]), and recently in traffic analysis ([4]).

A set of items is referred to as an itemset. The occurrence
frequency of an itemset is the number of transactions that
contain the itemset, which is also known as the support of the
itemset. If the support of an itemset I satisfies a predefined
minimum support threshold, then I is a frequent itemset. As-
sociation rules are extracted from frequent itemsets and show
correlations among contained elements. Association rules are
usually in this form: A ⇒ B (support, confidence), where
A and B are itemsets, and A ∩ B = φ. A is often referred
to as the body of the rule, while B as the head of the rule.
The support is the number of transactions that contain A∪B,
divided by the total number of transactions. The confidence is
the support of sets that contain A∪B, divided by the support
of sets that contain A. Finally, we have:

support(A ⇒ B) = P (A ∪ B) (3)

confidence(A ⇒ B) = P (B|A) =
support(A ∪ B)

support(A)
(4)

In general, association rule mining can be viewed as a two-
step process: 1) find all frequent itemsets that occur at least
as frequently as a predetermined minimum support count, 2)
generate association rules from the frequent itemsets, which
must satisfy minimum support and minimum confidence.
Apriori ([3]) is a widely used algorithm for mining frequent
itemsets and association rules.

Association rule mining satisfies our needs of extracting
common properties shared by some flows (flow patterns) from
a large number of flows, since we need to discover correlations
between flow patterns and the target application. Based on the
flow features and the application label, we develop various
attributes for the flows. Each flow is represented in the form
of {attribute1 = value1, ..., attributen = valuen}. The
attributes are those flow features and the application label.
The values are corresponding value of each attribute.

The problem is that Apriori is an algorithm for mining
frequent itemsets for Boolean association rules. However, the
flows have richer attribute types. The five tuples of flows are
categorical, while other flow statistics are quantitative. Boolean
attributes can be considered as a special case of categorical
attributes. Categorical attributes can be processed by Apriori
using the following method. We input transactions in the form
of {srcPort = 2119, destPort = 80, ...} to Apriori, then Apriori



will regard “srcPort = 2119” as a boolean attribute, instead of
regarding “srcPort” as a categorical attribute.

Different from categorical attributes, quantitative attributes
can not be simply processed as boolean attributes. Quantitative
attributes have different types (some are in integer, e.g.,
rpack and rbyte, and others are in float, e.g., rsizeavg), and
a wide range of values defining their domain. In addition,
quantitative attributes have an implicit ordering among values.
For example, {rbyte = 150} and {rbyte = 151} are similar
statistical observations for the attribute “rbyte”. To do this,
we first partition the ranges of those quantitative attributes
into “bins”. The partitioning strategy that we use is equal-
frequency binning ([8]), where each bin has approximately
the same number of tuples assigned to it. Another common
strategy is equal-width binning where the interval size of each
bin is the same. We choose equal-frequency binning rather
than equal-width binning because of the uneven distribution
of these quantitative attributes. With the partitions of the
quantitative attributes, we then replace the exact values of the
flow attributes with the ranges of the bins that the exact values
are in. An example is given below:
Example 1:
{srcIP = 193.169.140.183, srcPort = 3946/6, rpack = 11, rbyte
= 408...450, duration = 4.0...22870.5, rsizeavg = 34.7...43.1,
rhbyte1 = 156, rhbyte2 = 168, ... , signame = bittorrent}.
We regard the five tuples of a flow as four keys: (srcIP, destIP,
srcPort, destPort), because port numbers are meaningful only
when combined with protocol type. In the example, “srcPort
= 3946/6” means the port number is 3946 and the protocol
type is 6 (TCP). Some bins only have one value because
there are enough flows having this value for the corresponding
attribute (e.g., rpack). As for the four flow features rhbyte1,
rhbyte2, phbyte1, and phbyte2, they are intended to capture the
application’s negotiation stage. Therefore, their actual values
are kept, and no partition is processed. “signame = bittorrent”
means this connection is identified as “BitTorrent”.

The only parameter that need to be set in this step is the
number of bins for each quantitative attributes. We choose a
larger number of bins for the packet number and byte number
(eg. 30 for rpack and rbyte), and a smaller number of bins
for duration and inter-arrival time between packets(eg. 5 for
duration). For flow duration, we only care about the flow is
short or long, and the inter-arrival time between packets would
be affected by network conditions.

To automatically extract flow properties of the target appli-
cation from the large number of flows, we input all flows in
the trace file in the form as in Example 1 to Apriori ([2]).
To improve efficiency and reduce the number of association
rules that are generated, we restrict the head of the rules to the
target application, since we want to discover the correlations
between flow patterns and the target application. Examples of
the resulted association rules are given below:
Example 2:
signame = bittorrent ⇐ srcIP = 193.169.140.183, srcPort =
19270/17, rpack = 1, ppack = 1, rbyte = 98, pbyte = 272,
duration = 0.6 ... 2.9 (0.40/721, 100.0)

Example 2 illustrates the association rules that are generated
by Apriori. The head of all the rules are restricted to “signame
= bittorrent” when the target application is “BitTorrent”, and
the body of the rules contains various flow properties. For
“(0.40/721, 100.0)”, 0.40 means the support of this rule is
0.4%, 721 means there are totally 721 connections having the
properties that are shown in the body of the rule, and 100.0
means the confidence of the rule is 100%.

We need to provide a minimum support (min sup) and a
minimum confidence (min conf ) when using Apriori. Tun-
ing these two parameters is a big challenge for association
mining. A meaningful setting may become ineffective when
used in another trace file. However, our method only applies
association mining to get all potential flow patterns, which
are selected again in later steps of building application profiles.
Therefore, in this step, we choose low values for min sup and
min conf to guarantee low false negative. The false positive
can be reduced in later steps. We set min conf = 80%.
min sup is set based on the number of connections belonging
to the target application (app num) instead of the total number
of connections in the training trace file (conn num), since
conn num is similar for each trace file while app num varies
much. min sup is set to be 2.5% of app num.

C. Build Application Profiles

Having these flow patterns, the next step is to build profiles
for the target application. There are several issues that need
to be considered. Firstly, there are usually a large number of
association rules generated from Apriori, how can we reduce
the number of rules by removing redundant rules and keeping
meaningful ones. The second issue is how to get a complete set
of flow patterns. As we know, network applications may have
different versions of software implementation. In addition,
different configuration or even different user may result in
various flow patterns. Therefore, we need to combine different
flow patterns together to get a complete set. The third question
is that, among the whole set of flow patterns, which ones
constitute a profile? In other words, when the target application
occurs, which flow patterns usually appear together. In the
remaining part of this section, we first present our algorithm
for building application profiles, and then discuss how to settle
these problems.

1) Algorithm Description: Algorithm 1 describes the main
steps of building application profiles, with tapp denotes the
target application. The outputs of Algorithm 1 are three lists:
gTcprul contains global rules for TCP protocol, gUdprul
contains global rules for UDP protocol, and gProfile contains
the final application profiles. The three lists are all empty at
initialization. We have discussed steps of line 1 - line 4 in
previous sections. The first step is to partition the ranges of
the quantitative attributes into intervals, as described in Section
V-B. After that, we choose several training trace files. For
each file, we label all connections that are identified as tapp
using the methods explained in Section V-A, and then collect
features for each connection as described in Section IV such
that each connection is represented in the form as Example 1.



Algorithm 1 Build Application Profiles

Initialization: tapp = the target application,
gTcprul = ∅, gUdprul = ∅, gProfile = ∅;

1. partition quantitative attributes;
2. for the ith training trace file
3. label all connections of tapp;
4. collect features for each connection;

/* process for TCP */
5. tcpAssorule(i) = Apriori (all tcp connection);
6. tcpRule(i) = MaximalAssorule (tcpAssorule(i));
7. gTcprul = MergeRule (gTcprul, tcpRule(i));

/* process for UDP */
8. udpAssorule(i) = Apriori (all udp connection);
9. udpRule(i) = MaximalAssorule (udpAssorule(i));
10. gUdprul = MergeRule (gUdprul, udpRule(i));
11. endfor
12. gProfile = ConstructProfile(gTcprul, gUdprul);

Next we input all connections in a training trace file to
Apriori for association rule mining. We use all connections
instead of only the connections belonging to tapp for mining
since we need some background data. If we only use the
connections belonging to tapp, we can not make sure the
resulted association rules are unique for tapp. In other words,
other applications may also have the patterns described by
the association rules. We mine TCP and UDP connections
separately, as shown in the steps of line 5 and line 8.

2) Process Association Rules: A major challenge in asso-
ciation rule mining from a large data set is the fact that such
mining often generates a huge number of frequent itemsets
and association rules satisfying min sup and min conf ,
especially when they are set low. To overcome this difficulty,
the concepts of closed frequent itemset and maximal frequent
itemset are introduced ([8]). An itemset X is a closed frequent
itemset in a data set S if X is frequent, and there exists no
proper super-itemset Y such that Y has the same support as
X in S. An itemset X is a maximal frequent itemset in S if
X is frequent, and there exists no super-itemset Y such that
X ⊂ Y and Y is frequent in S.

As shown in Example 2, the head of the association rules
is restricted to “signame = tapp”, and the body of the rules
contains various flow properties. We want the body to contain
more flow properties, so maximal association rules are kept.
In other words, we keep the association rule r1 “signame =
tapp ⇐ B1” if r1 satisfies min sup and min conf , and
there exists no association rule r2 “signame = tapp ⇐ B2”
such that B1 ⊂ B2 and r2 satisfies min sup and min conf .
Here, B1 and B2 are itemsets with items in the form of
“attributei = valuei”. We do this process in line 6 for TCP
and line 9 for UDP, which can greatly reduce the number of
association rules while keep most of the information.

Network applications usually have different versions of
software implementation. In addition, different configuration
or even different user may result in different flow patterns.

Therefore, we will get different association rules from each
training trace files, denoted by tcpRule(i) and udpRule(i).
To get a complete set of flow patterns, we merge different
rules together to get the global rules gTcprul and gUdprul,
as described in line 7 and line 10.

Flows are defined by the four keys: (srcIP, destIP, srcPort,
destPort). In merging rules, these four keys are treated dif-
ferently from other flow statistics. We only care if the flows
are sent from (or received by) the same IP address and port
number, and do not care about the specific values. Therefore,
if there are two rules r1 and r2,
r1 : signame = tapp ⇐ a1 = vx1, ..., aj = vxj , aj+1 =
vxj+1, ..., ak = vxk

r2 : signame = tapp ⇐ a1 = vy1, ..., aj = vyj , aj+1 =
vyj+1, ..., ak = vyk

where {ai, 1 ≤ i ≤ k} are the attributes, which are the same
in r1 and r2. {vxi, 1 ≤ i ≤ k} and {vyi, 1 ≤ i ≤ k} are
the corresponding values. Attributes {ai, 1 ≤ i ≤ j} are from
the four flow keys, while attributes {ai, j + 1 ≤ i ≤ k} are
from the other flow statistics. If {vxi = vyi, j + 1 ≤ i ≤ k},
then r1 and r2 will be merged together. The merged rule are
represented in the following form:
r3 : signame = tapp ⇐ a1, ..., aj , aj+1 = vxj+1, ..., ak =
vxk

We keep the attributes {ai, 1 ≤ i ≤ j} in r3, which shows
that the flows have the same value for those attributes. In
addition, if {vxi = vyi, 1 ≤ i ≤ j}, then the actual value for
the attribute {ai} will also be kept in the merged rule. This
means that the actual value is important for the application,
especially when {ai} is srcPort or destPort. An example from
gUdprul is as follows:
Example 3:
signame = bittorrent ⇐ srcIP, srcPort, rpack = 1, ppack = 1,
rbyte = 98, pbyte = 272, duration = 0.6 ... 2.9 (0.77/37223,
100.0) 14
The support and confidence of the merged rule can easily be
calculated according to their definition. The number 14 in
Example 3 means this rule is merged by 14 rules, in other
words, it appears in 14 trace files.

3) Construct Profiles: After the process in line 1 - line 11
of Algorithm 1, we obtain the global rules for TCP (gTcprul)
and UDP (gUdprul), which contain the whole set of flow
patterns for tapp. In line 12, the final step is to construct
the final profiles, which is described in Algorithm 2. We call
tapp that is employed by a specific user at a specific time
an instance of tapp, denoted by tappinst. The flow patterns
of tappinst (denoted as tappRul) may be different from
each other, and each tappRul contains partial flow patterns
in gTcprul and partial flow patterns in gUdprul. gTcprul,
gUdprul and tappRul can be represented as follows:

gTcprul = {Rti, 1 ≤ i ≤ T}
gUdprul = {Rui, 1 ≤ i ≤ U}
tappRul = {Rtj , 1 ≤ j ≤ Ta} ∪ {Ruk, 1 ≤ k ≤ Ua}

Ta ≤ T, Ua ≤ U



Algorithm 2 Construct Profiles

Input: gProfile = ∅, gTcprul = {Rti, 1 ≤ i ≤ T},
gUdprul = {Rui, 1 ≤ i ≤ U}

Output: gProfile
1. for the kth training trace file
2. assign each connection to corresponding host;
3. find out the hosts that participate in tapp: ahost;
4. for the jth ahost: ahostj
5. tappRulj = ∅;
6. for each Rti in gTcprul
7. if a tcp tapp connection in ahostj satisfies Rti
8. add Rti to tappRulj
9. endfor
10. for each Rui in gUdprul
11. if a udp tapp connection in ahostj satisfies Rui

12. add Rui to tappRulj
13. endfor
14. if a tappRul in gProfile is similar to tappRulj
15. tappRul = tappRul ∪ tappRulj
16. else
17. add tappRulj to gProfile
18. endfor
19. endfor

where Rti is a rule that represents one flow pattern for TCP,
and Rui is a rule that represents one flow pattern for UDP,
both in the form as in Example 3. The total number of TCP
rules is T , and the total number of UDP rules is U . tappRul
is described by a set of Rtj which is a subset of gTcprul,
plus a set of Ruk which is a subset of gUdprul.

To get the actual content for each tappRul, we need to
look back at the behavior of those hosts that participate in the
target application in each training trace file. For studying the
behavior of each host, the first step is to group all connections
sent from and received by this host together (line 2 of Algo-
rithm 2). To avoid double counting the connections, we assign
each connection to only one side of communication (either the
source or the destination). The connection is assigned to the
host that has more connections than the other side, since we
can get a more complete view of its behavior. For example,
for the P2P applications in our trace files, we focus on the
behavior of the hosts inside our department instead of those
outside. The reason of this connection assignment is that we
can get complete view of the behavior of the hosts inside the
department while only partial view of those outside.

After assigning all connections to the corresponding hosts,
we find out the hosts that participate in the target application,
which contain the connections that labelled as tapp (line 3).
These hosts are denoted as ahost. Each ahost in a training
trace file is considered as one tappinst, since it is employed by
a specific host at a specific time. Subsequently, we compare
all connections of each ahost with gTcprul and gUdprul to
get the flow patterns of this tappinst. That is, for each Rti
in gTcprul, if any TCP connection of the ahost belongs to

tapp and satisfies Rti, we add Rti to tappRulj (line 6 - 9).
Similarly, for each Rui in gUdprul, if any UDP connection
of the ahost belongs to tapp and satisfies Rui, we add Rui

to tappRulj (line 10 - 13).
We get one tappRulj for each ahostj . Some of them may

be the same or very similar to each other. If two profiles
have at least 80% flow patterns in common and each different
rule has not too many connections (at most 10% of the total
number of connections of the corresponding host satisfy this
rule), then they are considered as similar to each other. In
line 14 - 17, if there exists a tappRul in gProfile that is
similar to tappRulj , then we update the tappRul to tappRul
∪ tappRulj ; otherwise, we add tappRulj to gProfile. After
we process all training trace files, we get the final gProfile,
which is the application profiles of the target application.

VI. APPLICATION IDENTIFICATION

Before describing the two-level matching method, we first
discuss an alternative simple method. This simple method is
to observe the properties of each individual connection by
comparing this connection with each rule in gTcprul (if it
is a TCP connection) or gUdprul (if it is a UDP connection).
If the connection satisfies any of the rule, then it is identified
as the target application, since every rule is considered as a
flow pattern. This simple matching method will have a high
false positive, since some flow patterns are not unique for the
target application. The result of this method is used to compare
with our two-matching method in Section VII.

In the two-level matching method, we use the resulting
gProfile, gTcprul and gUdprul to identify tapp in a new
trace file. To reduce false positive, we first locate those hosts
that participate in the target application. Therefore, as in the
step of constructing profiles, we first assign each connection
of the trace file to a corresponding host. After that, for each
host, we find out the flow patterns Rti in gTcprul that there
are connections of this host satisfy it. We denote the number
of connections that satisfy Rti as NumConn(Rti), and the
total number of Rti that there is any connection satisfies as
NumRul(Rt). Similarly, we also calculate NumConn(Rui)
and NumRul(Ru) for UDP.

NumRul(Rt) and NumRul(Ru) being large means this
host satisfies many flow patterns of the target application, and
NumConn(Rti) and NumConn(Rui) being large means
there are many connections of the host that match the flow
patterns, then we consider this host participates in the target
application (denoted as an ahost.) This host-level matching is
based on multiple-pattern and multiple-flow and can decrease
the false positive, especially for complex network applications.
If the flow patterns from the training trace files are nearly
complete, we hope this level of matching can identify the
hosts participating in the target application with extremely high
accuracy and extremely low false positive.

After we identify those ahost, the second step is flow-level
matching. Since a host may take part in different applications
at the same time, in this step, we study each flow of every
ahost to determine which flow belongs to this application and



application BitTorrent PPLive Total
connections (%) 670701 (13.83%) 958649 (19.77%) 4849510

tcp conn (%) 87430 (5.22%) 134171 (8.01%) 1674352
udp conn (%) 583271 (19.85%) 824478 (28.06%) 2938103

TABLE II

THE INFORMATION OF TRAINING TRACE FILES.

which one does not. There are different profiles in gProfile,
so the first step is to find out the most suitable profilej

from gProfile for ahostj . As we have mentioned, application
profiles consist a set of Rtj which is a subset of gTcprul
plus a set of Ruk which is a subset of gUdprul. In host-level
matching, we have find out those Rtj in gTcprul and Ruj

in gUdprul that ahostj satisfies. Comparing these Rtj and
Ruj with the profiles in gProfile, we can find out the most
suitable profile for ahostj .

Finally, for each connection connk in ahostj , if connk

satisfies any flow pattern in profilej , we label connk as
belonging to the target application. Although the flows in dif-
ferent applications may have similar patterns, our method can
decrease false positive by two ways. Firstly, we have already
determined the host that generates this flow participates in the
target application. In addition, gTcprul and gUdprul contain
the whole set of flow patterns for tapp, however, different
software versions and various configurations may result in
different flow patterns. We construct behavioral patterns for
different cases, and choose the most suitable profile for this
host, thus decrease the false positive.

VII. EXPERIMENTAL EVALUATION

We evaluate our approach using the campus traffic traces.
In this section, we first describe the training trace files and
validation trace files, and then show some examples of the
flow patterns and application profiles. Finally, we present the
accuracy of application identification in validation trace files.

A. Experimental Setup

The datasets that we use to evaluate our approach are packet
traces collected in the gateway of our department. We captured
the packet header and the first 42 bytes of payload of the
traffic going through the gateway. For privacy considerations,
we anonymize the IP addresses and strip the payloads of some
well-known applications such as HTTP, FTP. We captured the
traffic from Oct. 16, 2006 to Nov. 9, 2006 and generated trace
files. Each trace file is in similar size (about 1G bytes in
tcpdump format). The time slot of each trace file varies from
1-2 hours (in the afternoon) to 7 - 8 hours (at night).

Because of the following reasons, we choose two popular
P2P applications from the datasets to evaluate our approach,
one is BitTorrent (P2P file-sharing), the other is PPLive
(P2P streaming). Firstly, our method is applicable to com-
plex applications, such as P2P which contains large number
of flows. Secondly, to build application profiles at training
phase, sufficient application instances are required from the
trace data. Lastly, the prior labelling application on training

data must be accurate to guarantee the effectiveness of our
approach. In our experiments, both training and matching are
performed in off-line manner. In the training stage, we choose
20 trace files between Oct. 16 and Oct. 30. The information of
these 20 trace files is given in Table II. The “connections” row
contains the number of connections for the two applications
and the total number of connections in the 20 trace files. The
“tcp connections” (“udp connections”) row is the number of
TCP (UDP) connections.

B. Training Results

For BitTorrent, we get 680 rules for gTcprul and 364
rules for gUdprul. Examples of these rules are given in
Table III. From these examples, one can find out that the flow
patterns are coincident with the application profile examples
given in Section III. Take FPB1 as an example, it depicts the
behavior patterns of some connections from the same srcIP.
Each connection has 5 packets in the request direction and 4
packets in the response direction. The size of the first data
packet (also the only data packet) in the request packet is 68,
while the size of the response packet is not fixed. This flow
pattern matches the rule1 very well, which describes the traffic
by which downloaders periodically talk to the tracker. FPB2
also accords with rule1. In this case, the downloader does not
get any response from the tracker (pbyte=0). FPB3 accords
with rule2, which is used for downloading files between
peers. FPB4 - FPB6 are flow patterns for UDP, which accord
with rule3, rule4 and rule5 respectively. These flow patterns
describe communication patterns between DHT nodes.

For BitTorrent, UDP connections have more application
related patterns, so UDP flow patterns are better than TCP
flow patterns in several aspects. First, when the flow patterns
are applied later in identifying BitTorrent in new traffic,
the accuracy is higher for UDP connections than for TCP
connections. Second, rules generated from multiple training
trace files are more similar for UDP than for TCP. Therefore,
when merging rules from different traces files, the number of
files that generate the rule (denoted as file count) is larger in
UDP. For example, FPB4 is merged from 16 files, while FPB1
is merged from 3 files. The larger the file count, the more
reliable that the flow pattern indicates the target application.
Third, in addition to identifying applications in new traffic, the
flow patterns and application profiles that generated from our
approach can be directly reported to network operators because
of their good readability. In our result, nearly all UDP flow
patterns have intuitive meanings.

Since the traffic is only from one department, the number
of tappinst is not large (30 tappinst in 20 training trace
files). Finally, we get 12 profiles for the 30 tappinst. We
can also obtain some correlations between the flow patterns
shared by the same host. An example is given in Figure 1,
where one host that participates in BitTorrent satisfies the five
flow patterns. Therefore, the srcIP in the five flow patterns
are the same. The “srcPort” between FPB4 and FPB6 means
that not only all connections that satisfy FPB4 have the same
srcPort, but also all of them have the same srcPort with those



Flow patterns for TCP Comments
FPB1: signame=bittorrent ⇐ srcIP rpack=5 ppack=4 rbyte=65...68 duration=0.4...4.0 rsizeavg=13.5...15.9 rule1
rsizevar=689.3...1119.3 rhbyte1=68 (0.03/464, 99.8) 3
FPB2: signame=bittorrent ⇐ srcIP rpack=5 ppack=3 rbyte=65...68 pbyte=0 rsizeavg=13.5...15.9 rsizevar=689.3...1119.3 rule1
pdurvar=0.01 rhbyte1=68 (0.08/1356, 100.0) 4
FPB3: signame=bittorrent ⇐ srcIP ppack>405 pbyte>115681 duration>4.0 rhbyte1=68 (0.01/205, 100.0) 2 rule2
Flow patterns for UDP Comments
FPB4: signame=bittorrent ⇐ srcIP srcPort rpack=1 ppack=1 rbyte=98 pbyte=272 duration=0.0...0.6 (1.76/51829, 100.0) 16 rule3
FPB5: signame=bittorrent ⇐ srcIP srcPort rpack=1 ppack=0 rbyte=101 (2.85/83814, 100.0) 14 rule4
FPB6: signame=bittorrent ⇐ srcIP srcPort rpack=2 ppack=2 rbyte=250 pbyte=355 duration>3.3 rhbyte1=101 rhbyte2=149 rule5
phbyte1=302 phbyte2=53 (0.14/4101, 100.0) 6

TABLE III

EXAMPLES OF FLOW PATTERNS FOR BITTORRENT.

FPB1 (TCP):  srcIP rpack=5 ppack=4 rhbyte1=68 ......

FPB2 (TCP):  srcIP rpack=5 ppack=3 rhbyte1=68 ...... destIP, destPort

FPB3 (TCP):  ppack>405 pbyte>115681 duration>4.0 ......

FPB4 (UDP):  srcIP srcPort rpack=1 ppack=1 rbyte=98 pbyte=272 ......

FPB6 (UDP):  srcIP srcPort rpack=1 ppack=0 rbyte=101 ...... srcPort

Fig. 1. An example for correlations between flow patterns of BitTorrent.

connections that satisfy FPB6. Similarly, some connections
satisfying FPB1 have the same destIP and destPort with other
connections satisfying FPB2. We call the time duration that
there is any connection satisfy a flow pattern as the connection
span of this pattern, which is indicated by the length of each
flow pattern bar in the figure. The connection span of FPB3
is from about ten seconds after the beginning of this profile
to the end of the profile, while connection spans of other flow
patterns last during the whole profile. The black region in
each flow pattern bar indicates there is one connection, and
the length of the black region indicates flow duration.

Next we briefly introduce the training results for PPLive.
We get 847 rules for gTcprul and 357 rules for gUdprul.
Some examples of the flow patterns are given in Table IV.
There are 37 tappinst in 20 training trace files, and we get 10
profiles. Although there are no public documents for PPLive,
we can infer some communication patterns from the flow
patterns. FPP1 is used to update information, and the packet
number and byte number are fixed in each connection. FPP4
should be negotiation message between peers, while FPP5 is
failed negotiation attempt. After the negotiation, the host uses
connections that satisfy FPP2 to transfer data.

C. Matching Results

The 20 training trace files are chosen between Oct. 16 and
Oct. 30. In the validation stage, we choose 10 trace files
between Oct. 16 and Oct. 30 as well as between Oct. 31
and Nov. 9. For the ith trace file, we define the following
variables: conni, the number of connections in the file; appi,
the number of connections that participate in tapp; idenconi,
the number of connections that we identify as tapp and are
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Fig. 2. Accuracy results.

also tapp; fpconi, the number of connections that we identify
as tapp but are not tapp. We use two metrics accuracy and
false positive to evaluate the result:

accuracyi = idenconi/appi

fposi = fpconi/conni

avgAccuracy =
∑10

i=1 idenconi/
∑10

i=1 appi

worstAccuracy = min(accuracyi), 1 ≤ i ≤ 10
avgfpos =

∑10
i=1 fpconi/

∑10
i=1 conni

In host level matching, we identify the hosts that participate
in the two applications with 100% accuracy and 0 false
positive. The accuracy results for connections are given in
Figure 2. The first group of bars is avgAccuracy for BitTor-
rent, the second group is worstAccuracy for BitTorrent, and
the third (fourth) group is avgAccuracy (worstAccuracy)
for PPLive. We have mentioned a simple matching method
in Section VI. Since each connection is compared with each
rule, the accuracy of this method is equal or slightly higher
than our two-level matching method. Therefore, we omit the
accuracy results of the simple matching method. However, the
simple matching method has high false positive. The results
for average false positive are shown in Figure 3.

The results show that our approach have very high accuracy
and very low false positive. The average accuracy for all
connections is about 98%, and for TCP connections is about
90%. For the worst one of the 10 validation trace files,



Flow patterns for TCP
FPP1: signame=pplive ⇐ srcIP rpack=6 ppack=5 rbyte=68...72 pbyte=16 duration=0.4...4.0 rsizeavg=10.8...11.5 psizeavg=3.2 rhbyte1=4
rhbyte2=61 phbyte1=4 phbyte2=12 (0.36/6123, 100.0) 8
FPP2: signame=pplive ⇐ srcIP ppack>405 rhbyte1=4 rhbyte2=61 phbyte1=4 (0.01/202, 100.0) 2
FPP3: signame=pplive ⇐ srcIP rpack=275...5891 duration>4.0 rhbyte1=4 rhbyte2=61 phbyte1=4 (0.01/214, 100.0) 2
Flow patterns for UDP
FPP4: signame=pplive ⇐ srcIP srcPort rpack=1 ppack=1 rbyte=61 duration=0.6...2.9 (0.68/19901, 100.0) 9
FPP5: signame=pplive ⇐ srcIP srcPort rpack=1 ppack=0 rbyte=61 (13.59/399290, 100.0) 16
FPP6: signame=pplive ⇐ srcIP srcPort rpack=2 ppack=0 rbyte=122 duration>3.3 rduravg>15.97 rhbyte1=61 rhbyte2=61 (0.44/12825, 100.0) 7

TABLE IV

EXAMPLES OF FLOW PATTERNS FOR PPLIVE.

BT: TCP BT: UDP PPL: TCP PPL: UDP
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Fig. 3. False Positive results.

the accuracy for all connections is over 85%, and for TCP
connections is over 80%. The accuracy for UDP connections
is even higher. Compared with the simple matching method,
our approach has a much lower false positive. The average
false positive is about 0.2% for UDP connections, and below
5% for TCP connections. As we know, there is a tradeoff
between accuracy and false positive. In our approach, this
tradeoff mainly relates to the global flow patterns. If we have
more flow patterns, we can get a higher accuracy, however,
we may also encounter a worse false positive.

VIII. CONCLUSIONS

In this paper, we propose a novel profile-based approach to
identify network applications. We first use association mining
to acquire the correlations between various flow properties and
the target application. After that, we obtain the global flow
patterns by merging rules from different training traces and
look back at the behavior of each host to construct application
profiles. A two-level matching method is used to identify the
application in new traffic. We choose BitTorrent and PPLive
to evaluate our approach on campus traffic traces. The flow
patterns and application profiles generated are coincident with
the application behaviors. Results show that our approach can
obtain very high accuracy and very low false positive when
identifying applications in validation trace files.

Our future work includes: first, to extend our approach to
build application profiles without training data and identify
unknown applications. The second work is to systematically

characterize the correlations between various flow patterns
within one profile, including sequential correlations, correla-
tions between connections satisfying different flow patterns
(as examples in Figure 1). Limited by our trace files, we only
evaluate two P2P applications. The third work is to do more
experiments on additional data.
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