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Abstract—Traditional Video-on-Demand (VoD) systems reply
purely on servers to stream video content to clients, which does
not scale. In recent years, Peer-to-peer assisted VoD (P2P VoD)
has proven to be practical and effective [1]. In P2P VoD, each peer
contributes some storage to store videos (or segments of videos) to
help the video server. Assuming peers have sufficient bandwidth
for the given video playback rate, a fundamental question is what
is the relationship between the storage capacity (at each peer),
the number of videos, the number of peers and the resultant
off-loading of video server bandwidth. In this paper, we use a
simple statistical model to derive this relationship. We propose
and analyze a generic replication algorithm RLB which balances
the service to all movies, for both deterministic and random
demand models, and both homogeneous and heterogeneous peers
(in upload bandwidth). We use simulation to validate our results,
for sensitivity analysis and for comparisons with other popular
replication algorithms. This study leads to several fundamental
insights for design P2P VoD systems in practice.

I. INTRODUCTION

Traditional video-on-demand (VoD) is based on the client-
server approach. It is expensive and not scalable. In recent
years, the Peer-to-Peer approach was first demonstrated to
work for live content streaming [2], and later for VoD stream-
ing as well [1]. Various efforts are working on building a P2P-
based VoD platform, for example using set-top boxes [3].

VoD streaming is definitely harder to accomplish (than live
content streaming) since peers are less likely to have the same
content to share with each other. The lack of synchrony (in
VoD) is compensated by the following two remedial features
in P2P VoD systems: (a) each peer contributes more storage to
replicate content; (b) each peer is capable of uploading con-
tent different than what is currently consumed (downloaded)
locally. The effectiveness of this remedy depends on whether
the right mix of content is placed at different peers, which is
the P2P replication problem at hand. As discussed in [1], P2P
replication is a central design issue in P2P VoD systems.

There were various studies of P2P replication in the past,
focusing on different goals. For example, some tried to min-
imize network transmission overhead in replication [4], [5];
others tried to maximize content availability when peers are
infrequently on-line [6].

Our problem formulation is based on the requirement on
more contemporary P2P VoD systems, where the majority of
the peers expect to be streaming the content for immediate
viewing. In such systems, video servers must still be deployed
to ensure service quality. The P2P network can be viewed as
the mechanism used to off-load the video servers. The peers

are assumed to be under the control of the content provider
(e.g. set-top boxes). The objective is to minimize the server
bandwidth. The streaming requirement means there needs to
be a balance between the total supply of uplink bandwidth (that
is the sum of server(s) and peers’ uplink bandwidth) and the
total demand (that is the number of viewing peers multiplied
by the video playback rate). In practice, the operating regime
of particular interest is when the total peer uplink bandwidth
is comparable to the demand (of viewing bandwidth). In
this regime, ideally the server bandwidth can be zero, if the
viewing demand is deterministically known, and all the peers
are replicated with the right mix of content so as to make full
use of their upload capacities. In reality, the impredicability of
user demand, and hence the imperfection in content replication
and service load balancing will always result in some server
load.

The important question is, how does this inevitable server
load scale with the critical system parameters, such as the
number of peers in the system, the number of movies, and
the storage provided by peers? Furthermore, what role can the
replication algorithm play? In this paper, we describe a generic
model to help settle these questions.

In our basic model, user demand follows a stationary pop-
ularity model for movies, and the server is assumed to be off-
loaded by a processor-sharing style peer service scheduling.
Under this model, we show that the most effective replication
algorithm is one that can produce the best load balance
among peers, not only in terms of average load, but also
in terms of correlation of load. We use a generic algorithm
called Random with Load Balancing (RLB) to characterize
a spectrum of algorithms that can balance the average load,
but succeed in different degrees in reducing the correlation
of load. This allows us to derive (both a closed-form lower
bound and upper bound of) the server bandwidth utilization
as a function of the key system parameters. This result not
only gives us the scaling properties of what P2P replication
can achieve, it also serves as a rule-of-thumb for needed
peer storage for given number of movies. Quite amazingly,
the result is indifferent to whether peers are homogeneous or
heterogeneous (in bandwidth).

Simulation is used to validate our results, study its sen-
sitivity to parameter values and assumptions, and compare
RLB with some other intuitive replication algorithms (Propor-
tional and Random). We also study how to turn RLB into
a distributed and adaptive algorithm (ARLB), and how to



converge to a balanced state given movie popularity. We show
the resultant algorithm performs much better than some well-
known heuristics for adaptive load, such as the FIFO and LRF
(least frequently requested) algorithms.

In the rest of the paper, we first describe our model in
section II, the RLB algorithm in section III, and derive our
analytical result in section IV. We then propose an adaptive
distributed replication algorithm suitable for implementation
in section V, and show our simulation results in section VI.
Before we conclude the paper, we also discuss related works
and explain the significance of our work in light of the earlier
publications.

II. MODEL

We introduce the following notations to describe our model.
We use the terms video, movie and content file interchangeably.

o N number of peers in the system

e K number of movies

e 7); relative popularity of movie j, where Zszl n; =1

o U, upload capacity of peer ¢, where vazl U =N

e L number of movies stored at each peer, where K > L
« S; the peer set replicating movie j

e (; the movie set stored on peer %

e ); the average number of requests received by peer ¢

o B the average server bandwidth utilization

o M the average number of movie copies, M = NE

et

In the definition of notations, we have assumed all movies
are of the same size, and have the same playback rate equal to
1 (normalized to be the same as the average upload capacity
of a peer). The peer population is assumed to be fixed (V)
and N > K.! Each peer generates a demand on the system
by downloading movies, and provides a service by uploading
content to other peers.

When a particular peer selects movie j to download, this
demand is assumed to result in a request at all peers in S;. At
any moment, a particular peer ¢ may be entertaining requests
from multiple other peers, and it is assumed that ¢ divides its
uplink bandwidth equally in serving all outstanding requests.
We call this service model Perfect Fair-Sharing Model (PES).
Note, this service model implies a fluid assumption, since each
peer’s uplink bandwidth, no matter how small, is assumed to
be divisible. This assumption is crucial in making the problem
analytically tractable.

The demand, how a peer selects a movie to download, can
be one of the following:

e Deterministic Demand: A fraction 7); of the peer popula-

tion always accesses movie j and > n; = 1.

« Stationary (random): The user behavior is described by
a transition matrix. In the matrix, the element g;; is the
probability that a peer jumps from movie ¢ to movie j
after the peer finishes watching the current movie (7).
Each peer makes independent decision to select movies.
The stationary state can be derived based on the transition

IThe general case without N >> K is also interesting, and will be addressed
in our future work.

matrix. The probability of any peer watching movie j
is a Binomial distribution with parameter 7;. Thus, the
number of requests for a particular peer is a Binomial
distribution, asymptotically (for large peer population)
it becomes a Poisson distribution with average number
requests \; = NZjeQi n;. This is essentially the same
user behavior model proposed in [7].
The deterministic demand model is too simplistic. Although
in practice the demand model must be dynamic, stationary
random demand is a reasonable assumption when demand
patterns do not change very fast. The important analytical
results in this paper are derived using the stationary demand
model.

The objective of the P2P VoD system is to satisfy all peers’
playback requirements. Those peers that cannot obtain enough
bandwidth from other peers will go to the server as a last
resort. The total average server bandwidth utilization B is what
we try to minimize. This can be loosely written down as an
optimization problem: ming, v; B, subject to|Q ()| < L, Vi.

Note, (Q;, Vi) implies (S}, V7), and either one defines the
replication allocation, the result produced by a replication
algorithm. Due to the definition of the service model, the
service capacity of peers can never be exceeded but only
wasted. Wastage occurs when the total service from other peers
received by a peer exceeds its playback rate (which is 1).
Because of such wastage, and the fact that we are operating
in the regime that the total peer service capacity is barely
enough to support the total playback demand, some movies
will not receive sufficient service from peers and must rely on
the server. So the primary job of the replication algorithm is to
find a replication allocation that balance the service bandwidth
for different movies, so wastage is minimized.

III. REPLICATION ALGORITHM

If the demand is deterministic, the replication algorithm’s
job is straightforward. For the deterministic demand defined in
the last section, there is always Nn); peers watching movie j,
so the peer population storing movie j should be N7);. Without
any random variations, server bandwidth utilization is 0, and
this optimal solution is achieved with L = 1.

Given the random demand model, even if the popularity
is stationary, the problem is rather complicated. The server
load B can no longer be simply expressed in terms of the
replication allocation ();. However, we can introduce a random
algorithm to only generate replication allocations {S;} (or
{Q;}) that balance the load for all movies from an expectation
basis, and try to analyze the algorithm. We found such an
algorithm that will be referred to as Random with Load
Balancing (RLB) is a centralized® algorithm, not necessarily
practical for implementation. Yet, its result can be considered
as a target that any desirable replication algorithm tries to
achieve; furthermore, its performance can be characterized in
terms of a reasonably tight upper and lower bound?, under the

2A distributed version will be introduced in a later section.
3Later, using simulation, we will verify that RLB indeed satisfies the
performance bounds.



perfect fair sharing assumption. In section V, an adaptive RLB
algorithm more suitable for practical implementation will be
described.

Algorithm 1 Random with Load Balancing Assignment
1: for ) =1to K do
2: Bj =0
3: end for
4: for i =1 to N do
5:  Peer ¢ randomly selects L movies from the movie set
and puts the id of each movie into set Q;;

6: i = NZjGQi s

7: for Vj € Q); do

8: B; =B, + % for homogeneous, U; = 1
9: if B; > 1 then

10: Never select movie j any more

11: end if

12:  end for

13: end for

The physical meaning of B; is the expected received
bandwidth for peers watching movie j. In tne next section,
our analysis will derive the steady state value of B; in terms
of demand and how movies are replication®. If L is equal to 1,
the movie allocation result of RLB is the same with the deter-
ministic demand case. Although RLB’s performance becomes
much more complicated to analyze when L is greater than 1, it
is possible to derive closed-form bounds, to be detailed in the
next section. These bounds capture the capabilities of all load
balancing replication algorithms as well, thus characterizing
the generic properties of such P2P VoD streaming systems.

IV. ANALYSIS

In this section, we analyze the performance bounds of RLB
for both homogeneous and heterogeneous peer populations.

A. Stationary Demand and Homogeneous Peers

Based on our model, the number of requests at any peer @
is a random variable of Binomial distribution, with parameter
pi = jeq, Ny- For large N, the Binomial distribution can
be approximated by the Poisson distribution to simplify the
analysis. The probability that peer i receives k requests is:

A,
Pri(Req=k) = e
>\i = Nx Z nj -
JEQ:

Let the bandwidth from provider ¢ allocated to a particular peer
watching movie j be a random variable X (i) where i € S.
Similarly X;(k),k € S; is a random variable denoting the
bandwidth from provider k. The correlation between X (i)
and X;(k), i,k € S; is denoted 7;(¢, k). The expected value
and variance of the random variable X (¢) is:

1

1 .
% and Var[X,(i)] =~ pYa (1)

4A random variable X; will be defined, but E[X[ is B;.

The proof is in appendix.

The aggregate bandwidth that peers watching movie j can
get from all other peers is X; =), s, Xj (7). Whenever X
is less than 1, some peer(s) watching movie 5 has to seek help
from server. Assuming the expected value of X is F[X;] = 1,
it does not mean peers watching movie j never access the
server. The probability that peers seek help from sever depends
on the variance of X j.5 The variance of X; denoted by Uj2- is
determined by the variance of each individual X;(7) denoted
by o7 ; and the correlation among these X ; (i) for different 7. It
is difficult to derive the exact relationship between the variance
of X; and correlation r; (4, k) from peer ¢ and k. But we can
derive the upper and lower performance bound by assuming
specific correlation values. The higher correlation among these
X, (t), the higher variance of the aggregate bandwidth X;,
which is not expected. The variance can be expressed in terms
of the correlation 7,(i, k) as:

o = Y Var[X;()]+ Y 205i05um(ik)
i€S; i,k€S; &itk
1
< =5 @
i€S; )‘i2

The bound is achieved when r;(¢, k) = 1 for all pairs of peers
¢ and k. This is for a single movie. For multiple movies, we
use the weighted average variance of all movies in the whole
system, which is defined as follows:

K K
ZW’? S (> Var[X;(i)] + > 205.05k75(i, k).

Jj= €S i#£k
3)

This is a key expression - minimizing this weighted variance
is equivalent to minimizing the server bandwidth.

Now, our objective is to analyze weighted variance of all
movies in the system. If a single movie were to optimize
its own playback performance, it would replicate itself at as
many peers as possible. Therefore, we need some constraints
to restrict the allocation of the limited bandwidth and stor-
age resources. The following condition ensures the allocated
expected bandwidth for each peer is equal to the playback
rate, and no more. If X; is less than the playback rate, sever
load is required. In our model, the server load is optimized by
minimizing the variance of Xj;.

SEXNG) = Lad Yo o= L@
i€S; ies;

On the other hand, the total number of replicas for all movies
should be VL, because each peer stores L movies, which gives
the following conditions:

K
1
225 = K
j=1ies; "
SIf each peer maintains a buffer, the performance can be improved, because

when X; > 1, peers can pre-store some content which is used when X; < 1.
By making the fluid assumption, no buffering is included in our model.



Each peer stores exactly L movies, which means )\i appears
exactly L times for any peer i, therefore the condition can be
rewritten as:

N
1 K
; N I &)

The RLB algorithm satisfying both condition EQ.(4) and
EQ.(5) is balanced on the expected resource allocated to
different movies, and satisfies the storage constraints.

The performance of the RLB algorithm is therefore given
by EQ.(3). The complicating factor (which cannot be easily
derived) is the correlation r; (7, k), which will affect the vari-
ance of the aggregate bandwidth allocated for peers watching
movie j, i.e. Var[X,]. The worst case, when the variance
attains its maximum value, is reached when the correlation
r;(i,k) is equal to 1 for any movie j. In that case, EQ.(3)
then becomes:

K

The proof is in the appendix. The consumed server bandwidth
is derived in closed form below. The best case is achieved
when the correlation is minimized. It is impossible to achieve
minimized correlation —1 between any two pairs of random
allocated bandwidth from different peers because there is at
least one common movie for peers i,k € S;. So we consider
7;(i, k) = 0 as the correlation that achieves the upper bound.®
If r;(i, k) is equal to 0, the weighted variance is:

1N1 K
= 7 = Gy )

=1

K

Z n; sz

The proof is in the appendix. When A\; = Ay = --- = Ay, the
variance achieves the minimum value. Therefore, the perfor-
mance upper bound is the case when all peers are assigned the
same load and these movies are randomly assigned to different
peers to minimize correlation of (i, k). The consumed server
bandwidth will be derived below as well.

The sever load can be written as the following optimization
problem with constraint EQ.(4) and EQ.(5):

*ZZ%Z\X —1|Pr(X;)

=1 j=1

< INK 1 N

- 2V L 2yM
The wastage bandwidth is equal to the server load, because
the server load is caused by wastage due to poor allocation.
Therefore, there is a factor % in EQ.(8). The detailed proof is
in the appendix. The condition to achieve the bound requires
that | X; — 1| is a constant. Actually, it is impossible to satisfy
the condition for a random variable X ;. We can get a tighter
bound by optimizing the correlation of 7; (i, k) in the following
discussion.

B =

®)

SWe conjecture that this is true. A formal proof is for future work.

To derive the worst case server bandwidth, we construct a
scenario when the correlation is 1. Let the peers be partitioned
into different clusters and peers in each cluster store the same
movie set. Assume K can be divided by L, and each cluster
randomly selects L movies. All peers in the same cluster will
store exactly the same L movies. In this case, the received
bandwidth from different peers will have a perfect correlation
1, because all peers will have exactly the same number of re-
quests. The expected requests for apeeriis \; = N Y e, M-
Therefore, the peer population in a cluster with peer ¢ should
be NY_ je; ;- The required server bandwidth in this case
can be analyzed and calculated exactly, as:

:r\/> mr

The proof is in the appendix. Normally we expect RLB to
achieve better results than this worse case performance.

The upper bound can be achieved by assuming 7, (¢, k) = 0.
The consumed server bandwidth is:

1 K 1N

Ve L Ver M’
EQ.(9) and EQ.(10) can be viewed as a basic law of what
replication can do. This result can also be used as a rule of
thumb to determine storage space, or number of movies, based
on peer population in a p2p VoD system. It also gives us the
following insight: although smart replication algorithms can
reduce server load to close to zero under deterministic demand;
but under random (stationary) demand, the best replication
algorithm must not only balance the load among different
movies, but also reduce the correlation of a movie’s demand
on different peers at the same time.

©))

(10)

B. Stationary Demand and Heterogeneous Peers

It is easy to extend our model to the heterogeneous peers
case by letting the upload capacity of peer 7 be U,;. The
movie allocation algorithm is applicable in heterogeneous
case. Because of the fluid assumption, each peer can equally
divide U; bandwidth among all its requests. EQ.(1) is rewritten
as:

2

Ui and Varlx; (i) = 2

o = (11)

Proposition /: The heterogeneous case shares the same
lower bound with the homogeneous case.
The proof is very similar to the proof of equation EQ.(9). The
worst case is still the case when correlation is 1. The worst
performance can again be constructed by dividing peers into
clusters. The difference is the peer population of each cluster.
Let C denote the peer set of cluster ¢. There are % clusters. In
the heterogeneous case, the peer population for cluster ¢ should
satisfy the condition EQ.(4), i.e. Zzect Nzi = 1. The
peer population of cluster ¢ has no closed form but this will
not affect the performance of the RLB algorithm.

Proposition 2: The heterogeneous case shares the same
upper bound with the homogeneous case.



The proof is similar to the proof of EQ.(10), but the condition
to achieve the best performance is slightly different. For
the heterogeneous case, the weighted average variance of all
movies becomes:
K N
1 U? K

2 % 2
Zﬁj%’ = N(Z ﬁ) 2 (ﬁ) :
i=1 :

=1

12)

With the constraint Zivzl % =
minimum variance is % =... = %]:,7 Actually, the condition
is hard to satisfy in real systems. The important result is that
the lower bound for the heterogeneous case is no worse than
the homogeneous case.

%, the condition to achieve

V. ADAPTIVE ALGORITHM

So far, we have not discussed how the peers do movie
replication based on the watched movies. In practice, it is
expensive to push movies to every peer by our RLB algorithm.
In this section, we propose and study a distributed adaptive
RLB (ARLB) algorithm, which do movie replication based
on the watched movies. After a peer ¢ watched a movie j, the
peer runs the Adaptive RLB replication algorithm. The pseudo
code is in Alg. 2. Note, x+ = z if > 0, else 0. The physical

Algorithm 2 Adaptive RLB Assignment
1: if |@Q;| < L then
2:  Store movie j on peer i; Return;
3: end if
4: if B; > 1 then
5: Do not do replication
6: else
7. 1 =argmazieq,Mk(Br — 1)
8: AB :NZkEQi Nk
9: )\E:)\BJr(T]j*?]r)N
10: for Vk € Q); do

11: if k& = r then

12: BkE:Bk“"i_ﬁ
13: else

14: Brg = B — i

15: end if

16:  end for

17: BjE = Bj + i

18: GAPp = ZkeQi k(1 — Br)t +n;(1—Bj)*t
190 GAPp =3 co, (1 — Bre)™ +n;(1 - Bjr)*
20. if GAPr < GAPg then

21: replace movie r with movie j

22: delete r from @; and add j into Q);
23:  end if

24: end if

meaning of B; is the same as that in the RLB algorithm. The
objective of ARLB is to achieve balanced bandwidth for all
movies, i.e. B; = E[X;] = 1 for any movie j. The objective is
easily achieved by the centralized algorithm in RLB. ARLB is
an adaptive version of RLB. The peer calculates the weighted
gap between B; and required playback rate 1 before and after

movie replication. If the gap can be reduced with replicating
the new movie, the peer will do that. This algorithm is
evaluated by simulation, and is compared with other adaptive
algorithms, including Random replacement, LFR, and FIFO.
For implementation, it is necessary to set up a central server
to collect and provide the global information of B; for all
movies. Each peer is required to periodically update B; of its
stored movies (including the one currently being viewed) and
report them to the central server. In practice, this will incur
some overheads.

VI. SIMULATION

In this section, we present the simulation results that are
organized as two parts.

In the first part, the experiments are based on the stationary
model and static replication. The movies stored at each peer
are assigned at the beginning, and stay unchanged. Our exper-
iments validate our model, and the lower- and -upper bound of
the RLB algorithm. We include the equal copy number (ECN)
algorithm and the Proportional algorithm as benchmark. ECN
tries to make equal number of copies for each movie under any
movie popularity distribution, while, proportional algorithm
tries to make the number of copies for movies proportional
to their popularity, a heuristic algorithm described in [1]. We
also study sensitivity on parameters such as N, K, L, movie
popularity distribution and uplink capacity distribution.

In the second part, performance of four adaptive replication
algorithms including FIFO, LFR (least frequently requested),
Random (random replacement) and our proposal, Adaptive
Random Load Balance (ARLB), are compared through simu-
lations under stationary demand model.

A. Stationary demand and static replication assignment.

a) Model validation under homogeneous settings: We
first validate our statistical analysis results. In this simulation,
we apply stationary demand model with evenly distributed
movie popularity (n; = %,Vj) and homogeneous peer uplink
capacity (U; = 1,V7). The total simulation duration is 1500
timeslots and N = 10000. The viewing duration is set to
be uniformly distributed in [20, 40] timeslots. After finishing
viewing a movie, each peer will make another movie selec-
tion based on the given movie popularity independently and
memorylessly.

In order to keep the values of upper- and lower-bound
unchanged, we fix the ratio K/L = 50, but change L =
1,2,4,8,16,32,48, 64, 80. The results are shown in Fig 1.

We can observe that: 1) The average server load decreases
when L is increased; 2) The average server load of RLB is
strictly bounded; 3) The lower-bound is achieved at L = 1
while the upper-bound is approached when L becomes much
larger.

b) Sensitivity analysis on configuration parameters: The
sensitivity of the replication algorithms to different system
parameters are shown in Fig.2.

In Fig.2(a), we fix N = 10000, K = 200, L = 4 and
homogenous peer uplink capacity, and repeat the simulations
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for five times under five different movie popularity distribu-
tions, where X /(100— X ') means that X percent of the movies
equally share the (100 — X) percent of the total request rate.
Take the 80/20 as an example, if K = 200, then 40 movies
have 7; = 0.8/40 = 0.02 while the remaining 160 movies
have 173 = 0.2/160 = 0.00125. In this case, we consider the
40 movies as hot movies while the remaining as cold movies.
The results are shown in Fig.2(a).

In a similar way, we plot the results of changing uplink
capacity distribution in Fig.2(b).

Under 80/20 movie popularity distribution and 80/20 uplink
capacity distribution, we did the following experiments:

1. Changing N from 2000 to 20000 with K = 200 and

2) The average server load of RLB is strictly within the upper-
and lower- analytical bounds, as expected.

B. Evaluate adaptive replication algorithms

In this part, we evaluate four adaptive replication algorithms
under the stationary demand model. In the adaptive replication,
each peer will dynamically adjust its local stored movies
according to what it has viewed. The simulation results are
shown in Fig.3.

Under 80/20 movie popularity distribution and 80/20 uplink
capacity distribution, we conducted four simulation experi-
ments where equal copy number (ECN) assignment algorithm
is applied in the initialization.

1. Changing N from 2000 to 20000 with K = 200 and
L = 4 fixed, shown in Fig.3(a).

2. Changing K from 50 to 500 with N = 10000 and L = 4
fixed, shown in Fig.3(b).
3. Changing L from 1 to 10 with N = 10000 and K = 200

fixed, shown in Fig.3(c).
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4. Changing L = 1,2,4,8,16,32,48,64,80 with N =
10000 and ratio of K/L = 50 fixed, shown in Fig.3(d).

As shown in Fig.3(a), 3(b), 3(c) and 3(d), we can observe
in all the four cases that: 1) ARLB performs much better
than FIFO, LFR and Random replacement algorithms. 2) The
average server load of ARLB is still bounded by upper- and
lower-bounds.

Fig.3(e) plots the server load over the duration of the
simulation for each algorithm. The parameters for this scenario
are N = 10000, K = 200 and L = 4. As shown in Fig.3(e),
the result is very interesting. There are mainly three phases:
1) All four algorithms incur a very high server load (around
2800), which is because all of them apply equal copy number
(ECN) assignment algorithm in the initialization. 2) After that,
all four algorithms quickly decrease to a low server load point
(around 500) with about the same speed. 3) Finally, after
reaching the valley point, FIFO, LFR and Random replacement
gradually increase (at different slope) to a “’stable” value and
oscillate around it until the end. However, for the ARLB case,
the server load does not increase but remain at the valley point
(around 200). We can explain this as follows. Since the movie
popularity is 80/20, there are hot movies (1; = 0.02) and cold
movies (1; = 0.00125). The ECN initial assignment causes
the initial shortage of hot movie copies in the peers’ local
storage. This is why the four curves start at a high server load
point. Hot movies are more likely chosen and stored locally
than cold movies by all these algorithms. Quickly, the number
of hot movie copies in peers’ local storage increases a lot so

that the server load decreases rapidly. After the number of
the hot movie copies reaches a critical value (the valley point
of the server load), it continues increasing for FIFO, LFR
and Random replacement. This behavior causes imbalance of
the load and resource, so the server loads for these three
algorithms increase after the valley point. However, for ARLB,
it automatically balance hot and cold movie copies in the local
storage so that the server load remains at the minimum.

VII. RELATED WORKS

The following related works are either influential or closely
related to our work. We discuss them one by one.

In [1], the authors studied a (probably the first) large-
scale, deployed P2P VoD system. This is an architecture
and measurement paper. It points out that P2P replication is
a key design issue. The replication algorithm used in this
system is the Proportional algorithm (we compared to it in
our simulation). In [3], the authors propose a set-top box based
P2P system as a form of data center, albeit a highly distributed
one with central management, to be used for applications
including P2P VoD. They discussed many architectural issues
in such designs. These two papers provide good motivations
for our work.

The closest work to ours are [7], [8]. These papers are
about a multi-channel P2P live streaming system with service-
viewing decoupling, which means peers may serve other peers
with content they are not viewing. This setting is actually very
similar to the multi-movie VoD system we are considering. In



multi-channel streaming, a peer does not contribute storage,
but only shares the content it buffers. This means decoupling
will always incur some additional overhead (to download
content purely for serving others). But decoupling is a good
idea because it can alleviate the problem caused by frequent
channel jumps by peers. In P2P VoD, decoupling is automatic,
incurring no (real-time) bandwidth overheads. While there are
some similarities between our models, the key breakthrough
in our work is the assumption of the Perfect Fair-Sharing
service model that allows us to derive closed-form solutions
for the performance bounds and other properties. In [9], the
authors created a fluid model to analyze a P2P VoD system
with dynamic peer arrivals and departures. But this study
considered only one movie, and did not model the user
behavior, which is an important ingredient of current P2P
VoD systems and is studied in our model. Paper [10] studied
movie replication strategy in P2P VoD systems. However, the
proposed replication strategy is exponential time complexity.
The required server bandwidth is not reduced significantly
compared with other strategies such as LRU, and LFU.

The following are some other recent studies of various
approaches to P2P VoD. In [11], the author proposed an
architecture for P2P VoD system, including an ARIMA mod-
ule to predict the popularity of each movie. Based on the
prediction, the author proposed a heuristic algorithm to do
replication. In [12], the author designed an architecture for
P2P VoD system with rateless coding. The movie is divided
into segments. Each segment is encoded by rateless code. If
a peer wants to download a segment, the peer can seek help
from any neighbors with partial content, because rateless code
is a random coding scheme. In [13], the authors proposed a
similar idea based on using network coding.

VIII. CONCLUSION

In this paper, we propose a service model (perfect fair shar-
ing) and a stationary statistical demand model for P2P VoD,
so that a class of near optimal movie replication algorithms
(RLB) can be analyzed. The result is a general scaling law that
P2P VoD has to satisfy, in terms of how peer population, movie
number, and replication capacity at each peer. We also describe
a more adaptive version of RLB that is distributed, and more
practical for implementation. We show that the adaptive RLB
can out-perform many other well-known algorithms, though
this algorithm does still require some global information. For
future work, we will model dynamic movie popularity, and
study replication algorithm under that scenario.
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APPENDIX

Proof of Eq. (1): A particular peer wants to watch a
particular movie j and tries to get bandwidth from peer ¢. The
obtained bandwidth depends on the total requests on peer i.
The received requests still follow Poisson distribution. Without
the particular peer, we assume the requests caused by left peers
still is a Poisson distribution with the same expected value \;.
The error due to approximation can be ignored when N > 1.

Afe™™ i(l— /\i)wl
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Var(X
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Proof of EQ.(6): When there is a perfect correlation between
any two X;(i) and X;(k), and the peers are divided into
clusters and each cluster store the same movie set, the peer
population of cluster with peer 7 and including movie j is
equal to [Sj| = N > .o nj = Ai. Therefore, the variance of
Zz‘esj X;(i) is:
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The weighted total variance is:
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Proof of EQ.(7): When the correlation is 0, the variance of
ZZGS X; ( ) is:
. 1
O'JQ- = Var[z X;(@)] = Z B
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The weighted total variance is:
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From the constraint EQ.(5), the inequality achieves minimum
value, when \; = Ay = ... = A\y. Therefore the best case is
that all peers are assigned the same load, and these movies are
randomly distributed so that the correlation among different
peers is minimized. |

Proof of EQ.(8): The server load is rewritten as follow and
the bound is derived from Cauchy-Schwarz inequality:

1
B = §ZZ¢@Z¢W — 1)/ Pr(X;)\/Pr(X
i=1 j=1
1 K
S MDA SRR
i=1 \j=1 X;
1 NK
2 L
Here, we use the inequality WZ] 1750 2 < % which is

proved in EQ.6. The condition to achleve the bound is that
|X; — 1] is equal to a constant number. This can not be
satisfied in our model because X; is a random variable with
many possible values. |

Proof of EQ.(9): From above analysis, in the worst case,
the peers are divided into clusters and in each cluster, all
peers store exactly the same movie set. Actually, a cluster
is like a super server and the upload capacity is the sum of
the upload capacity of all its members. In our strategy, the
aggregate upload capacity of a group is equal to the expected
request received by a peer in the group, i.e. Zzect U, = Ac,.
There are f clusters. If the total requests are less than the
aggregate upload capacity Ac,, all requests can be satisfied.
If there is more than Ao, requests, the sever has to provide
the unserved bandwidth. The number of requests is a Poisson
random variable. The expected allocated bandwidth for a peers
watching any movie in cluster C} is:

+oo

A
EBc, =1x Pr(rq < Ac,) + Z Ct Pr (rq = k)
k= )\Ct
= Pr(rq < A¢,) + Pr(rqg > Ac,)
AN
=1-— Y% Ao,

Ac,!

t

According to Stirling’s Approximation, i.e. \! ~ QW)\(%))‘,
we substitute it back to the above equation and the expected
bandwidth obtained becomes:

1

\/QTF)\Ct.

The weighted expected unserved bandwidth for each peer in
the system is:

EBc, =1—
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c
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where constraint is ZK/ o ’\Jf,t = 1. It is not hard to

1 K
find the upper bound of the above formula, T3\ NI

When Ac, ACy,p» the system achieve the
worst case. Therefore, the required server bandwidth is

=L, 0NK 1
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Proof of EQ.(10): The best performance is achieved when
all peers have the same expected load \;y = Ao = ... = An
and there is no correlation among the allocated bandwidth
from different peers. That means X;(i) for ¢ € S; are
identical independent distribution. So the aggregate bandwidth
X follows normal distribution with mean 1. Because of the
symmetry property of Normal distribution, the probability that
the aggregate bandwidth is less than mean is % The variance
is the sum of individual variance. From EQ.(1), the variance
for the bandwidth from one peer is % Letting f(X;) denote
the probability distribution of the aggregate bandwidth X,
the expected aggregate bandwidth for peer ¢ can be derived as

follows:
1 1
1x = +/
2 — 00

1 /1 x
=+
2 -0 \/27r0i2

The total consumed server bandwidth is:

EB;

xf(x)dx
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B= 2(1 — EB;) = T(Zm).

T o=

Now the task is to find the value of o;. From the constraints

EQ.(4), EQ. (5) and the condition \; = Ay = ... = Ay, wWe
have:
K
Ai = —.
" NL
The number of copies for each movie is equal to \; =
NL

% The variance of aggregate bandwidth is the sum of

individual variance because of independent assumption. So
NL 1 K

o; = 3% = NI The consumed server bandwidth is:
1 K 1 N
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