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Abstract

File-sharing systems, like many online and traditional information sharing communities (e.g.

newsgroups, BBS, forums, interest clubs), are dynamical systems in nature. As peers get in and

out of the system, the information content made available by the prevailing membership varies

continually in amount as well as composition, which in turn affects all peers’ join/leave decisions.

As a result, the dynamics of membership and information content are strongly coupled, suggesting

interesting issues about growth, sustenance and stability.

In this paper, we propose to study such communities with a simple statistical model of an

information sharing club. Carrying their private payloads of information goods as potential supply

to the club, peers join or leave on the basis of whether the information they demand is currently

available. Information goods are chunked andtyped, as in a file sharing system where peers

contribute different files, or a forum where messages are grouped by topics or threads. Peers’

demand and supply are then characterized by statistical distributions over the type domain.

This model reveals interesting critical behaviour with multiple equilibria. A sharp growth

threshold is derived: the club may grow towards a sustainable equilibrium only if the value of an

control parameteris above the threshold, or shrink to emptiness otherwise. The control parameter

is composite and comprises the peer population size, the level of their contributed supply, the

club’s efficiency in information search, the spread of supply and demand over the type domain, as

well as the goodness of match between them.
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1 Introduction

The notion of a peer-to-peer system means different things to different people. To some, it is a way

to use the commodity personal computers to do the job of large and expensive servers [1], [2], [3].

Others build application layer multicast systems out of it [4], [5]. But there is one thing in common for

almost all peer-to-peer systems, that is the coming-together of such a system depends on the number

of peers (large or small) wanting to participate.

The formation of such cooperation without central management has its inherent advantages: it

saves the cost of central management; and more importantly, it automatically adapts to the need (for

example, in terms of time and scope) of the peers who collectively form the club. But what are the

forces that attract peers together? What would cause a peer-to-peer system to grow, sustain itself, or

fall apart? Are there some fundamental reasons that apply to different peer-to-peer systems?

The purpose of the peer-to-peer systems is invariably to share some resources or information.

Economists differentiate between two kinds of goods that are shared: rivalrous and non-rivalrous

goods. The former diminishes when shared. Compute power, storage and communication bandwidth

are examples of rivalrous goods. Many information goods, however, are inherently non-rivalrous. In

other words, they can be readily replicated many times with little or no cost.

Motivated by the above questions, we formulate a model for a club where members share non-

rivalrous information goods. Conventional resources such as computers and bandwidth are assumed

to be abundant. In such a setting, the strength of a club is determined by the amount as well as the

compositionof the information content made available by the club’s prevailing membership, and how

that content fits the potential members demands. Based on this simple model, it is then possible

to derive some very basic conditions for a club to form and sustain. The model predicts a critical

population size, from which enough peers will find matching interest and form a club. Furthermore,

the model can be used to understand the dynamics of the content and membership, and whether and

how it leads to an equilibrium.

Since the model is simple, it is also general enough to be applied to many other information

sharing paradigms. Examples include web-based collaborative environments, newsgroups where

peers contribute their opinions about different topics, or other forums or communities for information

sharing.
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The rest of the paper is organized as follows. Section 2 is devoted to modeling the peers in terms

of their demand and contribution, which then leads to a model of a club in terms of its content.

Section 3 models peers’ decisions of joining or leaving a club, and consequently the conditions for

club formation, and other equilibrium properties of it. Section 4 illustrates the properties of the model

through numerical examples. Section 5 discusses the contribution of this model, the interpretation

of various results, as well as the limitations of our model. Finally, we conclude and discuss future

directions.

1.1 Related Works

Many other papers tried to model incentives in peer-to-peer systems and the resulting club dynamics.

[6] discusses private versus public goods, and argues that messages shared in web forums are private

goods, thus suggesting sharing is not simply an altruistic behavior. Several papers focus on how to

relieve the cost/congestion of some rivalrous resources, such as bandwidth and other resources that

a peer has to consume. For example [7] suggests a possible rationale for peers’ contributions is to

relieve the bandwidth stress when they share, their actions thereby benefit the peers themselves. [8],

[9], [10] use game theoretic approaches to model and understand the sharing incentives in peer-to-

peer networks. These works also discuss incentive-compatible solutions to peer-to-peer systems. In

comparison, our model brings out a new angle that is complementary and somewhat orthogonal to the

above works.

Our work is in part motivated by [11] in which a general model is used to explain the vitality of a

peer-to-peer network when different types of peers are involved. The type of a peer is characterized

by the peer’s generosity, which is used as a threshold to determine when a peer would contribute to

the club rather than free-ride. Their model does not explicitly capture different types of information

goods themselves, therefore the motivation for sharing remains rather abstract.

Our work attempts to explain the motivation of the peers by characterizing the different types

of peers based on their contribution and demand of different types of information goods. A peer’s

decision to join a club can then be related to the extent the club can satisfy the peer’s interest (demand).

This sheds more (at least different) insights to what brings peers together in the first place.
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2 The Information Sharing Club (ISC) Model

The Information Sharing Club (ISC) model has three basic components. First, a population ofN

peers, denoted byN , may freely join or leave the club any time at their own will. Each peer carries

a payload of information goods which are shared with other current members only when he joins the

club.

Second, information goods are chunked andtyped, the same way that versions of different files

are served in a file sharing system, or messages of various topics are hosted in a forum. Information

chunks of the same type are not differentiated: an instance of information demand specifies the chunk

type only and is satisfied byany chunk of that type, as when request for a file is satisfied with any

copy of it, or when information query returns any piece of information of the specified class (e.g. as

implied by the query criteria, for instance).

Third, the club maintains a platform on which information chunks shared by members are

maintained and searched. A perfect membership system makes sure that only requests by current

members are processed. A request may comprise one or more instances of demand, and is successfully

served when all instances are satisfied. However, the search may not be perfect and is conducted with

efficiencyρ ∈ (0, 1], defined as the probability that any shared chunk is actually found in time by the

platform in response to a request.

We make probabilistic assumptions about both demand and supply: peeri’s demand instances

as well as the content of his private payload, in terms of chunk types, are drawn from statistical

distributions. Specifically, we assume peeri’s private payload comprisesKi ≥ 0 chunks drawn from

distributiongi(s), s ∈ S 4
= {1, 2, . . .} whereS is the set of all types. The total payload of any group

of members (membership) G ⊂ N is then given by

gG(s)
4
=

∑
i∈G Ki gi(s)∑

i∈G Ki

, G ⊂ N

Without loss of generality, we assume theaggregate supply functiong(s)
4
= gN (s) to be

monotonically non-increasing. The type variables may then be interpreted as asupply rank (s-rank).

In other words,s = 1 and s = |S| denote the most and least supplied chunk types respectively.
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Likewise, we define theaggregate demand functionh(s)
4
= hN (s) where

hG(s)
4
=

∑
i∈G Mi hi(s)∑

i∈G Mi

, G ⊂ N

as peeri generates demand instances at a rate ofMi chunks per unit time, drawn from distribution

hi(s), s ∈ S1.

For current club membershipC, the expected number of chunks of types being shared would be

given byµC(s)
4
= n kC gC(s) wheren

4
= |C| is the membership size andkC

4
=

∑
i∈C Ki/|C| is the

payload size averaged over the current club membership. Conditioning on the membership size, we

have

µn(s) = n k g(s)

wherek
4
=

∑N
i=1 Ki/N > 0 is the payload size averaged over all peers. We assume further that

members’ contents are drawn independently, which implies a Poisson distribution for the actual total

number of types chunks being shared. Subsequently demand instances for chunk types have an

average failure rate ofe−µn(s) ρ = e−n k g(s) ρ. The average success rate of peeri’s demand being

satisfied in a club of sizen is therefore

pi(n)
4
= Ehi(s)[1− e−n k g(s) ρ] (1)

whereE[·] is the expectation operator. This is compatible with the non-rivalrous assumption as it is

independent of the level of demand for this chunk type.

2.1 An example: music information sharing club

Tables 1 and 2 depict an example of six peers sharing music information of five different types. For

simplicity, we assume identical payload sizes (identicalKi’s) and demand rates (identicalMi’s) so

1Another possible ranking of the types ispopularity rank (p-rank), which ranks the types according to the aggregate
demand instead. In cases when the p-rank is more natural to work with, such as when supply is being driven by demand
and p-ranks are more readily known, we may derive the requisite demand functions in s-rank as

hi(s)
4
=

∑
r

φ(r, s)
f(r)

fi(r)

wherefi(r) is peeri’s demand distribution over the p-rank domain andφ(r, s) is the joint distribution of the two rank
measures that captures how well supply follows demand. (Perfect following would implyφ(r, s) = 0 ∀r 6= s.)
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that the aggregate distributions are simple unweighted averages of the peers’ distributions. Table 3

gives the resulting s-ranks and p-ranks of the five music types. The information may be news and

messages about the different music types when the club is a discussion forum in nature, or musical

audio files when it is a file sharing platform.

Table 1: Distributions of peers’ private payloads,gi(s)
Pop Classical Oldies World Alternative

Alfred 0.4 0.3 0.1 0.1 0.1
Bob 0.4 0.2 0.2 0.15 0.05

Connie 0.3 0.3 0.2 0.1 0.1
David 0.2 0.3 0.3 0.15 0.05

Eric 0.5 0.05 0.2 0.15 0.1
Florence 0.1 0.4 0.1 0.1 0.3

aggregate supply, g(s)0.317 0.258 0.18 0.125 0.12

Table 2: Distributions of peers demand,hi(s)
Pop Classical Oldies World Alternative

Alfred 0.1 0.4 0.3 0.1 0.1
Bob 0.05 0.5 0.1 0.3 0.05

Connie 0.1 0.2 0.3 0.2 0.2
David 0.1 0.4 0.3 0.15 0.05

Eric 0.1 0.4 0.2 0.2 0.1
Florence 0.2 0.3 0.1 0.2 0.2

aggregate demand, h(s)0.108 0.367 0.217 0.192 0.117

Table 3: The supply and the popularity rank
1 2 3 4 5

Supply rank (s) Pop Classical Oldies World Alternative
Popularity rank (r) Classical Oldies World Alternative Pop

A peer’s success rate would depend on the types of goods he demands on one hand, viz.hi(s),

and the aggregate supplyg(s) on the other. For instance, Alfred’s average success rate is given by:

pAlfred = 1− (0.1 (e−6 (0.317)) + 0.4 (e−6 (0.258)) + . . . + 0.1 (e−6 (0.12))) = 0.69
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3 Dynamic equilibrium of membership and content

Generally speaking, peers would join the club as members and share their private payloads as long as

their requests are sufficiently met. We make two simplifying assumptions here: (1) a peer would join

as long as a single current request is met, and leave otherwise; and (2) any request comprisesd ≥ 1

instances of demand. The probability that peeri would join when membership isC is thenPC,i
4
= pd

C,i

wherepC,i is the probability that an instance of peeri’s demand is satisfied when membership isC.

Conditioning on the membership sizen, the expected joining probability of peeri is

Pi(n)
4
= Pi(n)d (2)

Membership dynamics and content dynamics are closely coupled: as peers join and leave, they

alter the total shared content, inducing others to revise their join/leave decisions. The membership

size changes always unless the two-way flows between members and non-members are balanced.

Consequently, we may define astatistical equilibrium membership sizeneq as the solution of the

balance condition

(N − neq)P̄ (neq) = neq(1− P̄ (neq))

⇔ P̄ (neq) =
neq

N
(3)

where P̄ (n) = 1
N

∑N
i=1 Pi(n) is the joining probability averaged over all peers and all possible

memberships of sizen. Note that equation (3) is in the form of a fixed point equation which is

indicative of the coupled dynamics of membership and content. Further, the stability condition for a

fixed pointneq is simply
∂P̄ (n)

∂n

∣∣∣∣∣
n=neq

<
1

N
(4)

Note that an empty membership is always a fixed point, and would always be stable for sufficiently

smallN , in which case autonomous growth from an empty or small membership is very difficult if

not impossible.

Theorem 3.1(Empty Membership Instability). Empty membership is unstable if and only if requests

are simple, viz.d = 1, and

π
4
= N k ρ

∑
s

h(s) g(s) ≥ 1 . (5)
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Proof. Consider:

P̄ (n) =
1

N

N∑

i=1

Pi(n) =
1

N

N∑

i=1

pi(n)d d ≥ 1 .

Differentiating with respect ton:

N

d

∂P̄ (n)

∂n
=

N∑

i=1

pi(n)d−1∂pi(n)

∂n

⇔ N

dkρ

∂P̄ (n)

∂n
=

N∑

i=1

pi(n)d−1Ehi(s)[e
−nkρg(s)g(s)]

Sincepi(0) = 0, it follows that ∂P̄ (n)/∂n
∣∣∣
n=0

= 0 for d > 1, in which case an empty membership

is always stable. Whend = 1,

N

kρ

∂P̄ (n)

∂n
=

N∑

i=1

Eh(s) [g(s)] = N
∑
s

h(s)g(s)

⇔ ∂P̄ (n)

∂n
= kρ

∑
s

h(s)g(s)

whence (5) follows from the stability condition (4) for the empty membership fixed pointneq =

0. Q.E.D.

In our model, we regard empty membership instability as a necessary condition for autonomous

growth from an empty or small club membership. The above theorem implies that favourable

conditions are largek (contribution from members), largeρ (search efficiency) and a large value

of
∑

s h(s)g(s), an inner product ofh(s) andg(s). Note that

∑
s

h(s)g(s) ≡ ‖h‖ ‖g‖ · 〈h(s), g(s)〉

where‖h‖ and‖g‖ are the 2-norms ofh(s) andg(s) respectively, and〈h(s), g(s)〉 is their normalized

inner product which measures their similarity, or goodness of match. Other favourable conditions are

therefore a good match between aggregate demand and supply, andskewness– or small spread – of

their distributions over the chunk types.
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3.1 Music information sharing club example with simple requests

Figure (1) showsP̄ (n) for the music information sharing club example for fourkρ values for the

simple request case, viz.d = 1.

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

P̄
(n

)
or

n
/N

Number of peers N

A(1.9, 0.315)

B(5.1, 0.845)

k ρ = 2.0
k ρ = 1.0

k ρ = 0.808

k ρ = 0.5

Figure 1: The music information sharing club example

For kρ = 2, the model predicts that an empty club is unstable. Any disturbance, e.g. voluntary

sharing or contribution, would trigger it to grow. The club would stagger rapidly towards the fixed

point n = 5.1 — whereP̄ (x) = 5.1/6 = 0.85 and and sustain itself around there. The peers are

active members over80% of the time on average. Forkρ = 1, an empty club is again unstable

but the club sustains itself at a smaller average size ofn = 1.9. With less supply and/or less

efficient search function, peers are active only around30% of the time on average. Forkρ = 0.5,

an empty club now becomes stable. Joining peers are always more than offset by leaving members

such that a positive membership is always transient. Peers are almost always inactive. Finally

kρ = (N
∑

s h(s)g(s))−1 = 0.808 is the critical case when an empty club is just stable/unstable.

It is important to note that the above analysis is of the average case. The actual dynamics
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of a realization of the club membership over time asC(t) ⊂ N would sketch a sample path

(|C(t)|, PC(t)(n)) that staggers around the correspondingP̄ (n) curve2. However, the family ofP̄ (n)

curves for allπ values define a direction field of average directions of the forces that act upon any

sample path. The average direction is towards growth above then/N diagonal, and towards shrinkage

below, as shown in figure (2). In other words, then/N diagonal is a boundary between two phases of

the club dynamics, a growth phase for the club states above it and a shrinkage phase for those below.

This is a powerful way to visualize the club dynamics, especially whenπ may vary over time in more

complex cases.

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

P̄
(n

)
or

n
/N

Normalized number of peersn/N

Growth Phase

Shrinkage Phase
Pha

se
Bou

nd
ar

y

Figure 2: Phase diagram of club dynamics with direction field

2The staggering, or departure from the average case, would depend on the extent and rate of mixing, viz., the
stochasticity of the club membership. Generally speaking, a large number of active peers with strong flows both in
and out of the club would stay close to the average case with less staggering. Otherwise a sample path may actually get
stuck with a niche self-sufficient club that sees neither peers joining nor members leaving.

10



3.2 Critical behaviour and multiple equilibria

Note thatpi(0) = 0 and pi(n) is bounded and concave increasing inn. Whend = 1, P̄ (n) is

bounded and concave increasing inn also. Subsequently, there is at most one stable positive fixed

point. Theorem 3.1 establishes a sharp threshold forπ, a compositecontrol parameterof the club as

a dynamical system. The club would stabilize at an empty membership whenπ < 1, or the unique

stable positive fixed point of equation (3) otherwise. In cases whenπ varies across the threshold of

unity, the club would undergo critical change, and move towards either of the two stable fixed points.

When d > 1, an empty membership is always stable according to Theorem 3.1. For peer

population above some minimum levelNcrit > 0 such thatn/Ncrit is first tangential toP̄ (n) as

in figure (3), at least two positive fixed points exist. The smaller one would be unstable while the

larger is always stable (see figure (3)). The smaller fixed point signifies a lower threshold, a “critical

mass” of membership needed for autonomous growth thereafter. The club would be in danger of

collapse whenever its membership falls below this level, even when such fall is transient to begin

with.

P̄
(n

)
or

n
/N

two fixed points

besidencrit

∂P̄
∂n

> 1
N

∂P̄
∂n

< 1
N

ncrit

P̄ (n)

Ncrit N

1

0

unstable stable

Figure 3: Critical population and bifurcation of fixed points, ford > 1

Proposition 3.1(Critical Population and Bifurcation). Ncrit is the smallest solution to the simultane-

ous equations
∂P̄ (n)

∂n

∣∣∣∣∣
ncrit

=
P̄ (ncrit)

ncrit

=
1

Ncrit
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wherencrit is a bifurcation point: onceN increases aboveNcrit, two fixed points appear on either

sides ofncrit and move away from it.

This proposition follows simply from the fact that̄P (n) is smooth, increasing and upper bounded

at1 (see figure (3)). The membership levelncrit is metastable as it is exactly marginal to the stability

condition (4). In the special case when the peers are not differentiated in thathi(s) = h(s), the

increase inP̄ (n) concentrates around an inflection point just beforencrit. However, when thehi(s)’s

are spread out so that
∑

s h(s)g(s) is highly variable,P̄ (n) would increase more gradually. As a

result, the bifurcation may occur more sharply with a wider spread between the two resulting fixed

points.

4 A numerical example with truncated Zipfian aggregate demand

Consider a population ofN peers with a truncated Zipfian aggregate supply, viz.:

g(s) = cs−β 1 ≤ s ≤ smax (6)

where c = (
∑smax

s=1 s−β)−1. This rank-frequency distribution is widely observed in Web and

peer-to-peer file popularity measurement studies [12], [13] . The exponentβ is often around and

below1. Its skewness as measured by its norm is

‖g‖ = c

√√√√
smax∑

s=1

s−2β

which is determined by two key parameters, viz. thepeakednessof the Zipfian distribution as

governed by the exponentβ, and thevarietyof chunk types as governed bysmax.

Generally speaking,g(s) may match the aggregate demandh(s) to different degrees. Below we

analyze two cases, viz. the perfect match case whenh(s) = g(s) and the imperfect match case due to

a simple shift betweenh(s) andg(s). Also, we consider simple requests (d = 1) throughout.

4.1 Perfect match case:h(s) = g(s)

According to Theorem 3.1, the autonomous growth condition is

Ncrit ≥ 1

kcrit ρcrit

1

c2
∑

s s−2β
(7)

12



1

10

100

1000

10000

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

N
c
r
it

β
more spread less spread

smax = 3000

smax = 1000

smax = 500

smax = 300

Figure 4:Ncrit vs (β, smax) for perfect match case (k ρ = 1)
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Figure 5: Expected equilibrium membership and success rate vsN k ρ (smax = 1000)

since〈g, h〉 = 1 and‖g‖ = ‖h‖ = c
√∑

s s−2β. The dependence ofNcrit on β andsmax is shown in

figure (4). Autonomous growth is favoured by largeβ (peakedness) and lowsmax (variety).

Once the control parameter of the club is above the growth threshold, it would sustain around

an equilibrium membership sizeneq as the unique stable fixed point of equation (3). Solving for

different values ofNkρ andβ gives figure (5). This figure shows the proportionneq/N , which is also

the performance level of the club in terms ofP̄ (neq), the average success rate of information search
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in the club.

4.2 Imperfect match due to simple shift

Supply and demand distributions would seldom match perfectly. In fact, one would often be

considered leading the other. For example, ademand leadcase would demand a wider variety of

goods than the aggregate supply distribution offers, while asupply leadcase sees more variety in the

supplied goods. The “excess” in demanded types (or supplied types) reflects the types of goods that

the supply (or the demand) cannot follow at a particular moment. Here we consider all such excess

being concentrated in either the lowest or the highest ranks for simple illustrations.

In the supply lead case, the supplyg(s) is the same as defined in equation (6), and the demand

distribution is :

h(s) =





0 if s ≤ δ

c′(s− δ)−β if δ < s ≤ smax

for δ ≥ 0, and

h(s) =





c′′s−β if s ≤ smax + δ

0 if smax + δ < s ≤ smax

for δ < 0. c′ andc′′ are normalizing constants such that
∑

s h(s) = 1. See figure (6) for an illustrated

example. A positive shiftδ > 0 means the excess types occupy the highest ranks, while a negative

shift means they occupy the lowest ranks. The supply lead case would simply have the expressions of

g(s) andh(s) exchanged.

Figure (7) shows that excess in the highest ranks are very demanding and would require a very

large increase inNcrit for autonomous growth. However, excess in the lowest ranks actually decreases

Ncrit and autonomous growth becomes easier. This suggests that focussing of supply on chunk types

of the highest ranks would trigger autonomous growth more readily.

In summary, the distinction between supply lead and demand lead cases is immaterial to the

autonomous growth threshold, though it may be important to modelling supply and demand dynamics.

What matters is where they differ — in the higher or lower ranks.
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5 Discussion

The simple ISC model displays interesting behaviour resulting from coupling of the membership

and content dynamics. As a dynamical system, it exhibits phase transition in a composite control

parameterπ. Information sharing is sustainable with a good membership only whenπ is above a

threshold of1. It implies no effort in increasingπ is worthwhile (e.g. by improving efficiency and

supply, or increasing peer population) unlessπ goes above the threshold as a result.

Many researchers study the problem of excessive free-riding [11], [14], [15] that corresponds

to the existence of many peers withKi = 0 in our model. Incentive mechanisms are devised

which reward contribution and/or penalize free-riding. One way to analyze such mechanisms is by

extending the ISC model so that the search efficiency a peer sees becomes an increasing function of

the contribution he decides on a rational basis. In this case, our ongoing study indicates that empty

membership may become stable always, even ford = 1, as long as the club relies solely on members

for content. An empty club and a rational (frugal) peer population are in a dead lock situation. The

dead lock may be broken only when either the club has sufficient initial content to attract the peers, or

some peers are generous enough to contribute without expecting extra benefit (therefore not rational

in the conventional sense).

However, free-riding is not a problemper seunder the non-rivalrous assumption. As free-riders

are those withKi = 0, we may redefineN to exclude them so that only contributing peers (those

with positive payloads) are counted. As a result,N is reduced, and the average payload sizek is

increased (while the club’s average contentNk remains the same as before). All results in this paper

would continue to hold, albeit with the notion of a peer redefined. What matters is the contributing

peer population: the club would grow as long as they are joining to share enough content and attract

sufficiently many of themselves. The existence of free-riders is phantom to the system. They would

be no nuisance as long as provisioning of extra copies carries no sharing cost.

Incentives would help not by reducing free-riding but by increasing the contributing peer

population, viz.N . The distinction may seem frivolous as reduced free-riding is often regarded as

increased contribution. However this may not be true always. One may imagine a negative incentive

scheme which merely causes free-riders to demand less, or turn away altogether, without turning them

into contributing peers. The club’s content is not benefited. As incentive schemes are often costly to

maintain in practice, negative schemes as such should be saved for positive ones that aim to increase
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N directly. A reasonable principle in economizing the use of incentive schemes would be to focus on

those peers who are bordering on free-riding, to coerce them into contributing.

In fact, the club’s well being may actually be harmed in two possible ways when free-riding is

discouraged. First, free-riders may develop into contributors if only they stay long enough for the

club to become sufficiently important to them. Second, they may in fact be useful audience to the

members, e.g. in newsgroups, BBS and forums, where wider circulation of the shared information

often improvesall due to network effects. (This would be diametricallyoppositeto the rivalrous

assumption, and could actually be more appropriate than the non-rivalrous assumption if it more than

offsets any sharing costs due to rivalrous consumption of other club resources.)

In cases where the non-rivalrous assumption is not appropriate due to significant sharing costs, e.g.

in processing, storage and/or network bandwidth, penalizing free-riding would be more necessary to

reduce their loading on the system and the contributing peers. A possible corresponding extension

of the ISC model is to incorporate the natural reduction in availability of information goods as their

demand increases. For instance, the failure rate of demand for chunk types may become an increasing

function of its total demandnh(s) one way or the other. However, the choice of functional relation

between availability and demand should depend on the nature of the sharing cost.

Apart from extensions needed in rivalrous situations, the ISC model has two intrinsic limitations.

First, it captures only the average case behaviour of a nonlinear and stochastic dynamical system.

Transient and lock-in, especially when the club is small and peers act with large delay, may render

the average case view totally useless. Second, the join/leave decisions are often more heterogeneous

than assumed here. Requests may comprise variable numbers of demand instances and peers may

deliberate their decisions and behave differently.

6 Conclusion and further works

We have analyzed information sharing in a very general setting, by means of a statistical model

(ISC) with peers of different demand and supply of information. As a dynamical system, the model

exhibits interesting critical behaviour with multiple equilibria. A unique feature of the ISC model is

that information is chunked and typed, as we believe modelling the composition of the information

content is crucial in many situations of interest. Subsequently, it displays a sharp growth threshold

that depends on the goodness of match in the types of information being demanded and supplied by

the sharing members. While being rich in behaviour, this model is simple enough for detail analysis
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of the equilibrium states. In particular, we analyzed a truncated Zipfian distribution of information

types and derived the growth threshold for the existence of any sustainable equilibrium, as well as the

corresponding membership size and performance level.

Much simplicity of the ISC model stems from the non-rivalrous assumption made. Real situations

are more complicated in that peers may be sharing both rivalrous resources and non-rivalrous

information at the same time. However, Benkler [16] points out that overcapacity is a growing trend

in distributed systems such as the Internet, so much so that even rivalrous resources are increasingly

being shared like non-rivalrous goods. On the other hand, free-riding would work in the opposite

direction if the community in question is prosperous and attracts so much free-riding that contention

for some shared rivalrous resources begins to happen. The challenge is then to identify the major

sources of social cost of sharing [17] and properly account for them. A natural extension of our work

would be to study the interplay between an information sharing community and different types of

host networks. Another extension is certainly the incentive issue: how incentive schemes should be

devised in response to different mixes of rivalrous and non-rivalrous resources.
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